第三章 断裂力学与断裂韧度11
- 格式:ppt
- 大小:6.31 MB
- 文档页数:59
第三章断裂力学基础在应力作用下使材料分成两个或几个部分的现象称为断裂。
断裂是材料在外力作用下丧失连续性的过程,它包括裂纹萌生和扩展两个基本过程。
部件完全断裂后,不仅彻底丧失了服役能力,而且造成了不应有的经济损失,甚至引起重大的伤亡事故。
因此,断裂的后果比起塑性变形要严重的多,是最危险的失效类型。
从构件断裂前的塑性变形量的大小,可分为脆性断裂和韧性断裂两大类,因此通常将工程结构材料分为韧性材料和脆性材料两类。
但是这样的划分并不能完全保证断裂的韧、脆特征,因而常常引起意想不到的灾难性事故。
例如一些由高强度合金所制成的机械结构发生断裂时的应力水平,往往远低于屈服强度,这是用传统的失效判据无法解释的。
通过对这类现象多年的大量研究,现已取得共识,即这类低应力脆断是由构件在使用前即已存在裂纹类缺陷所决定的。
由于裂纹的存在,在平均外载荷(远场应力)并不大的情况下,在裂纹尖端附近区域产生的高度应力集中就可达到材料的理论断裂强度,引发局部断裂,致使裂纹扩展,最终导致整体断裂。
由此可见,材料中是否存在缺陷、裂纹,对材料强度影响很大,甚至影响到工程材料强度设计方法。
传统(经典)强度设计方法是把材料和构件视为连续、均匀及各向同性的受载物体来处理,通过材料力学分析方法,确定构件危险断面的应力和应变,考虑安全系数后,对材料提出相应的强度、塑性要求。
但该方法有两个明显的弱点:首先,材料连续、均匀的假设不符合实际情况。
真实材料中往往存在各种宏观、微观缺陷,大大降低材料的强度和塑性,对此点传统方法无法估算;其次,经典强度理论把外载荷的作用平均分布于危险断面的每一个区域,并且认为断裂破坏是瞬时发生的,即整体的同时破坏。
然而实际上,无论哪一种断裂形式都是一个裂纹萌生、扩展直至断裂的局部过程,它受局问应力场强的支配。
因此断裂在很大程度上受控于裂纹萌生抗力和裂纹扩展抗力,而并不总是决定于用断面尺寸计算的名义断裂应力和名义断裂应变。
基于传统设计方法的不足,发展出了断裂力学设计方法。