三次样条插值的求解
- 格式:doc
- 大小:536.50 KB
- 文档页数:8
三次样条曲线推导过程三次样条曲线是一种常用的曲线插值方法,可以通过一系列已知控制点来生成平滑的曲线。
下面是推导三次样条曲线的基本过程:1.整理控制点:给定一组已知控制点P0, P1, P2, ..., Pn,其中每个点Pi的坐标为(xi, yi)。
我们的目标是找到一个曲线函数C(t),其中t的范围在[0, 1]之间。
2.定义曲线段:将整个插值范围[0, 1]划分为一系列曲线段,每个曲线段由相邻的两个控制点构成。
我们有n个控制点,则会有n个曲线段。
3.插值求解:对于每个曲线段,我们希望找到一条插值曲线,使得该曲线通过两个相邻控制点,并且在相邻曲线段的连接处保持平滑。
4.建立方程:为了推导每个曲线段的曲线方程,我们需要定义一些参数。
引入参数t,其中t的范围为[0, 1]。
假设我们有一个曲线段的控制点Pi和Pi+1。
我们需要定义两个参数h和u,其中h = xi+1 - xi,u = (t - xi) / h。
5.插值方程:通过插值方法,我们可以得到曲线段的插值方程。
一个典型的三次样条曲线方程为: C(t) = (1 - u)^3 * P_i+ 3 * (1 - u)^2 * u * P_i+1 + 3 * (1 - u) * u^2 * P_i+2 + u^3 *P_i+3这个方程表示了在t范围内从Pi到Pi+3的曲线。
对每个相邻的控制点对应的曲线段都应用相同的方法,然后将它们拼接在一起,就可以得到整个三次样条曲线。
请注意,以上是三次样条曲线的简化推导过程,实际的推导可能会涉及更多的数学推导和符号表示。
三次样条插值函数求解例题三次样条插值函数是一种常用的插值方法,用于在给定的一组数据点上构建一个连续的曲线。
下面我将通过一个例题来解释三次样条插值函数的求解过程。
假设我们有一组数据点{(x0, y0), (x1, y1), ..., (xn, yn)},其中x0 < x1 < ... < xn。
我们的目标是构建一个连续的曲线,使得曲线经过这些数据点。
首先,我们需要确定每个数据点之间的插值多项式。
在三次样条插值中,每个插值多项式的形式为:Si(x) = ai + bi(x xi) + ci(x xi)^2 + di(x xi)^3。
其中,ai、bi、ci、di是待求的系数,Si(x)是第i段插值多项式。
接下来,我们需要确定每个插值多项式的系数。
为了满足插值条件,我们需要确定每个数据点处的函数值和导数值。
具体而言,我们需要满足以下条件:1. 函数值条件,Si(xi) = yi,即插值多项式通过每个数据点。
2. 导数值条件,Si'(xi) = Si-1'(xi),即相邻插值多项式在数据点处的导数值相等。
通过这些条件,我们可以得到一系列的线性方程组,其中未知数为插值多项式的系数。
解这个线性方程组即可得到每个插值多项式的系数。
最后,我们可以将每个插值多项式的系数代入到对应的插值多项式中,得到最终的三次样条插值函数。
需要注意的是,在边界处,我们需要额外的条件来确定插值多项式的系数。
常见的边界条件有自然边界条件和固定边界条件。
自然边界条件要求插值函数的二阶导数在边界处为零,而固定边界条件要求插值函数在边界处通过给定的导数值。
综上所述,三次样条插值函数的求解过程包括确定插值多项式的系数和边界条件的确定。
通过解线性方程组,我们可以得到每个插值多项式的系数,从而构建出连续的三次样条插值函数。
希望以上回答能够满足你的要求。
如果你有任何其他问题,请随时提出。
/* 三次样条插值计算算法*/#include "math.h "#include "stdio.h "#include "stdlib.h "/*N:已知节点数N+1R:欲求插值点数R+1x,y为给定函数f(x)的节点值{x(i)} (x(i) <x(i+1)) ,以及相应的函数值{f(i)} 0 <=i <=NP0=f(x0)的二阶导数;Pn=f(xn)的二阶导数u:存插值点{u(i)} 0 <=i <=R求得的结果s(ui)放入s[R+1] 0 <=i <=R返回0表示成功,1表示失败*/int SPL(int N,int R,double x[],double y[],double P0,double Pn,double u[],double s[]){/*声明局部变量*/double *h; /*存放步长:{hi} 0 <=i <=N-1 */double *a; /*存放系数矩阵{ai} 1 <=i <=N ;分量0没有利用*/ double *c; /*先存放系数矩阵{ci} 后存放{Bi} 0 <=i <=N-1 */double *g; /*先存放方程组右端项{gi} 后存放求解中间结果{yi} 0 <=i <=N */double *af; /*存放系数矩阵{a(f)i} 1 <=i <=N ;*/double *ba; /*存放中间结果0 <=i <=N-1*/double *m; /*存放方程组的解{m(i)} 0 <=i <=N ;*/int i,k;double p1,p2,p3,p4;/*分配空间*/if(!(h=(double*)malloc(N*sizeof(double)))) exit(1);if(!(a=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(c=(double*)malloc(N*sizeof(double)))) exit(1);if(!(g=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(af=(double*)malloc((N+1)*sizeof(double)))) exit(1);if(!(ba=(double*)malloc((N)*sizeof(double)))) exit(1);if(!(m=(double*)malloc((N+1)*sizeof(double)))) exit(1);/*第一步:计算方程组的系数*/for(k=0;k <N;k++)h[k]=x[k+1]-x[k];for(k=1;k <N;k++)a[k]=h[k]/(h[k]+h[k-1]);for(k=1;k <N;k++)c[k]=1-a[k];for(k=1;k <N;k++)g[k]=3*(c[k]*(y[k+1]-y[k])/h[k]+a[k]*(y[k]-y[k-1])/h[k-1]); c[0]=a[N]=1;g[0]=3*(y[1]-y[0])/h[0]-P0*h[0]/2;g[N]=3*(y[N]-y[N-1])/h[N-1]+Pn*h[N-1]/2;/*第二步:用追赶法解方程组求{m(i)} */ba[0]=c[0]/2;g[0]=g[0]/2;for(i=1;i <N;i++){af[i]=2-a[i]*ba[i-1];g[i]=(g[i]-a[i]*g[i-1])/af[i];ba[i]=c[i]/af[i];}af[N]=2-a[N]*ba[N-1];g[N]=(g[N]-a[N]*g[N-1])/af[N];m[N]=g[N]; /*P110 公式:6.32*/ for(i=N-1;i> =0;i--)m[i]=g[i]-ba[i]*m[i+1];/*第三步:求值*/for(i=0;i <=R;i++){/*判断u(i)属于哪一个子区间,即确定k */if(u[i] <x[0] || u[i]> x[N]){/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 1;}k=0;while(u[i]> x[k+1])k++;//p1=(h[k]+2*(u[i]-x[k])*pow((u[i]-x[k+1]),2)*y[k])/pow(h[k],3); //p2=(h[k]-2*(u[i]-x[k+1])*pow((u[i]-x[k]),2)*y[k+1])/pow(h[k],3);p1=(h[k]+2*(u[i]-x[k]))*pow((u[i]-x[k+1]),2)*y[k]/pow(h[k],3);p2=(h[k]-2*(u[i]-x[k+1]))*pow((u[i]-x[k]),2)*y[k+1]/pow(h[k],3); p3=(u[i]-x[k])*pow((u[i]-x[k+1]),2)*m[k]/pow(h[k],2);p4=(u[i]-x[k+1])*pow((u[i]-x[k]),2)*m[k+1]/pow(h[k],2);s[i]=p1+p2+p3+p4;}/*释放空间*/free(h);free(a);free(c);free(g);free(af);free(ba);free(m);return 0;}void main(){int N,R;double *x,*y,*u,*s;double P0,Pn;int i;/*验证算法:*/N=7;R=6;/*分配空间*/if(!(x=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(y=(double*)malloc((N+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(u=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}if(!(s=(double*)malloc((R+1)*sizeof(double)))){printf( "malloc error!\n ");exit(1);}x[0]=0.5;x[1]=0.7;x[2]=0.9;x[3]=1.1;x[4]=1.3;x[5]=1.5;x[6]=1.7;x[7]=1.9;y[0]=0.4794;y[1]=0.6442;y[2]=0.7833;y[3]=0.8912;y[4]=0.9636;y[5]=0.9975;y[6]=0.9917;y[7]=0.9 463;u[0]=0.6;u[1]=0.8;u[2]=1.0;u[3]=1.2;u[4]=1.4;u[5]=1.6;u[6]=1.8;P0=-0.4794;Pn=-0.9463;if(!SPL( N, R, x, y, P0, Pn, u, s)){/*打印结果*/printf( "\nx= ");for(i=0;i <=N;i++)printf( "%8.1f ",x[i]);printf( "\ny= ");for(i=0;i <=N;i++)printf( "%8.4f ",y[i]);printf( "\n\nu= ");for(i=0;i <=R;i++)printf( "%9.2f ",u[i]);printf( "\ns= ");for(i=0;i <=R;i++)printf( "%9.5f ",s[i]);printf( "\nsin= ");for(i=0;i <=R;i++)printf( "%9.5f ",sin(u[i]));}/*释放空间*/free(x);free(y);free(u);free(s);}/* 测试数据来自课本55页例5 《数值分析》清华大学出版社第四版*/ //输入327.7 4.128 4.329 4.130 3.013.0 -4.0//输出输出三次样条插值函数:1: [27.7 , 28]13.07*(x - 28)^3 + 0.22*(x - 27.7)^3+ 14.84*(28 - x) + 14.31*(x - 27.7)2: [28 , 29]0.066*(29 - x)^3 + 0.1383*(x - 28)^3+ 4.234*(29 - x) + 3.962*(x - 28)3: [29 , 30]0.1383*(30 - x)^3 - 1.519*(x - 29)^3+ 3.962*(30 - x) + 4.519*(x - 29)//三次样条插值函数#include<iostream>#include<iomanip>using namespace std;const int MAX = 50;float x[MAX], y[MAX], h[MAX];float c[MAX], a[MAX], fxym[MAX];float f(int x1, int x2, int x3){float a = (y[x3] - y[x2]) / (x[x3] - x[x2]);float b = (y[x2] - y[x1]) / (x[x2] - x[x1]);return (a - b)/(x[x3] - x[x1]);} //求差分void cal_m(int n){ //用追赶法求解出弯矩向量M……float B[MAX];B[0] = c[0] / 2;for(int i = 1; i < n; i++)B[i] = c[i] / (2 - a[i]*B[i-1]);fxym[0] = fxym[0] / 2;for(i = 1; i <= n; i++)fxym[i] = (fxym[i] - a[i]*fxym[i-1]) / (2 - a[i]*B[i-1]);for(i = n-1; i >= 0; i--)fxym[i] = fxym[i] - B[i]*fxym[i+1];}void printout(int n);int main(){int n,i; char ch;do{cout<<"Please put in the number of the dots:";cin>>n;for(i = 0; i <= n; i++){cout<<"Please put in X"<<i<<':';cin>>x[i]; //cout<<endl;cout<<"Please put in Y"<<i<<':';cin>>y[i]; //cout<<endl;}for(i = 0; i < n; i++) //求步长h[i] = x[i+1] - x[i];cout<<"Please 输入边界条件\n 1: 已知两端的一阶导数\n 2:两端的二阶导数已知\n 默认:自然边界条件\n";int t;float f0, f1;cin>>t;switch(t){case 1:cout<<"Please put in Y0\' Y"<<n<<"\'\n";cin>>f0>>f1;c[0] = 1; a[n] = 1;fxym[0] = 6*((y[1] - y[0]) / (x[1] - x[0]) - f0) / h[0];fxym[n] = 6*(f1 - (y[n] - y[n-1]) / (x[n] - x[n-1])) / h[n-1];break;case 2:cout<<"Please put in Y0\" Y"<<n<<"\"\n";cin>>f0>>f1;c[0] = a[n] = 0;fxym[0] = 2*f0; fxym[n] = 2*f1;break;default:cout<<"不可用\n";//待定};//switchfor(i = 1; i < n; i++)fxym[i] = 6 * f(i-1, i, i+1);for(i = 1; i < n; i++){a[i] = h[i-1] / (h[i] + h[i-1]);c[i] = 1 - a[i];}a[n] = h[n-1] / (h[n-1] + h[n]);cal_m(n);cout<<"\n输出三次样条插值函数:\n";printout(n);cout<<"Do you to have anther try ? y/n :";cin>>ch;}while(ch == 'y' || ch == 'Y');return 0;}void printout(int n){cout<<setprecision(6);for(int i = 0; i < n; i++){cout<<i+1<<": ["<<x[i]<<" , "<<x[i+1]<<"]\n"<<"\t";/*cout<<fxym[i]/(6*h[i])<<" * ("<<x[i+1]<<" - x)^3 + "<<<<" * (x - "<<x[i]<<")^3 + "<<(y[i] - fxym[i]*h[i]*h[i]/6)/h[i]<<" * ("<<x[i+1]<<" - x) + "<<(y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i]<<"(x - "<<x[i]<<")\n";cout<<endl;*/float t = fxym[i]/(6*h[i]);if(t > 0)cout<<t<<"*("<<x[i+1]<<" - x)^3";else cout<<-t<<"*(x - "<<x[i+1]<<")^3";t = fxym[i+1]/(6*h[i]);if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")^3";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")^3";cout<<"\n\t";t = (y[i] - fxym[i]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<"+ "<<t<<"*("<<x[i+1]<<" - x)";else cout<<"- "<<-t<<"*("<<x[i+1]<<" - x)";t = (y[i+1] - fxym[i+1]*h[i]*h[i]/6)/h[i];if(t > 0)cout<<" + "<<t<<"*(x - "<<x[i]<<")";else cout<<" - "<<-t<<"*(x - "<<x[i]<<")";cout<<endl<<endl;}cout<<endl;}。
2012-2013(1)专业课程实践论文三次样条插值樊旭,0818180212,R数学08-2班当插值节点很多时,插值多项式的次数就会很高,这不仅增大了计算量,还会影响结果的精确度。
虽然可以采用原始的插值法,但是主要缺点就是分段接头处不光滑,导数不连续。
因此构想了这样的函数,既能分段的低次插值,又能保证接头处光滑,就产生了三次样条插值。
三次样条插值应该满足的条件:1:满足定义2:S(f x -0)=S(f x +0), S '(f x -0)= S '(f x +0),S ''( f x -0)= S ''(f x +0) 3:边界条件:(1) S '(n x )=0f 'S '(n x )=n f '(2) S ''(0x )=0f 'S ''(n x )=n f '(3) S ''(0x )=S ''(n x )=04:周期函数时:S(0x +0)=S(n x -0),S '(0x +0)=S '(n x -0),S ''(0x +0)=S ''(n x -0),计算方程:1:三转角方程:S(x)=[][][][]11221112212233)()()(2)()(2)(++++++--+--+-+-+-+-j j j j j j j j j j j j j j j j j j m h x x x x m h x x x x y h x x h x x y h x x h x x2:三弯矩方程:S(x)=()j j j j i j j j j i j j J j j j h x x h M y h x x h M y h x x M h x x M -⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛-+-+-+++++666)(6221113131 以1为例用VC++程序编程就求解NN输入n,xi,yi,和待估点xx ,边界条件。
三次样条插值的求解摘要:分段低次插值虽然解决了高次插值的振荡现象和数值不稳定现象,使得插值多项式具有一致收敛性,保证了插值函数整体的连续性,但在函数插值节点处不能很好地保证光滑性要求,这在某些要求光滑性的工程应用中是不能接受的。
如飞机的机翼一般要求使用流线形设计,以减少空气阻力,还有船体放样等的型值线,往往要求有二阶光滑度(即有二阶连续导数)。
因此,在分段插值的基础上,引进了一种新的插值方法,在保证原方法的收敛性和稳定性的同时,又使得函数具有较高的光滑性的样条插值。
关键字:三转角方程 三弯矩阵方程0. 引言1,三次样条函数定义1:若函数2()[,]S x a b C ∈,且在每个小区间上1,j j x x +⎡⎤⎦⎣上是三次多项式,其中01n a x x x b ⋯=<<<= 是给定节点,则称()s x 是节点01,,,n x x x ⋯上的三次样条函数。
若节点j x 上 给定函数值()j j y f x =(0,1,)j n ⋯= ,且()j j s x y = (0,1,)j n ⋯= (1.1)成立,则称 ()s x 为三次样条差值函数。
从定义知,要求出()s x ,在每个应小区间1[,]j j x x + 上确定4个待定系数,共有 n 个小区间,故应确定4n 个参数,根据()s x 在[,]a b 上二阶导数连续,在节点()1,2,3,,1j x j n ⋯=-处应满足连续性条件(0)(0),j j s x s x -=+ ''(0)(0),j j s x s x -=+''''(0)(0)j j s x s x -=+ (1.2) 共有 3n-3个条件,再加上()s x 满足插值条件(1.1),共有4n-2个条件,因此还需要2个条件才能确定()s x 。
通常可在区间[,]a b 端点0,n a x b x ==上各加一个条件(称边界条件),边界条件可根据实际的问题要求给定。
常见的三种: (1) 已知两端的一节导数值,即{''00''()()n n s x f s x f == (1.3)(2)两端的二阶导数已知,即{''''00''''()()n ns x f s x f == (1.4)特殊情况下的边界条件''''0()()0n s x s x == (1.4)’ 称为自然边界条件(3)当()f x 是以0n x x - 为周期函数时,则要求()s x 也是周期函数,这时边界条件应满足而此时式中 , 这样确定的样条函数称为周期函数。
2.三转角方程及相应的边界条件函数s(x)的表达式,若满足假定的在节点处的值为,再由,是 ,则由分段Hermite 插值式得(2.1)其中是插值基函数。
由得,(2.1)中在整个区间上连续。
且满足。
然而在公式(2.1)中是未知的,它可利用式及边界条件来确定。
为了求出,下面考虑是这里 ,对于是 112426''(0)()j j j j j jjjs x m m y y h h h+++=--+-同理可得''()s x 在区间1[,]j j x x -上的表达式111113221116(2)624642()()j j j jj jj j j jj j j x x x x x x x x x S x y y m m hhh--------+-----''=-++及 1!2111426''(0)()j j j j j j j j s x m m y y h h h------=++-由得(1,2,,1)j n =-用111j jh h -+,,除上式的两边并加以整理得1111111121,2,,1)3()1,2,,1)j j j j j j j j j jj j j j j j j jjjjj jm m m g n h h h h h h y y y y gn h h λμλμλμ-+----+-++==-==++--=+=- 其中:(j (j (2.2)1,1n n -+共个个方程个未知量(2.2)式称为基本方程组如果问题要求满足第一类(一阶)边界条件:即 00m f '= n n m f '=基本方程组(2.2)化为n-1阶方程组11112211111112()3()j jj j j j j j j jjjj y y y y m m m h h h h hh+--+-----+++=+3.算法步骤: ①输 入 n 个插值结点,01n a x x x b ⋯=<<<=,对应的函数插值为1 2.,,,n y y y 边界条件''12,y y ,待求插值点0x 。
② 计算j j jh x x -=- (1,2,3,1)j n =- 。
③计算11j j j jh h h μ--=+ ,111116(),(2,,1)j jj j j j j j jy y y y d j n h h h h +-----=-=-+ 。
④ 计算'2111116()y y y h h β-=-, '1116()n n n n n n y y y h h β-----=-。
⑤ 用追赶法求解方程组() ⑥ 输出各区间的()j s x 表达式。
⑦ 判断0x 所在区间1[,]j j x x +并计算插值0y ,绘制各区间的三次样条插值曲线。
4.三次样条插值函数的Matlab程序设计在Matlab环境下根据上述算法步骤进行编程,源程序如下:function []=spline3(X,Y,dY,x0,m)N=size( X,2);s0=dY(1); sN=dY(2);inte rval=0.025;disp('x0为插值点')x0h=ze ros(1,N-1) ;for i=1:N-1 h(1,i) =X(i+1) -X(i); e ndd(1,1)=6*( (Y(1,2) -Y(1,1) )/h( 1,1)- s0)/h(1,1);d(N,1)=6*(sN-(Y(1,N)-Y(1,N-1))/h(1,N-1))/h(1,N-1);for i=2:N-1d(i,1)=6*((Y(1,i+1)-Y(1,i))/h(1,i)-(Y(1,i)-Y(1,i-1))/h(1,i-1) )/ ( h( 1,i)+h( 1,i-1)) ; endmu=zer os(1,N-1); md=zer os( 1,N-1);md=zeros(1,N-1);for i=1:N-2u=h(1,i+1)/(h(1,i)+h(1,i+1));mu(1,i+1)=u;md(1,i)=1-u; endp(1,1)=2; q(1,1)=mu(1,1)/2;for i=2:N-1p(1,i)=2-md(1,i-1)*q(1,i-1); q(1,i)=mu(1,i)/p(1,i); endp(1,N)=2-md(1,N-1)*q(1,N-1);y=zeros(1,N); y(1,1)=d(1)/2;for i=2:N y(1,i)=(d(i)-md(1,i-1)*y(1,i-1))/p(1,i); endx=zeros(1,N); x(1,N)=y(1,N);for i=N-1:-1:1 x(1,i)=y(1,i)-q(1,i)*x(1,i+1); endfprintf ('M为三对角方程的解\n'); M=x;fprintf ('\n');syms t;digits (m);for i=1:N-12pp(i)=M(i)*(X(i+1)-t)^3/(6*h(i))+M(i+1)*(t-X(i))^3/(6*h(i))+(Y(i)-M(i)*h(i)^2/6)*(X(i+1)-t)/h(i)+(Y(i+1)-M(i+1)*h(i)^2/6)*(t-X(i))/h(i);pp(i)=simplify(pp(i)); coeff=sym2poly(pp(i));if length(coeff)~=4tt=coeff(1:3); coeff(1:4)=0; coeff(2:4)=tt; endif x0>X(i)&x0<X(i+1) L=i;y0=coeff(1)*x0^3+coeff(2)*x0^2+coeff(3)*x0+coeff(4);endval=X(i):interval:X(i+1);for k=1:length(val)fval(k)=coeff(1)*val(k)^3+coeff(2)*val(k)^2+coeff(3)*val(k)+coeff(4); endif mod(i,2)==1 plot(val,fval,'r+')else plot(val,fval,'b.') endhold onans=poly2sym(ans,'t')fprintf('在区间[%f,%f]内\n',X(i),X(i+1));fprintf('三次样条函数S(%d)=',i);pretty(ans); endfprintf ('x0所在区间为[%f,%f]\n',X(L),X(L+1)); pretty(ans); end fprintf ('函数在插值点x0=%f的值为\n',x0);y0程序中:X,Y为输入结点,dY为两端点一阶导阵,x 为待求插值点,m为有效数字位数。
应syms xf1=1/(1+x^2);f2=1/(1+5*x^2);x=-5:5;y1=subs(f1,x);y2=subs(f2,x);xx=-5:0.25:5;yy=spline(x,y1,xx);yy2=spline(x,y2,xx); subplot(2,2,1);plot(x,y1,'o'.xx.yy), gridt=-5:0.25:5;yt=subs(f1,t);yt2=subs(f2,t); subplot(2,2,2);plot(t,yt).gridsubplot(2,2,3)plot(x,y2,'o',xx,yy2), gridsubplot(2,2,4)plot(t,yt2),grid。