第9章 相关与回归分析
- 格式:doc
- 大小:313.00 KB
- 文档页数:16
第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。
本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。
【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。
【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。
第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。
这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。
相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。
例如,商品销售额与流通费用率之间的关系就是一种相关关系。
(二)相关关系的特点1、相关关系表现为数量相互依存关系。
2、相关关系在数量上表现为非确定性的相互依存关系。
二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。
其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。
相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。
郑州轻工业学院数学与信息科学系第九章:相关分析与一元回归分析概率统计教研组变量之间的关系可以分为函数关系和相关关系两类,函数关系表示变量间确定的对应关系,而相关关系则是变量间的某种非确定的依赖关系.相关分析主要是研究随机变量间相关关系的形式和程度,在相关关系的讨论中,两个变量的地位是同等的,所使用的测度工具是相关系数,而回归分析则侧重考察变量之间的数量伴随关系,并通过一定的数学表达式将这种数量关系描述出来,用于解决预测和控制等实际问题.本章主要学习相关分析和一元回归分析的有关概念、理论和方法.●【回归名称的来历】―回归”这一词最早出现在1885年,英国生物学家兼统计学家——弗朗西斯⋅高尔顿(Francis Galton )在研究遗传现象时引进了这一名词.他研究分析了孩子和父母身高关系后发现:虽然高个子的父母会有高个子的后代,但后代的增高并不与父母的增高等量.他称这一现象为“向平常高度的回归”.尔后,他的朋友麦尔逊等人搜集了上千个家庭成员的身高数据,分析出儿子的平均身高和父亲的身高x 大致为如下关系:(英寸) 93.33516.0ˆ+=y●【回归名称的来历】这表明:(1)父亲身高增加1英寸,儿子的身高平均增加0.516英寸.(2)高个子父辈有生高个子儿子的趋势,但儿子的平均身高要比于父辈低一些.如x =80,那么低于父辈的平均身高.(3)低个子父辈的儿子们虽为低个子,但其平均身高要比父辈高一些.如x =80,那么高于父辈的平均身高,01.75ˆ=y,01.75ˆ=y●【回归名称的来历】可见儿子的高度趋向于“回归”到平均值而不是更极端,这就是“回归”一词的最初含义.诚然,如今对回归这一概念的理解并不是高尔顿的原意,但这一名词却一直沿用下来,成为数理统计中最常用的概念之一.回归分析的思想早已渗透到数理统计学科的其他分支,随着计算机的发展和各种统计软件的出现,回归分析的应用越来越广泛.主要内容§9.1相关分析§9.2回归分析在大量的实际问题中,随机变量之间虽有某种关系,但这种关系很难找到一种精确的表示方法来描述.例如,人的身高与体重之间有一定的关系,知道一个人的身高可以大致估计出他的体重,但并不能算出体重的精确值.其原因在于人有较大的个体差异,因而身高和体重的关系,是既密切但又不能完全确定的关系.随机变量间类似的这种关系在大自然和社会中屡见不鲜.例如,农作物产量与施肥量的关系,商业活动中销售量与广告投入的关系,人的年龄与血压的关系,每种股票的收益与整个市场收益的关系,家庭收入与支出的关系等等这种大量存在于随机变量间既互相联系,但又不是完全确定的关系,称为相关关系.从数量的角度去研究这种关系,是数理统计的一个任务.这包括通过观察和试验数据去判断随机变量之间有无关系,对其关系大小作出数量上的估计,我们把这种统计分析方法称为相关分析.相关分析通常包括考察随机变量观测数据的散点图、计算样本相关系数以及对总体相关系数的显著性检验等内容.●9.1.1散点图散点图是描述变量之间关系的一种直观方法.我们用坐标的横轴代表自变量X ,纵轴代表因变量Y ,每组观测数据(x i ,y i )在坐标系中用一个点表示,由这些点形成的散点图描述了两个变量之间的大致关系,从中可以直观地看出变量之间的关系形态及关系强度.图9-1 不同形态的散点图(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图从散点图可以看出,变量间相关关系的表现形态大体上可分为线性相关、非线性相关、不相关等几种.就两个变量而言,如果变量之间的关系近似地表现为一条直线,则称为线性相关,如图9-1(a)和(b);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图如果变量之间的关系近似地表现为一条曲线,则称为非线性相关或曲线相关;如图9-1(c);如果两个变量的观测点很分散,无任何规律,则表示变量之间没有相关关系,如图9-1(d).(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量的数值也随之增加,或一个变量的数值减少,另一个变量的数值也随之减少,则称为正相关,如图9-1(a);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图若两个变量的变动方向相反,一个变量的数值增加,另一个变量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为负相关,如图9-1(b).(a)(b)(c)(d)●9.1.1散点图通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态做出大致的描述,但散点图不能准确反映变量之间的关系密切程度.因此,为准确度量两个变量之间的关系密切程度,需要计算相关系数.●9.1.2相关系数相关系数是对两个随机变量之间线性关系密切程度的度量.若相关系数是根据两个变量全部数据计算的,称为总体相关系数.设X ,Y 为两个随机变量,由定义4.5知,当D (X )D (Y )≠0时,总体相关系数的计算公式为:其中Cov (X ,Y )为变量X 和Y 的协方差,D (X )和D (Y )分别为X 和Y 的方差.,),(Cov DY DX Y X XY =ρ●9.1.2相关系数设(x i ,y i ),i =1,2,…,n ,为(X ,Y )的样本,记,11∑==n i i x n x ,11∑==ni i y n y ,)(11122∑=--=n i i x x x n s ∑=--=ni i y y y n s 122)(11●9.1.2相关系数【定义9.1】若s x s y ≠0,称为{x i }和{y i }的相关系数(也可简称为样本相关系数).r xy 常简记为r .r xy 的性质:(1)|r xy |≤1(2)|r xy |=1时,(x i ,y i ),i =1,2,…,n 在一条直线上.∑∑==----==n i i in i i i y x xyxy y y x xy y x x s s s r 1221)()())((●9.1.2相关系数【定义9.2】当r>0时,称{x i}和{y i}正相关,当r xy<0时,xy}和{y i}负相关,当r xy=0时,称{x i}和{y i}不相关称{xi实际应用中,为了说明{x}和{y i}的相关程度,通常将相i关程度分为以下几种情况:当|r|≥0.8时,可视{x i}与{y i}为高度线性相关;xy0.5≤|r|<0.8时,可视{x i}与{y i}为中度线性相关;xy0.3≤|r|<0.5时,视{x i}与{y i}为低度线性相关;xy当|r|<0.3时,说明{x i}与{y i}的线性相关程度极弱.xy●9.1.2相关系数说明:(1)有时个别极端数据可能影响样本相关系数,应用中要多加注意.(2)r xy=0,只能说明{x i}与{y i}之间不存在线性关系,并不能说明{xi}与{y i}之间无其他关系.(3)一般情况下,总体相关系数ρXY是未知的,通常是将样本相关系数rxy 作为ρXY的估计值,于是常用样本相关系数推断两变量间的相关关系.这一点要和相关系数的显著性检验结合起来应用.9.1.2相关系数【例9-1】用来评价商业中心经营好坏的一个综合指标是单位面积的营业额,它是单位时间内(通常为一年)的营业额与经营面积的比值.对单位面积营业额的影响因素的指标有单位小时车流量、日人流量、居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分.这几个指标中车流量和人流量是通过同时对几个商业中心进行实地观测而得到的.而居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分是通过随机采访顾客而得到的平均值数据.9.1.2相关系数【例9-1】某市随机抽取20个商业中心有关数据图9-2 商业中心经营状况指标与数据9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:设各指标(变量)的变量名分别为:单位面积营业额:y,每小时机动车流量:x1,日人流量:x2,居民年消费额:x3,对商场环境的满意度:x4,对商场设施的满意度:x5,为商场商品丰富程度满意度:x6.(1)利用Excel分别作出y与x1,x2,…,x6的散点图.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图可以看到,各散点图的散点分布和一条直线相比均有一定差别.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图其中单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)的线性关系相对较明显一些.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图y与商场商品丰富程度满意度(x6)有一定的线性关系,而y与其余几个变量的线性关系较弱.●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(1)利用Excel分别作出y与x1,x2,…,x6的散点图.实验操作:编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.1671099.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.,x2,…,x6的相关系数解:(2)利用Excel分别计算y与x1A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6230.41270.790480.794330.341240.450200.69749=CORREL($B2:$B21,C2:C21)计算准备9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x,x2,…,x6的相关系数1编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x60.410.790.790.340.450.7计算结果●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数从相关系数的取值来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)接近高度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与商场商品丰富程度满意度(x6)则属于中度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与每小时机动车流量(x1)、对商场环境的满意度(x4)、对商场设施的满意度(x5)为低度相关;A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.3相关性检验设(xi ,yi),i=1,2,…,n,为(X,Y)的样本,相关性检验也就是检验总体X,Y的相关系数是否为0,通常采用费歇尔(Fisher)提出的t分布检验,该检验可以用于小样本,也可以用于大样本.检验的具体步骤如下:1)提出假设:假设样本是从不相关的两个总体中抽出的,即H0:ρXY= 0,H1:ρXY≠ 0如果否定了H就认为X,Y是相关的.●9.1.3相关性检验2)可以证明,当H 0成立时,统计量 因为H 0立时,|r xy |应该很小,从而T 的观测值应该取值较小,于是,在显著水平α下H 0的拒绝域是若T 的观测值记为t 0,衡量观测结果极端性的P 值:P = P {| T | ≥ | t 0|} = 2P {T ≥ | t 0 |})2(~122---=n t r n r T xyxy212xyxyr n r t --=)},2(|{|2/-≥n t t α●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x623r=0.41270.790480.794330.341240.450200.69749 =B23*SQRT(20-2)/SQRT(1-B23^2)24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P=0.0705 3.36E-05 2.86E-050.14090.46390.0006 =TDIST(B24,20-2,2)计算准备●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:编号y与x1x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x6r=0.412710.790480.794330.341240.45020.69749t= 1.92235 5.47556 5.54751 1.54023 2.13905 4.12956P=0.07053 3.4E-05 2.9E-050.14090.046390.00063计算结果●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:检验结果来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)、商场商品的丰富程度满意度(x6)、A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 23r=0.41270.790480.794330.341240.450200.69749 24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.1296 25P=0.0705 3.36E-05 2.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平α=0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:对商场设施的满意度(x 5)的相关系数显著不为0(P <α=0.05),即其相关性显著;A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:而不能拒绝y 与每小时机动车流量(x 1)、对商场环境的满意度(x 4)相关系数为0的假设(P >0.05),即其相关性不显著.A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006回归分析是针对两个或两个以上具有相关关系的变量,研究它们的数量伴随关系,并通过一定的数学表达式将这种关系描述出来,建立回归模型.回归分析中总假设因变量是随机变量,自变量可以是随机变量也可以是一般变量(可以控制或精确测量的变量),我们只讨论自变量为一般变量的情况.为简单起见,以后的所有随机变量及其观测值均用小写字母表示.如果设随机变量y是因变量,x1,x2,…,xn是影响y的自变量,回归模型的一般形式为:y= f (x1,x2,…,x n) + ε其中ε为均值为0的正态随机变量,它表示除x1,x2,…,x n之外的随机因素对y的影响.在回归分析中,当只有一个自变量时,称为一元回归分析;当自变量有两个或两个以上时,称为多元回归分析;f是线性函数时,称线性回归分析,所建回归模型称为线性回归模型;f是非线性函数时,称非线性回归分析,所建回归模型称为非线性回归模型.线性回归模型的一般形式为:其中,β0和βi (i =1,2,…,k )是未知常数,称为回归系数,实际中常假定ε~N (0,σ2).一元线性回归模型的一般形式为:由ε~N (0,σ2)的假定,容易推出y ~N (β0+β1x ,σ2). 本章主要讨论一元线性回归分析和可化为线性回归的一元非线性回归分析.它们是反映两个变量之间关系的简单模型,但从中可了解到回归分析的基本思想、方法和应用,22110εββββ+++++=k k x x x y ,110εββ++=x y ),0(~2σεN●9.2.1一元线性回归分析让我们用一个例子来说明如何进行一元线性回归分析. 为了研究合金钢的强度和合金中含碳量的关系,专业人员收集了12组数据如表9-1所示.表9-1 合金钢的强度与合金中含碳量的关系序号123456789101112含碳量x(%)0.100.110.120.130.140.150.160.170.180.200.210.23合金钢的强度y(107Pa)42.043.045.045.045.047.549.053.050.055.055.060.0 试根据这些数据进行合金钢的强度y(单位:107Pa)与合金中含碳量x(%)之间的回归分析.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图看到,数据点大致落在一条直线附近,这告诉我们变量x和y之间大致可看作线性关系.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图中还看到,这些点又不完全在一条直线上,这表明x和y的关系并没有确切到给定x就可以唯一确定y的程度.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图事实上,还有许多其它随机因素对y产生影响.●9.2.1一元线性回归分析如果只研究x 和y 的关系,可考虑建立一元线性回归模型:(9.1)其中ε是除含碳量x 外其它诸多随机因素对合金钢强度y 的综合影响,假定它是零均值的正态随机变量. 由(9.1)式,不难算得y 的数学期望:(9.2)该式表示当x 已知时,可以精确地算出E (y ).称方程(9.2)为y 关于x 的回归方程.,110εββ++=x y ),0(~2σεN x y E 10)(ββ+=●9.2.1一元线性回归分析现对变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).据(9.1)式,此样本可由方程(9.3)来描述.这里εi 是第i 次观测时ε的值,是不能观测到的 由于各次观测独立,εi 看作是相互独立与ε同分布的随机变量.即有y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,ni i i x y εββ++=10●9.2.1一元线性回归分析y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,n(9.4)给出了样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )的概率性质.它是对理论模型进行统计推断的依据,也常称(9.4)式为一元线性回归模型.要建立一元线性回归模型,首先利用n 组独立观测数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )来估计β0和β1,以估计值和分别代替(9.2)式中的β0和β1,得到(9.5)x y 10ˆˆˆββ+=●9.2.1一元线性回归分析(9.5) 由于此方程的建立有赖于通过观察或试验积累的数据,所以称其为经验回归方程(或经验公式),经验回归方程也简称为回归方程,其图形称为回归直线.当给定x= x0时,称为拟合值(预测值或回归值).那么,如何利用n组独立观察数据来估计β0和β1呢?一般常用最小二乘估计法和最大似然估计法,下面只介绍β和β1的最小二乘估计法.xy1ˆˆˆββ+=●9.2.1一元线性回归分析1.参数β0和β1的最小二乘估计设对模型(9.1)中的变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).由(9.3)式知随机误差εi =y i –(β0+β1x i ).最小二乘法的思想是:由x i ,y i 估计β0,β1时,使误差平方和达到最小的,分别作为β0,β1的估计,并称和为β0和β1的最小二乘估计.∑=+-=n i i i x y Q 121010)]([),(ββββ。
第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
第九章相关与回归分析习题一、单选题1.下面的函数关系是()。
A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于()。
A、+1B、0C、0.5D、+1或-13.回归系数和相关系数的符号是一致的,其符号均可用来判断现象()。
A、线性相关还是非线性相关B、正相关还是负相关C、完全相关还是不完全相关D、单相关还是复相关4.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为( )。
A、8B、0.32C、2D、12.55.下面现象间的关系属于相关关系的是()。
A、圆的周长和它的半径之间的关系B、价格不变条件下,商品销售额与销售量之间的关系C、家庭收入愈多,其消费支出也有增长的趋势D、正方形面积和它的边长之间的关系6.下列关系中,属于正相关关系的是()。
A、合理限度内,施肥量和平均单产量之间的关系B、产品产量与单位产品成本之间的关系C、商品的流通费用与销售利润之间的关系D、流通费用率与商品销售量之间的关系7.相关分析是研究()。
A、变量之间的数量关系B、变量之间的变动关系C、变量之间的相互关系的密切程度D、变量之间的因果关系8.在回归直线y=a+bx中,b<0,则x与y之间的相关系数( )。
A、r=0B、r=lC、0<r<1D、-1<r<09.在回归直线y=a+bx中,b表示()。
A、当x增加一个单位时,y增加a的数量B、当y增加一个单位时,x增加b的数量C、当x增加一个单位时,y的平均增加量D、当y增加一个单位时,x的平均增加量10.当相关系数r=0时,表明()。
A、现象之间完全无关B、相关程度较小C、现象之间完全相关D、无直线相关关系11.下列现象相关密切程度最高的是()。
A、某商店的职工人数与商品销售额之间的相关系数0.87B、流通费用水平与利润率之间的相关关系为-0.94C、商品销售额与利润率之间的相关系数为0.51D、商品销售额与流通费用水平的相关系数为-0.8112.估计标准误差是反映()。
A、平均数代表性的指标B、相关关系的指标C、回归直线的代表性指标D、序时平均数代表性指标13.下列现象之间的关系哪一个属于相关关系()。
A、播种量与粮食收获量之间关系B、圆半径与圆周长之间关系C、圆半径与圆面积之间关系D、单位产品成本与总成本之间关系14.相关系数()。
A、既适用于直线相关,又适用于曲线相关B、只适用于直线相关C、既不适用于直线相关,又不适用于曲线相关D、只适用于曲线相关15.配合回归直线最适合的方法是()。
A、随手画线法B、半数平均法C、最小二乘法D、指数平滑法16.样本决定系数是指()。
A、剩余平方和占总离差平方和的比重B、总离差平方和占回归平方和的比重C、回归平方和占总离差平方和的比重D、回归平方和占剩余平方和的比重17.在相关分析中,变量x与y之间的负相关是指()。
A、x数值增大时y也随之增大B、x数值减少时Y也随之减少C、x数值增大(或减少)时y随之减少(或增大)D、y的取值几乎不受x取值的影响18.度量一个变量与两个或两个以上变量相关程度的指标是()。
A、简单相关系数B、偏相关系数C、等级相关系数D、复相关系数19.相关关系按自变量的多少分为()。
A、正相关与负相关B、单相关与复相关C、线性相关与非线性相关D、不相关、完全相关与不完全相关20.一个因变量与多个自变量的依存关系是()。
A、单相关B、线性相关C、非线性相关D、复相关21.若y随着x的变化而等比例变化,则y与x的关系是()。
A、单相关B、线性相关C、非线性相关D、复相关22.若两变量的变化方向相反,则属于()。
A、线性相关B、非线性相关C、正相关D、负相关23.若∣r∣在0.4~0.7之间,则表明两变量()。
A、无直线相关B、显著相关C、低度相关D、高度相关24.若物价上涨,商品的需求量相应减少,则物价与商品需求量之间的关系为( )。
A、不相关B、负相关C、相关D、复相关25.在相关分析中,要求两个相关的变量()。
A、都是随机变量B、都不是随机变量C、其中因变量是随机变量D、其中自变量是随机变量26.确定回归方程时,对相关的两个变量要求()。
A、都是随机变量B、都不是随机变量C、只需因变量是随机变量D、只需自变量是随机变量27.正方形面积和它的边长之间存在着()。
A、比较关系B、相关关系C、因果关系D、函数关系28.如果变量x和y之间的相关系数为-1,这说明两变量之间是()。
A、低度相关关系B、完全相关关系C、高度相关关系D、完全不相关29.相关关系是指变量间的()。
A、严格的函数关系B、不严格的函数关系C、严格的依存关系D、不严格的依存关系30.复相关关系即()。
A、复杂相关关系B、三个或三个以上变量的相关关系C、三个变量的相关D、两个变量之间的相关关系31.相关系数的取值范围是()。
A、(0,1)B、[0,1]C、(-1,1)D、[-1,1]32.相关系数的绝对值为1时,表明两个变量间存在着()。
A、正相关关系B、负相关关系C、完全线性相关关系D、不完全线性相关关系33.两个变量间的线性相关关系愈不密切,相关系数r值就愈接近()。
A、-1B、+1C、0D、-1或+134.相关系数的值越接近-1,表明两个变量间()。
A、正线性相关关系越弱B、负线性相关关系越强C 、线性相关关系越弱D 、线性相关关系越强35.如果协方差02<xy σ,说明两变量之间是( )。
A 、相关程度弱 B 、负相关 C 、不相关 D 、正相关36.用最小平方法配合直线趋势,如果y =a+b x 当b 为负数时,则直线是( )。
A 、上升趋势B 、不升不降C 、下降趋势D 、上述三种情况都可能出现37.产品产量与劳动生产率之间的相关关系有可能是( )。
A 、1.15B 、-1.15C 、0.91D 、-0.9138.配合回归直线方程对资料的要求是( ) 。
A 、因变量是给定的数值,自变量是随机的B 、自变量是给定的数值,因变量是随机的C 、自变量和因变量都是随机的D 、自变量和因变量都不是随机的39.每一吨铸铁成本y (元)对铸件废品率x (%)变动的回归方程为x y 856+=,这意味着( )。
A 、废品率每增加1%,成本每吨增加64元B 、废品率每增加1%,成本每吨增加8%C 、废品率每增加1%,成本每吨增加8元D 、废品率每增加1%,则每吨成本为56元40.某校对学生的统计学考试成绩和学习时间的关系进行测定,建立了考试成绩与学习时间的直线回归方程为:y=180-5x,该方程明显有误,错误在于( )。
A 、a 值的计算有误,b 值是对的B 、b 值的计算有误,a 值是对的C 、a 值和b 值的计算都有误D 、自变量和因变量的关系搞错了41.年劳动生产率X (千元)和职工工资Y (元)之间的回归方程为Y=10+70X 。
这意味着年劳动生产率每提高1千元时,职工工资平均( )。
A 、增加70元B 、减少70元C 、增加80元D 、减少80元 42.以x 为自变量,y 为因变量,求出的回归方程称为( )。
A 、x 对y 的回归方程B 、y 对x 的回归方程C 、x 、y 互为因果的方程D 、x 、y 因果不明的方程43.若回归系数b 大于0,表明回归直线是上升的,此时相关系数r 的值( )。
A 、一定大于0 B 、一定小于0C 、等于0D 、无法判断 44.下列回归方程中,肯定错误的是( )。
A 、88.0,32ˆ=+=r x yB 、88.0,32ˆ=+-=r x yC 、88.0,32ˆ-=+-=r x yD 、88.0,32ˆ-=-=r x y 45.若根据某资料计算得到的回归方程为5ˆ=y ,则相关系数r 为( )。
A 、-1B 、0C 、1D 、0.546.下列属于相关现象的是( )。
A 、利息与利率B 、居民收入与储蓄存款C 、电视机产量与鸡蛋产量D 、某种商品的销售额与销售价格47.当 r = 0.9时,下列说法正确的是( )。
A 、90%的点都密集在一条直线的周围B 、90%的点高度相关C 、其线性程度是r = 0.3的三倍 D 、两变量高度正线性相关 48.由同一资料计算的相关系数r 与回归系数 b 之间的关系是( )。
A 、r 大 b 也大B 、r 小 b 也小C 、r 与 b 同值D 、r 与 b 同符号49.两变量的相关系数为0.8,则其回归直线的样本决定系数为( )。
A 、0.50B 、0.80C 、0.64D 、0.9050.多元线性回归模型与一元线性回归模型的区别在于有不止一个( )。
A 、判定系数B 、估计标准误C 、因变量D 、自变量51.在直线回归方程bx a y +=中,若回归系数b =0,则表示( )。
A 、y 对x 的影响是显著的B 、y 对x 的影响是不显著的C 、x 对y 的影响是显著的D 、x 对y 的影响是不显著的52.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本为6000元。
则总生产成本对产量的一元线性回归方程为( )。
A 、=6+0.24x B 、=6000+24x C 、=24000+6x D 、=24+6000x53.各实际观测值(y i )与回归值(i )的离差平方和称为( )。
A 、总离差平方和B 、剩余平方和C 、回归平方和D 、判定系数r 254.相关关系与函数关系之间的联系体现在( )。
A 、相关关系普遍存在,函数关系是相关关系的特例B 、函数关系普遍存在,相关关系是函数关系的特例C 、相关关系与函数关系是两种完全独立的现象D 、相关关系与函数关系没有区别二、多选题1.下列哪些现象之间的关系为相关关系( )。
A 、家庭收入与消费支出关系B 、圆的面积与它的半径关系C 、广告支出与商品销售额关系D 、单位产品成本与利润关系E .在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )。
A 、线性关系B 、因果关系C 、变异程度D 、相关方向E 、相关的密切程度3.对于一元线性回归分析来说( )。
A 、两变量之间必须明确哪个是自变量,哪个是因变量B 、回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C 、可能存在着y 依x 和x 依y 的两个回归方程D 、回归系数只有正号E 、确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。
4.可用来判断现象相关方向的指标有( )。
A 、相关系数B 、回归系数C 、回归方程参数aD 、估计标准误E 、x 、y 的平均数5.单位成本(元)依产量(千件)变化的回归方程为y=78- 2x ,这表示( )。