材料力学性能-单智伟讲义-第8讲 断裂力学与断裂韧性 中
- 格式:pdf
- 大小:2.48 MB
- 文档页数:50
材料的断裂力学分析在材料科学和工程领域中,断裂力学是一门研究材料在外力作用下如何发生破坏的学科。
通过断裂力学的分析,我们可以了解材料在正常使用条件下的破坏原因,以及如何提高材料的断裂韧性和强度。
本文将对材料的断裂力学进行详细分析。
1. 断裂力学的基本概念在了解材料的断裂力学之前,我们需要了解几个基本概念。
1.1 断裂断裂是指材料在外部应力作用下发生破坏、分离的过程。
断裂可以分为韧性断裂和脆性断裂两种类型。
韧性断裂是指材料在破坏之前会出现塑性变形,具有一定的延展性;而脆性断裂是指材料在外力作用下迅速发生破坏而不发生明显的塑性变形。
1.2 断裂韧性断裂韧性是指材料抵抗断裂破坏的能力。
一个具有高断裂韧性的材料可以在外力作用下发生一定程度的塑性变形,从而使其拉伸长度增加。
1.3 断裂强度断裂强度是指材料在破坏前能够承受的最大应力。
断裂强度可以通过拉伸实验等方式进行测定。
2. 断裂力学的分析方法断裂力学的分析方法主要有线弹性断裂力学和非线弹性断裂力学两种。
2.1 线弹性断裂力学线弹性断裂力学假设材料在破坏前的行为是线弹性的,并且材料的破坏是由于应力达到了一定的临界值所引起的。
在线弹性断裂力学中,断裂过程可以通过应力强度因子和断裂韧性来描述。
2.2 非线弹性断裂力学非线弹性断裂力学考虑了材料在破坏前的非线性行为,如塑性变形、蠕变等。
非线弹性断裂力学可以更准确地预测材料的破坏行为,但其计算复杂度较高。
3. 断裂力学的应用断裂力学在材料科学和工程中具有广泛的应用。
3.1 破坏分析通过断裂力学的分析,我们可以确定材料在受力状态下的破坏原因,从而改进材料的设计和制备工艺。
例如,在航空航天领域,对材料的断裂力学进行精确分析可以提高飞行器的安全性和可靠性。
3.2 材料评估通过断裂力学的测试和分析,我们可以评估材料的断裂韧性和强度,为材料的选择和应用提供依据。
这对于许多行业来说是至关重要的,如汽车制造、建筑工程等。
3.3 研发新材料断裂力学的理论和实验研究对于开发新的高性能材料具有重要意义。
目录第一章绪论 (2)§1.1 断裂力学的概念 (2)§1.2 断裂力学的基本组成 (2)第二章线弹性断裂力学概述 (4)§2.1 裂纹及其对强度的影响 (4)§2.2 断裂理论 (8)第三章裂纹尖端区域的应力场及应力强度因子 (15)§3.1 Ⅰ型裂纹尖端区域的应力场与位移场 (15)§3.2 Ⅱ型裂纹尖端区域的应力场与位移场 (21)§3.3 Ⅲ型裂纹尖端区域的应力场与位移场 (23)§3.4应力强度因子的确定 (26)第一章绪论§1.1 断裂力学的概念任何一门科学都是应一定的需要而产生的,断裂力学也是如此。
一提到断裂,人们自然而然地就会联想到各种工程断裂事故。
在断裂力学产生之前,人们根据强度条件来设计构件,其基本思想就是保证构件的工作应力不超过材料的许用应力,即σ≤[σ]~安全设计安全设计对确保构件安全工作也确实起到了重大的作用,至今也仍然是必不可少的。
但是人们在长期的生产实践中,逐步认识到,在某些情况下,根据强度条件设计出的构件并不安全,断裂事故仍然不断发生,特别是高强度材料构件,焊接结构,处在低温或腐蚀环境中的结构等,断裂事故就更加频繁。
例如,1943~1947年二次世界大战期间,美国的5000余艘焊接船竟然连续发生了一千多起断裂事故,其中238艘完全毁坏。
1949年美国东俄亥俄州煤气公司的圆柱形液态天然气罐爆炸使周围很大一片街市变成了废墟。
五十年代初,美国北极星导弹固体燃料发动机壳体在试验时发生爆炸。
这些接连不断的工程断裂事故终于引起了人们的高度警觉。
特别值得注意的是,有些断裂事故竟然发生在σ<<[σ]的条件下,用传统的安全设计观点是无法解释的。
于是人们认识到了传统的设计思想是有缺欠的,并且开始寻求更合理的设计途径。
人们从大量的断裂事故分析中发现,断裂都是起源于构件中有缺陷的地方。
传统的设计思想把材料视为无缺陷的均匀连续体,而实际构件中总是存在着各种不同形式的缺陷。
断裂力学与断裂韧性3.1 概述断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。
自从四五十年代之后,脆性断裂的事故明显地增加。
例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧!按照传统力学设计,只要求工作应力C小于许用应力[C ],即c <[C ], 就被认为是安全的了。
而[c ],对塑性材料[c ]= c s/n,对脆性材料[c ]= c b/n,其中n 为安全系数。
经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。
原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。
人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。
因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。
可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。
3.2 格里菲斯(Griffith) 断裂理论3.2.1 理论断裂强度金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。
图中纵坐标表示原子间结合力,纵轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。
如金属受拉伸离开平衡位置,位移越大需克服的引力越大,弓I力和位移的关系如以正弦函数关系表示,当位移达到Xm时吸力最大以(T c表示, 拉力超过此值以后,引力逐图3-1原子间结合力随距离变化示意图渐减小,在位移达到正弦周期之半2时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。