第9章方差分析与回归分析习题答案
- 格式:doc
- 大小:280.50 KB
- 文档页数:4
应⽤回归分析-第9章课后习题答案第9章含定性变量的回归模型思考与练习参考答案9.1 ⼀个学⽣使⽤含有季节定性⾃变量的回归模型,对春夏秋冬四个季节引⼊4个0-1型⾃变量,⽤SPSS 软件计算的结果中总是⾃动删除了其中的⼀个⾃变量,他为此感到困惑不解。
出现这种情况的原因是什么?答:假如这个含有季节定性⾃变量的回归模型为:tt t t kt k t t D D D X X Y µαααβββ++++++=332211110其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引⼊4个0-1型⾃变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到⼀次观测值,则样本设计矩阵为:=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,显然,(X,D)中的第1列可表⽰成后4列的线性组合,从⽽(X,D)不满秩,参数⽆法唯⼀求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某⾃变量x j 对其余p-1个⾃变量的复判定系数2j R 超过⼀定界限时,SPSS 软件将拒绝这个⾃变量x j 进⼊回归模型。
称Tol j =1-2j R 为⾃变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,⾃变量x j 将被⾃动拒绝在回归⽅程之外,除⾮我们修改容忍度的默认值。
=k βββ 10β=4321ααααα⽽在这个模型中出现了完全共线性,所以SPSS软件计算的结果中总是⾃动删除了其中的⼀个定性⾃变量。
9.2对⾃变量中含有定性变量的问题,为什么不对同⼀属性分别建⽴回归模型,⽽采取设虚拟变量的⽅法建⽴回归模型?答:原因有两个,以例9.1说明。
⼀是因为模型假设对每类家庭具有相同的斜率和误差⽅差,把两类家庭放在⼀起可以对公共斜率做出最佳估计;⼆是对于其他统计推断,⽤⼀个带有虚拟变量的回归模型来进⾏也会更加准确,这是均⽅误差的⾃由度更9.3 研究者想研究采取某项保险⾰新措施的速度y对保险公司的规模x1和保险公司类型的关系(参见参考⽂献【3】)。
管理统计学刘金兰答案【篇一:管理统计学-刘金兰-第九章及复习题答案】t>*9-1 在相关分析中,对两个变量的要求是(A)。
(单选题) a.都是随机变量 b. 都不是随机变量 c. 其中一个是随机变量,一个是常数。
d. 都是常数。
*9-2 在建立与评价了一个回归模型以后,我们可以( d )。
(单选题) a. 估计未来所需要样本的容量。
b. 计算相关系数与判定系数。
c. 以给定因变量的值估计自变量的值。
d. 以给定自变量的值估计因变量的值。
9-3 对两变量的散点图拟合最好的回归线必须满足一个基本条件是( d )。
(单选题) a. c. ??y??yi?i?最大 b. ?y?i?最大d. ?y2??yi?i?最小?yii??y?i?最小?y2*9-4 如果某地区工人的日工资收入(元)随劳动生产率(千元/人时)的变动符合简单线性方程y=60+90x,请说明下列的判断中正确的有(AC)(多选) a.当劳动生产率为1千元/人时,估计日工资为150元;b.劳动生产率每提高1千元/人时,则日工资一定提高90元;c.劳动生产率每降低0.5千元/人时,则日工资平均减少45元;d.当日工资为240元时,劳动生产率可能达到2千元/人。
*9-5 变量之间的关系按相关程度可分为(b Cd )(多选) a.正相关 b.不相关 c.完全相关 d.不完全相关*9-6 简单线性回归分析的特点是:(Ab )。
(多选题) a. 两个变量之间不是对等关系 b. 回归系数有正负号 c. 两个变量都是随机的d. 利用一个方程两个变量可以互相推算 e.有可能求出两个回归方程 *9-7 一元线性回归方程中的回归系数b可以表示为(BC)。
(多选题) a. 两个变量之间相关关系的密切程度 b. 两个变量之间相关关系的方向 c. 当自变量增减一个单位时,因变量平均增减的量d. 当因变量增减一个单位时,自变量平均增减的量 e.回归方程的拟合优度*9-8 回归分析和相关分析的关系是( aBe )。
方差分析与回归分析习题答案SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第九章 方差分析与回归分析习题参考答案1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显着影响.(0.05(2,9) 4.26F =,0.01(2,9)8.02F =)解:r=3,12444n n 321=++=++=n n ,T=120 ,12001212022===n T C 计算统计值?7228.53,38A A A e e SS f F SS f ==≈……方差分析表结论:由于0.018.53(2,9)8.02,A F F ≈>=故果树品种对产量有特别显着影响.2.2700=10.523.56=≈结论: 由以上方差分析知,进器对火箭的射程有特别显着影响;燃料对火箭的射程有显着影响. 3.为了研究某商品的需求量Y 与价格x 之间的关系,收集到下列10对数据:2231,58,147,112,410.5,i i i i i i x y x y x y =====∑∑∑∑∑(1)求需求量Y 与价格x 之间的线性回归方程; (2)计算样本相关系数;(3)用F 检验法作线性回归关系显着性检验. 解:引入记号10, 3.1,5.8n x y ===∴需求量Y 与价格x 之间的线性回归方程为(2)样本相关系数32.80.955634.3248l r-==≈≈- 在0H 成立的条件下,取统计量(2)~(1,2)Ren S FF n S -=-计算统计值22(32.8)15.967.66,74.167.66 6.44R xy xx e yy R S l l S l S ==-≈=-≈-=故需求量Y 与价格x 之间的线性回归关系特别显着.4. 随机调查10个城市居民的家庭平均收入(x)与电器用电支出(y)情况得数据(单位:千元)如下:(1) 求电器用电支出y 与家庭平均收入x 之间的线性回归方程; (2) 计算样本相关系数; (3) 作线性回归关系显着性检验;(4) 若线性回归关系显着,求x =25时, y 的置信度为的预测区间. 解:引入记号10,27,1.9n x y ===∴电器用电支出y 与家庭平均收入x 之间的线性回归方程为(2)样本相关系数 0.9845l r==≈在0H 成立的条件下,取统计量(2)~(1,2)Rn S FF n S -=-e计算统计值2243.6354 5.37,5.54 5.370.17xy xx yy s l l s l s ==≈=-≈-=R e R故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. 相关系数检验法 01:0;:0H R H R =≠故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. (4) 因为0xx =处,0y 的置信度为1α-的预测区间为其中00.025垐 1.42640.123225 1.6536,(8) 2.31,0.1458y t σ=-+⨯====代入计算得当x =25时, y 的置信度为的预测区间为。
第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
《医学统计学》习题解答(最佳选择题和简答题)孙振球主编.医学统计学习题解答. 第2版. 北京:人民卫生出版社2005目录第二章计量资料的统计描述 (2)第三章总体均数的估计与假设检验 (3)第四章多个样本均数比较的方差分析 (6)第五章计数资料的统计描述 (7)第六章二项分布与Poisson分布 (9)第七章χ2检验 (11)第八章秩和检验 (13)第九章回归与相关 (14)第十章统计表与统计图 (17)第十一章多因素试验资料的方差分析 (19)第十二章重复测量设计资料的方差分析 (19)第十五章多元线性回归分析 (20)第十六章logistic回归分析 (22)第十七章生存分析 (23)第二十五章医学科学研究设计概述 (26)第二十六章观察性研究设计 (26)第二十七章实验研究设计 (28)第二十七章临床试验研究设计 (29)第二章 计量资料的统计描述(注:题号上有“方框” 的简答题为基本概念,下同)第三章总体均数的估计与假设检验简答题:第四章多个样本均数比较的方差分析简答题:第五章计数资料的统计描述简答题:第六章二项分布与Poisson分布简答题:第七章χ2检验简答题:1. 说明χ2检验的用途2. 两个样本率比较的u检验与χ2检验有何异同?3. 对于四格表资料,如何正确选用检验方法?4. 说明行×列表资料χ2检验应注意的事项?5. 说明R×C表的分类及其检验方法的选择。
第八章秩和检验简答题:5. 两独立样本比较的Wilcoxon秩和检验,当n1>10或n2-n1>10时用u检验,这时检验是属于参数检验还是非参数检验,为什么?6. 随机区组设计多个样本比较的Friedman M 检验,备择假设H1如何写?为什么?第九章回归与相关简答题:第十章统计表与统计图简答题:5. 统计表与统计图有何联系和区别?6. 茎叶图与频数分布图相比有何区别,有何优点?第十一章多因素试验资料的方差分析一、简答题1. 简述析因试验与正交试验的联系与区别。
诚信应考 考出水平 考出风格浙江大学城市学院2011 — 2012 学年第一学期期末考试卷《 回归分析 》开课单位: 计算分院 ;考试形式:开卷(A4纸一张);考试时间:2011年01月6日; 所需时间: 120 分钟一.计算题(10分。
)1,考虑过原点的线性回归模型1,1,2,...,i i i y x i n βε=+=误差1,...,n εε仍满足基本假定。
求1β的最小二乘估计。
并求出1β 的期望和方差,写出1β的分布。
1221111111121,1,2,...,ˆ()()2()0ˆi i i nni i i i i i ni i i i ni ii nii y x i n Q y yy x Qy x x x yxβεββββ======+==-=-∂=--=∂=∑∑∑∑∑解:第1页共 6 页二. 证明题(本大题共2小题,每小题7分,共14分。
)1,证明:(1)22()1var()[1]i i xxx x e n L σ-=--(2)2211ˆˆ()2n i ii y y n σ==--∑是2σ的无偏估计。
011111122ˆˆˆ()()1()()1var()var[()()]()1var()var((()))()12cov[,(())](1(i i i i i nn i i j j jj j xx ni i i j j j xx ni i j j j xx ni i j j j xxe y y y x x x x y y x x y n L x x e y x x y n L x x y x x y n L x x y x x y n L x n ββσσ======-=----=----=-+--=++---+-=++∑∑∑∑∑解(1):222122222221212211)()1())2()()()11(12()]()1[1]1ˆˆ(2)()(())21ˆ[()]2()111var()[1]2212n i i j j xx xxi i xx xxi xx ni i i ni i i n n i i i i xx x x x x x L n L x x x x n L n L x x n L E E y y n E y y n x x e n n n L n σσσσσ=====----+--=++-+-=--=--=---==----=-∑∑∑∑∑22(11)n σσ--=三.填空题.(每空2分,共46分)1.为了研究家庭收入和家庭消费的关系,通过调查得到数据如下:6.22893,29.12349,43008,97.29,5422=====∑∑∑xy yxy x1)用最小二乘估计求出线性回归方程的参数估计值0ˆβ= 。
回归分析练习题及参考答案求:(1)⼈均GDP 作⾃变量,⼈均消费⽔平作因变量,绘制散点图,并说明⼆者之间的关系形态。
(2)计算两个变量之间的线性相关系数,说明两个变量之间的关系强度。
(3)求出估计的回归⽅程,并解释回归系数的实际意义。
(4)计算判定系数,并解释其意义。
(5)检验回归⽅程线性关系的显著性(0.05α=)。
(6)如果某地区的⼈均GDP 为5000元,预测其⼈均消费⽔平。
(7)求⼈均GDP 为5000元时,⼈均消费⽔平95%的置信区间和预测区间。
解:(1)可能存在线性关系。
(2)相关系数:(3)回归⽅程:734.6930.309y x=+回归系数的含义:⼈均GDP没增加1元,⼈均消费增加0.309元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型⾮标准化系数标准化系数t 显著性B 标准误Beta1 (常量)734.693 139.540 5.265 0.003⼈均GDP(元)0.309 0.008 0.998 36.492 0.000 a. 因变量: ⼈均消费⽔平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%⼈均GDP对⼈均消费的影响达到99.6%。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
模型摘要模型R R ⽅调整的R ⽅估计的标准差1 .998(a) 0.996 0.996 247.303a. 预测变量:(常量), ⼈均GDP(元)。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(5)F 检验:回归系数的检验:t 检验注意:图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)模型⾮标准化系数标准化系数t 显著性B 标准误 Beta1(常量) 734.693 139.540 5.2650.003 ⼈均GDP (元)0.3090.0080.99836.4920.000a. 因变量: ⼈均消费⽔平(元)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%(6)某地区的⼈均GDP 为5000元,预测其⼈均消费⽔平为 734.6930.30950002278.693y =+?=(元)。
方差分析习题答案【篇一:方差分析习题】lass=txt>班级_______ 学号_______ 姓名________ 得分_________一、单项选择题1、方差分析所要研究的问题是() a、各总体的方差是否相等 b、各样本数据之间是否有显著差异 c、分类型自变量对数值型因变量的影响是否显著 d、分类型因变量对数值型自变量是否显著2、组间误差是衡量因素的不同水平(不同总体)下各样本之间的误差,它()a、只包含随机误差b、只包含系统误差c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差3、组内误差() a、只包含随机误差b、只包含系统误差 c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差4、在单因素方差分析中,各次实验观察值应()a、相互关联b、相互独立c、计量逐步精确d、方法逐步改进5、在单因素方差分析中,若因子的水平个数为k,全部观察值的个数为n,那么()a、sst的自由度为n b 、ssa的自由度为k c、 sse的自由度为n-k-1 d、sst的自由度等于sse的自由度与ssa的自由度之和。
6、在方差分析中,如果拒绝原假设,则说明()a、自变量对因变量有显著影响b、所检验的各总体均值之间全部相等c、不能认为自变量对因变量有显著影响d、所检验的各样本均值之间全不相等7、在单因素分析中,用于检验的统计量f的计算公式为() a、ssa/sseb、ssa/sst c、msa/msed、mse/msa8、在单因素分析中,如果不能拒绝原假设,那么说明组间平方和ssa () a、等于0 b、等于总平方和c、完全由抽样的随机误差所决定d、显著含有系统误差9、ssa自由度为()a、r-1b、n-1c、n-rd、r-n二、实验分析题1、某公司采用四种颜色包装产品,为了检验不同包装方式的效果,抽样得到了一些数据并进行单因素方差分析实验。
实验依据四种包装方式将数据分为4组,每组有5个观察值,用excel中的数据分析工具,在0.05的显著水平下得到如下方差分析表:方差分析(1)填表:请计算表中序号标出的七处缺失值,并直接填在表上。
试验设计作业1、下表为小麦栽培试验的产量结果(kg),随机区组设计,小区计产面积为12m2,试作分析。
在表示最后结果时需化为每亩产量(kg)。
假定该试验为一完全随机设计,试分析后将其试验误差与随机区组时的误差作一比较,看看划分区组的效果如何?处理区组ⅠⅡⅢⅣA 6.2 6.6 6.9 6.1B 5.8 6.7 6.0 6.3C 7.2 6.6 6.8 7.0D 5.6 5.8 5.4 6.0E 6.9 7.2 7.0 7.4F 7.5 7.8 7.3 7.6 完全随机设计的程序如下:data li_1;do i=1 to 6;do j=1 to 4;input x@@;output;end;end;cards;6.2 6.6 6.9 6.15.86.7 6 6.37.2 6.6 6.8 75.6 5.8 5.4 66.97.2 7 7.47.5 7.8 7.3 7.6;proc anova;class i;model x=i;means i;run;SAS输出结果如下: Sum ofSource DF Squares Mean Square F Value Pr > F Model 5 8.97208333 1.79441667 20.87 <.0001 Error 18 1.54750000 0.08597222Corrected Total 23 10.51958333R-Square Coeff Var Root MSE x Mean0.852893 4.406415 0.293210 6.654167Source DF Anova SS Mean Square F Value Pr > F i 5 8.97208333 1.79441667 20.87 <.0001随机区组设计的程序如下:data li_3;do i=1 to 6;do j=1 to 4;input x@@;output;end;end;cards;6.2 6.6 6.9 6.15.86.7 6 6.37.2 6.6 6.8 75.6 5.8 5.4 66.97.2 7 7.47.5 7.8 7.3 7.6;proc anova;class i j;model x=i j;run;结果如下:Sum ofSource DF Squares Mean Square F Value Pr > F Model 8 9.24333333 1.15541667 13.58 <.0001 Error 15 1.27625000 0.08508333Corrected Total 23 10.51958333R-Square Coeff Var Root MSE x Mean0.878679 4.383576 0.291690 6.654167Source DF Anova SS Mean Square F Value Pr > Fi 5 8.97208333 1.79441667 21.09 <.0001j 3 0.27125000 0.09041667 1.06 0.3943结果分析:随机区组设计的误差要小一些。
第十章 方差分析与实验设计一、填空题1、在方差分析中所要检验的对象称为 。
2、在方差分析中所要检验的对象称为 ,其不同表现称为 。
3、从两个总体中分别抽取17n =和26n =的两个独立随机样本。
经计算得到下面的方差分析表:其中“A ”单元格内的结果是_________________。
4、在方差分析中,设因素的水平个数为k ,全部观测值的个数为n ,总平方和的自由度为 。
5、在方差分析中,设用于检验的行因素为R ,列因素为C ,行因素有k 个水平,列因素有r 个水平,并假设两个因素没有交互作用,残差平方和的自由度是____________。
6、在单因素方差分析中,涉及到两个变量,一个是 ,另一个是 。
7、完全随机化实验设计,必须符合 要求,必须符合 原则。
8、接受“处理”的对象或实体称为 。
9、搜集样本的计划称为 。
10、在方差分析中用于检验的统计量是 。
11、从三个总体中选取了4个观测值,得到组间方差平方和SSA=536,组内平方和SSE=828,组间均方与组内均方分别为 和 。
二、单项选择题1、在方差分析中,设用于检验的行因素为R ,列因素为C ,并假设两个因素没有交互作用,用于检验因素R 的统计量是 ( )。
A 、 SSR F SSC =B 、MSR F MSC = C 、MSR F MSE =D 、MSRF MST= 2、在双因素方差分析中,度量两个分类自变量对因变量影响的统计量是2R ,其计算公式为 ( )。
A 、2SSR SSC R SST +=B 、2MSR MSC R MST += C 、2SSR R SST =D 、2SSC R SST=3、一次涉及因子A 的4个水平与因子B 的3个水平以及3次重复的因子试验得到的结果为SST=280,SSA=26,SSB=23,SSAB=175,在0.05α=的显著性水平下,检验因子A 的显著性,即检验假设0H :因子A 不显著,得到的结论是( )。
现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
第九章 方差分析与回归分析习题参考答案
1. 为研究不同品种对某种果树产量的影响,进行试验,得试验结果(产量)如下表,试分析果树品种对产量是否有显着影响. (0.05(2,9) 4.26F =,0.01(2,9)
8.02F =)
34
2
11
1310ij i j x ===∑∑
解:r=3,
12444n n 321=++=++=n n , T=120 ,120012
1202
2===n T C
3
4
2
211
131********(1)1110110T ij T i j SS x C S n s ===-=-==-=⨯=∑∑或S
322.1112721200724(31)429724A i A A i SS T C S s ==-=-==-=⨯⨯=∑或S
3872110=-=-=A T e SS SS SS
计算统计值722
8.53,
389
A A A e e SS f F SS f =
=≈……
方差分析表
结论:由于0.018.53(2,9)8.02,
A F F ≈>=故果树品种对产量有特别显着影响.
2.
..180x =
43
2
11
2804ij i j x ===∑∑
解:22..4,3,12,180122700l
m n lm C x n =======
43
2211
28042700104(1)119.45
104T ij T i j S x C S n s ===-=-==-=⨯≈∑∑&&或 422
.1
12790270090(1)331090
3A i A A i S x C S m l s ==-=-==-≈⨯⨯=∑或322
.1
12710.5270010.5(1)8 1.312510.5
4B j B B j S x C S l m s ==-=-==-≈⨯=∑或1049010.5 3.5e T A B S S S S =--=--=
计算统计值90310.52
51.43,93.56 3.56
A A
B B A
B e e e e S f S f F F S f S f =
=≈==≈
结论: 由以上方差分析知,进器对火箭的射程有特别显着影响;燃料对火箭的射程有显着影响. 31,58,147,112,410.5,i i i i i i x y x y x y =====(1)求需求量Y 与价格x 之间
的线性回归方程; (2)计算样本相关系数;
(3)用F 检验法作线性回归关系显着性检验.
⎪⎪⎭
⎫
⎝⎛====56.10)9,1(,26.11)8,1(12.5)9,1(,32.5)8,1(01.001.005.005.0F F F F
解:引入记号
10, 3.1,
5.8n x y ===
()()14710 3.1 5.832.8xy i i i i l x x y y x y nx y =--=-=-⨯⨯=-∑∑ 2
222()11210 3.115.9xx i i l x x x nx =-=-=-⨯=∑∑
22
()(1)9 1.766715.9xx i x l x x n s =-=-≈⨯≈∑或
2
222()410.510 5.874.1yy i i l y y y ny =-=-=-⨯=∑∑
22()(1)98.233374.1yy i y l y y n s =-=-≈⨯≈∑或
ˆ(1)
b
Q 32.8ˆˆ2.06, 5.8 2.06 3.112.1915.9xy xx l a y bx l -==≈-=-≈+⨯≈ ∴需求量Y 与价格x 之间的线性回归方程为
ˆy
ˆˆ12.19 2.06a bx x =+≈-
(2)样本相关系数
32.8
0.955634.3248
l r -=
=
≈≈-
01(3)
:0;:0H b H b =≠
在0H 成立的条件下,取统计量(2)~(1,2)R
e
n S F
F n S -=
-
计算统计值
2
2(32.8)15.967.66,
74.167.66 6.44
R xy xx e yy R S l l S l S ==-≈=-≈-=
0.01(2)867.666.4484.05(1,8)11.26R e F n S S F =-≈⨯≈>=
故需求量Y 与价格x 之间的线性回归关系特别显着.
∑∑∑∑∑=====6.556,
64.41,
7644,
19,
27022i
i
i
i
i
i
y
x y
x
y
x
(1) 求电器用电支出y 与家庭平均收入x 之间的线性回归方程; (2) 计算样本相关系数; (3) 作线性回归关系显着性检验;
(4) 若线性回归关系显着,求x =25时, y 的置信度为的预测区间. 解:引入记号
10,
27, 1.9n x y ===
()()556.61027 1.943.6xy i i i i l x x y y x y nx y =--=-=-⨯⨯=∑∑
2
222()76441027354xx i i l x x x nx =-=-=-⨯=∑∑
22
()(1)939.3333
354xx i x l
x x n s =-=-≈⨯≈∑或
2
222()41.6410 1.9 5.54
yy i i l y y y ny =-=-=-⨯=∑∑
22()(1)90.4716 5.54yy i y l y y n s =-=-≈⨯=∑或
ˆ(1)
b
Q 43.6ˆˆ0.1232, 1.90.123227 1.4264354xy xx l a y bx l ==≈=-≈-⨯≈- ∴电器用电支出y 与家庭平均收入x 之间的线性回归方程为
ˆy
ˆˆ 1.42640.1232a bx x =+≈-+ (2)样本相关系数
0.9845l r =
=
≈
01(3)
:0;:0F H b H b =≠检验法
在0H 成立的条件下,取统计量(2)~(1,2)R
n S F
F n S -=
-e
计算统计值
2
243.6354 5.37,
5.54 5.370.17
xy xx yy s l l s l s ==≈=-≈-=R e R
(2)n s F s -=
R
e
0.018 5.370.17252.71(1,8)11.26F ≈⨯≈>=
故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着.
相关系数检验法
01:0;:0H R H R =≠
0.01||0.9845(8)0.765r r =>=由
故家庭电器用电支出y 与家庭平均收入x 之间的线性回归关系特别显着. (4) 因为0x
x =处,0y 的置信度为1α-的预测区间为
2
0垐((2)y t n ασ±-
其中
00.025垐 1.42640.123225 1.6536,
(8) 2.31,0.1458y t σ=-+⨯====
代入计算得当x =25时, y 的置信度为的预测区间为
(1.65360.355)(1.2986,2.0086).=m。