第三章 断裂力学与断裂韧度11
- 格式:ppt
- 大小:6.31 MB
- 文档页数:59
第三章断裂力学基础在应力作用下使材料分成两个或几个部分的现象称为断裂。
断裂是材料在外力作用下丧失连续性的过程,它包括裂纹萌生和扩展两个基本过程。
部件完全断裂后,不仅彻底丧失了服役能力,而且造成了不应有的经济损失,甚至引起重大的伤亡事故。
因此,断裂的后果比起塑性变形要严重的多,是最危险的失效类型。
从构件断裂前的塑性变形量的大小,可分为脆性断裂和韧性断裂两大类,因此通常将工程结构材料分为韧性材料和脆性材料两类。
但是这样的划分并不能完全保证断裂的韧、脆特征,因而常常引起意想不到的灾难性事故。
例如一些由高强度合金所制成的机械结构发生断裂时的应力水平,往往远低于屈服强度,这是用传统的失效判据无法解释的。
通过对这类现象多年的大量研究,现已取得共识,即这类低应力脆断是由构件在使用前即已存在裂纹类缺陷所决定的。
由于裂纹的存在,在平均外载荷(远场应力)并不大的情况下,在裂纹尖端附近区域产生的高度应力集中就可达到材料的理论断裂强度,引发局部断裂,致使裂纹扩展,最终导致整体断裂。
由此可见,材料中是否存在缺陷、裂纹,对材料强度影响很大,甚至影响到工程材料强度设计方法。
传统(经典)强度设计方法是把材料和构件视为连续、均匀及各向同性的受载物体来处理,通过材料力学分析方法,确定构件危险断面的应力和应变,考虑安全系数后,对材料提出相应的强度、塑性要求。
但该方法有两个明显的弱点:首先,材料连续、均匀的假设不符合实际情况。
真实材料中往往存在各种宏观、微观缺陷,大大降低材料的强度和塑性,对此点传统方法无法估算;其次,经典强度理论把外载荷的作用平均分布于危险断面的每一个区域,并且认为断裂破坏是瞬时发生的,即整体的同时破坏。
然而实际上,无论哪一种断裂形式都是一个裂纹萌生、扩展直至断裂的局部过程,它受局问应力场强的支配。
因此断裂在很大程度上受控于裂纹萌生抗力和裂纹扩展抗力,而并不总是决定于用断面尺寸计算的名义断裂应力和名义断裂应变。
基于传统设计方法的不足,发展出了断裂力学设计方法。
弹性力学中的断裂韧度和断裂力学弹性力学是研究物体在外力作用下的形变和应力分布规律的学科。
而断裂力学则是研究物体在外力作用下发生破裂的过程和规律的学科。
这两个学科在材料科学和工程领域中扮演着重要的角色。
本文将从断裂韧度和断裂力学两个方面来探讨弹性力学中的断裂现象。
一、断裂韧度断裂韧度是衡量材料抵抗断裂的能力的一个重要指标。
它反映了材料在承受外力时能够延展变形的程度。
一般来说,断裂韧度越高,材料的抗断裂能力就越强。
断裂韧度的计算通常是通过测量材料的断裂应力和断裂应变来实现的。
断裂应力是指材料在断裂前所承受的最大应力,而断裂应变则是指材料在断裂前所发生的最大应变。
通过测量这两个参数,可以得到材料的断裂韧度。
断裂韧度的大小与材料的结构和组成有关。
一般来说,具有高断裂韧度的材料往往具有较高的延展性和韧性,能够在受到外力时发生较大的塑性变形,从而减缓断裂的发生。
而具有低断裂韧度的材料则容易发生脆性断裂,即在受到外力时发生突然断裂,而没有明显的延展变形。
二、断裂力学断裂力学研究的是材料在外力作用下发生破裂的过程和规律。
在断裂力学中,常常使用断裂韧度、断裂强度和断裂韧性等参数来描述材料的断裂性能。
断裂力学的研究对象包括裂纹的生成、扩展和联合等。
裂纹是材料中的缺陷,它会导致材料的强度和韧性降低,并最终导致材料的破裂。
因此,研究裂纹的行为和影响对于了解材料的断裂行为具有重要意义。
断裂力学中的一个重要概念是应力强度因子,它是描述裂纹尖端应力场分布的一个参数。
应力强度因子的大小与裂纹的尺寸、形状和材料的性质有关。
通过研究应力强度因子,可以预测裂纹的扩展速率和破裂的临界条件。
断裂力学还涉及到断裂机制的研究。
不同材料在断裂时会表现出不同的断裂模式,如拉伸断裂、剪切断裂和韧性断裂等。
研究不同材料的断裂模式可以帮助我们了解材料的断裂行为和性能。
总结弹性力学中的断裂韧度和断裂力学是研究材料断裂行为的重要方面。
断裂韧度是衡量材料抗断裂能力的指标,而断裂力学则研究材料在外力作用下发生破裂的过程和规律。