带电粒子在有界匀强磁场中的运动
- 格式:ppt
- 大小:549.50 KB
- 文档页数:11
带电粒子在匀强磁场中的运动带电粒子在匀强磁场中的运动在带电粒子只受洛伦兹力作用、重力可以忽略的情况下,其在匀强磁场中有两种典型的运动:(1)若带电粒子的速度方向与磁场方向平行时,不受洛伦兹力,做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,其运动所需的向心力即洛伦兹力.可见T与v及r无关,只与B及粒子的比荷有关.荷质比q/m相同的粒子在同样的匀强磁场中,T,f和ω相同.(3)圆心的确定.因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹上任意两点(一般是射入和出磁场的两点)的f的方向,其延长线的交点即为圆心.(4)半径的确定和计算.圆心找到以后,自然就有了半径(一般是利用粒子入、出磁场时的半径).半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识.(5)在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式t=θ/360°×T可求出运动时间.有时也用弧长与线速度的比.如图所示,注意到:①速度的偏向角ψ等于弧AB所对的圆心角θ.②偏向角ψ与弦切角α的关系为:ψ<180°,ψ=2α;ψ>180°,ψ=360°-2α;(6)注意圆周运动中有关对称规律如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.确定粒子在磁场中运动圆心的方法①已知粒子运动轨迹上两点的速度方向,作这两速度方向的垂线,交点即为圆心。
②已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心。
③已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心。
④已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心。
第3节 带电粒子在匀强磁场中的运动核心素养导学一、带电粒子在匀强磁场中的运动1.带电粒子沿着与磁场垂直的方向射入匀强磁场,由于带电粒子初速度的方向和洛伦兹力的方向都在与磁场方向 的平面内。
所以,粒子只能在该平面内运动。
2.洛伦兹力总是与粒子运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小。
3.粒子速度大小不变,粒子在匀强磁场中所受洛伦兹力大小也不改变,洛伦兹力提供粒子做圆周运动的向心力,粒子做 运动。
带电粒子在匀强磁场中做匀速圆周运动,带电粒子的重力忽略不计,洛伦兹力提供向心力。
二、带电粒子在磁场中做圆周运动的半径和周期1.半径公式由洛伦兹力提供向心力q v B =m v 2r ,可得圆周运动的半径r = 。
2.周期公式匀速圆周运动的周期T =2πr v ,将r =m v qB 代入,可得T = 。
1.电子以某一速度进入洛伦兹力演示仪中。
(1)励磁线圈通电前后电子的运动情况相同吗?提示:①通电前,电子做匀速直线运动。
②通电后,电子做匀速圆周运动。
(2)电子在洛伦兹力演示仪中做匀速圆周运动时,什么力提供向心力?提示:洛伦兹力提供向心力。
2.如图,带电粒子在匀强磁场中做匀速圆周运动。
判断下列说法的正误。
(1)运动电荷在匀强磁场中做匀速圆周运动的周期与速度有关。
( )(2)带电粒子做匀速圆周运动的半径与带电粒子进入匀强磁场时速度的大小有关。
( )(3)带电粒子若垂直进入非匀强磁场后做半径不断变化的运动。
( )新知学习(一)⎪⎪⎪带电粒子做圆周运动的半径和周期[任务驱动]美丽的极光是由来自太阳的高能带电粒子流进入地球高空大气层出现的现象。
科学家发现并证实,向地球两极做螺旋运动的这些高能粒子的旋转半径是不断减小的,这主要与哪些因素有关?提示:一方面磁场在不断增强,另一方面由于大气阻力粒子速度不断减小,根据r =m v qB,半径r 是不断减小的。
[重点释解]1.由公式r =m v qB 可知,带电粒子在匀强磁场中做圆周运动的半径r 与比荷q m 成反比,与速度v 成正比,与磁感应强度B 成反比。
带电粒⼦在匀强磁场中的运动1.若v∥B,带电粒⼦不受洛伦兹⼒,在匀强磁场中做匀速直线运动.2.若v⊥B,带电粒⼦仅受洛伦兹⼒作⽤,在垂直于磁感线的平⾯内以⼊射速度v做匀速圆周运动.3.半径和周期公式:(v⊥B)【解题⽅法点拨】带电粒⼦在匀强磁场中的匀速圆周运动⼀、轨道圆的“三个确定”(1)如何确定“圆⼼”①由两点和两线确定圆⼼,画出带电粒⼦在匀强磁场中的运动轨迹.确定带电粒⼦运动轨迹上的两个特殊点(⼀般是射⼊和射出磁场时的两点),过这两点作带电粒⼦运动⽅向的垂线(这两垂线即为粒⼦在这两点所受洛伦兹⼒的⽅向),则两垂线的交点就是圆⼼,如图(a)所⽰.②若只已知过其中⼀个点的粒⼦运动⽅向,则除过已知运动⽅向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆⼼,如图(b)所⽰.③若只已知⼀个点及运动⽅向,也知另外某时刻的速度⽅向,但不确定该速度⽅向所在的点,如图(c)所⽰,此时要将其中⼀速度的延长线与另⼀速度的反向延长线相交成⼀⾓(∠PAM),画出该⾓的⾓平分线,它与已知点的速度的垂线交于⼀点O,该点就是圆⼼.⼆、解题思路分析1.带电粒⼦在磁场中做匀速圆周运动的分析⽅法.2.带电粒⼦在有界匀强磁场中运动时的常见情形.3.带电粒⼦在有界磁场中的常⽤⼏何关系(1)四个点:分别是⼊射点、出射点、轨迹圆⼼和⼊射速度直线与出射速度直线的交点.(2)三个⾓:速度偏转⾓、圆⼼⾓、弦切⾓,其中偏转⾓等于圆⼼⾓,也等于弦切⾓的2倍.三、求解带电粒⼦在匀强磁场中运动的临界和极值问题的⽅法由于带电粒⼦往往是在有界磁场中运动,粒⼦在磁场中只运动⼀段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒⼦运动的轨迹作相关图去寻找⼏何关系,分析临界条件,然后应⽤数学知识和相应物理规律分析求解.(1)两种思路①以定理、定律为依据,⾸先求出所研究问题的⼀般规律和⼀般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;②直接分析、讨论临界状态,找出临界条件,从⽽通过临界条件求出临界值.(2)两种⽅法物理⽅法:①利⽤临界条件求极值;②利⽤问题的边界条件求极值;③利⽤⽮量图求极值.数学⽅法:①利⽤三⾓函数求极值;②利⽤⼆次⽅程的判别式求极值;③利⽤不等式的性质求极值;④利⽤图象法等.(3)从关键词中找突破⼝:许多临界问题,题⼲中常⽤“恰好”、“最⼤”、“⾄少”、“不相撞”、“不脱离”等词语对临界状态给以暗⽰.审题时,⼀定要抓住这些特定的词语挖掘其隐藏的规律,找出临界条件.。