3断裂力学与断裂韧度
- 格式:ppt
- 大小:1.94 MB
- 文档页数:44
断裂力学与断裂韧性3.1 概述断裂是工程构件最危险的一种失效方式,尤其是脆性断裂,它是突然发生的破坏,断裂前没有明显的征兆,这就常常引起灾难性的破坏事故。
自从四五十年代之后,脆性断裂的事故明显地增加。
例如,大家非常熟悉的巨型豪华客轮-泰坦尼克号,就是在航行中遭遇到冰山撞击,船体发生突然断裂造成了旷世悲剧!按照传统力学设计,只要求工作应力σ小于许用应力[σ],即σ<[σ],就被认为是安全的了。
而[σ],对塑性材料[σ]=σs /n,对脆性材料[σ]=σb/n,其中n为安全系数。
经典的强度理论无法解释为什么工作应力远低于材料屈服强度时会发生所谓低应力脆断的现象。
原来,传统力学是把材料看成均匀的,没有缺陷的,没有裂纹的理想固体,但是实际的工程材料,在制备、加工及使用过程中,都会产生各种宏观缺陷乃至宏观裂纹。
人们在随后的研究中发现低应力脆断总是和材料内部含有一定尺寸的裂纹相联系的,当裂纹在给定的作用应力下扩展到一临界尺寸时,就会突然破裂。
因为传统力学或经典的强度理论解决不了带裂纹构件的断裂问题,断裂力学就应运而生。
可以说断裂力学就是研究带裂纹体的力学,它给出了含裂纹体的断裂判据,并提出一个材料固有性能的指标——断裂韧性,用它来比较各种材料的抗断能力。
3.2 格里菲斯(Griffith)断裂理论3.2.1 理论断裂强度金属的理论断裂强度可由原子间结合力的图形算出,如图3-1。
图中纵坐标表示原子间结合力,纵轴上方为吸引力下方为斥力,当两原子间距为a即点阵常数时,原子处于平衡位置,原子间的作用力为零。
如金属受拉伸离开平衡位置,位移越大需克服的引力越大,引力和位移的关系如以正弦函数关系表示,当位移达到Xm 时吸力最大以σc表示,拉力超过此值以后,引力逐渐减小,在位移达到正弦周期之半时,原子间的作用力为零,即原子的键合已完全破坏,达到完全分离的程度。
可见理论断裂强度即相当于克服最大引力σc。
该力和位移的关系为图中正弦曲线下所包围的面积代表使金属原子完全分离所需的能量。
弹性力学中的断裂韧度和断裂力学弹性力学是研究物体在外力作用下的形变和应力分布规律的学科。
而断裂力学则是研究物体在外力作用下发生破裂的过程和规律的学科。
这两个学科在材料科学和工程领域中扮演着重要的角色。
本文将从断裂韧度和断裂力学两个方面来探讨弹性力学中的断裂现象。
一、断裂韧度断裂韧度是衡量材料抵抗断裂的能力的一个重要指标。
它反映了材料在承受外力时能够延展变形的程度。
一般来说,断裂韧度越高,材料的抗断裂能力就越强。
断裂韧度的计算通常是通过测量材料的断裂应力和断裂应变来实现的。
断裂应力是指材料在断裂前所承受的最大应力,而断裂应变则是指材料在断裂前所发生的最大应变。
通过测量这两个参数,可以得到材料的断裂韧度。
断裂韧度的大小与材料的结构和组成有关。
一般来说,具有高断裂韧度的材料往往具有较高的延展性和韧性,能够在受到外力时发生较大的塑性变形,从而减缓断裂的发生。
而具有低断裂韧度的材料则容易发生脆性断裂,即在受到外力时发生突然断裂,而没有明显的延展变形。
二、断裂力学断裂力学研究的是材料在外力作用下发生破裂的过程和规律。
在断裂力学中,常常使用断裂韧度、断裂强度和断裂韧性等参数来描述材料的断裂性能。
断裂力学的研究对象包括裂纹的生成、扩展和联合等。
裂纹是材料中的缺陷,它会导致材料的强度和韧性降低,并最终导致材料的破裂。
因此,研究裂纹的行为和影响对于了解材料的断裂行为具有重要意义。
断裂力学中的一个重要概念是应力强度因子,它是描述裂纹尖端应力场分布的一个参数。
应力强度因子的大小与裂纹的尺寸、形状和材料的性质有关。
通过研究应力强度因子,可以预测裂纹的扩展速率和破裂的临界条件。
断裂力学还涉及到断裂机制的研究。
不同材料在断裂时会表现出不同的断裂模式,如拉伸断裂、剪切断裂和韧性断裂等。
研究不同材料的断裂模式可以帮助我们了解材料的断裂行为和性能。
总结弹性力学中的断裂韧度和断裂力学是研究材料断裂行为的重要方面。
断裂韧度是衡量材料抗断裂能力的指标,而断裂力学则研究材料在外力作用下发生破裂的过程和规律。