2018年高考备考复习(数学文)专题学案13:直线与圆
- 格式:doc
- 大小:875.50 KB
- 文档页数:16
总第74. 75教时课题:直线与圆、圆与圆的位置关系教学目标:1、知道直线和圆相交,相切,相离的定义并会根据定义来判断直线和圆的位置关系;2、能根据圆心到直线的距离与圆的半径之间的数量关系来揭示直线和圆的位置关系;也能根据联立方程组的解的个数来判断直线与圆的位置关系。
3、掌握直线和圆的位置关系的应用,能解决弦长、切线以及最值问题。
4、掌握圆和圆的五种位置关系。
使学生掌握各种位置关系中圆心距与半径之间的数量关系,并了解它是性质又是判定。
培养学生分析问题、解决问题、归纳总结的能力。
高考要求:教学重点:直线和圆位置关系的判断和应用两圆相交、相切的及两圆相切的性质和判定。
教学难点:通过解方程组来研究直线和圆的位置关系。
各种位置关系中圆心距与半径之间的数量关系的应用。
教具:多媒体教时安排:2教时教程:第一教时一、知识点复习回顾(一)、直线与圆的位置关系1、直线与圆有三种位置关系:相离、相切和相交。
有两种判断方法:A > 0 <=>相交(1)代数法(判别式法)< △ = 0 o 相切,A<0 o相离d < r o相交(2)(几何法)(〃为圆心到直线的距离)圆心到直线的距离{d = ^o 相切d〉r <=>相离注意:一般宜用儿何法。
2、圆的切线方程:主要元素:切点坐标、切线方程、切线长等问题:直线/与圆C相切意味着什么:圆心C到直线/的距离恰好等于半径厂(1 )过圆X2 + y2 =厂彳上一点M(兀0,儿)的切线的方程为y Q y = r2(2 )过圆(兀一°)2 +(y-/?)2 =厂$上一点M(兀0,儿)的切线的方程为(x0 -6Z)(x-6Z)+ (y0-bXy-b) = r2(3 )过圆x2 + y2 + Dx+ Ey + F = 0上一点M(兀。
,儿)的切线方程为“+y°y+D.d+E.Z±21+F=02 2(4 )自圆外一点M(兀o,y°)作圆x2 + y2 = r2的两条切线,则点A/(x0,y0)关于该圆的切点弦所在的直线方程是兀()兀+ y()y = r2(5)常见题型一一求过定点的切线方程①切线条数:点在圆外--- 两条;点在圆上---- 条;点在圆内--- 无②求切线方程的方法及注意点• • •(1)点在圆外如定点卩(兀0,儿),圆:(%-。
《直线与圆的位置关系》导学案一、学习目标1、理解直线与圆的三种位置关系:相交、相切、相离。
2、掌握直线与圆位置关系的判定方法,包括代数法和几何法。
3、能运用直线与圆的位置关系解决相关的实际问题。
二、学习重难点1、重点(1)直线与圆的三种位置关系的定义及判定。
(2)直线与圆位置关系的判定方法的应用。
2、难点(1)几何法判定直线与圆位置关系的原理。
(2)灵活运用直线与圆的位置关系解决综合问题。
三、知识链接1、圆的标准方程:\((x a)^2 +(y b)^2 = r^2\),其中\((a, b)\)为圆心坐标,\(r\)为圆的半径。
2、点\(P(x_0, y_0)\)到直线\(Ax + By + C = 0\)的距离公式:\(d =\frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}\)四、学习过程(一)引入通过展示一些生活中直线与圆的位置关系的实例,如太阳升起时地平线与太阳的位置关系、自行车车轮与地面的位置关系等,引出直线与圆的位置关系这一课题。
(二)直线与圆的位置关系的定义1、相交:直线与圆有两个公共点。
2、相切:直线与圆只有一个公共点。
3、相离:直线与圆没有公共点。
(三)直线与圆位置关系的判定方法1、代数法将直线方程与圆的方程联立,消去\(y\)(或\(x\))得到一个关于\(x\)(或\(y\))的一元二次方程,然后根据判别式\(\Delta\)的值来判断直线与圆的位置关系。
(1)\(\Delta > 0\),直线与圆相交。
(2)\(\Delta = 0\),直线与圆相切。
(3)\(\Delta < 0\),直线与圆相离。
2、几何法计算圆心到直线的距离\(d\),与圆的半径\(r\)进行比较。
(1)\(d < r\),直线与圆相交。
(2)\(d = r\),直线与圆相切。
(3)\(d > r\),直线与圆相离。
(四)例题讲解例 1:已知圆\(C\):\(x^2 + y^2 2x 4y 4 = 0\),直线\(l\):\(x 2y 2 =0\),判断直线\(l\)与圆\(C\)的位置关系。
课堂检测——直线与圆(3)姓名:
1.设直线l的方程为(a+1)x+y-2-a=0(a∈R).若直线l在两坐标轴上的截距相等,求直线l的方程________.
2.在平面直角坐标系xOy中,已知圆x2+y2=r2(r>0)上有且仅有四个点到直线12x-5y+13=0的距离为1,则实数r的取值范围是________.
3.在等腰直角三角形ABC中,=4
AB AC=,点P
是边AB上异于,A B的一点,光线从点P出发,
经,
BC CA发射后又回到原点P(如图1).若光线
QR经过ABC
∆的重心,则AP等于____.
4.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的取值范围是________.
5.设m,n∈R若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,
则m+n的取值范围是________.
6.如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.
(1) 若⊙E与直线CD相切,求实数a的值;
(2) 设点P在圆E上,使△PCD的面积等于12的点P有且只有三个,试问这样的⊙E是否存在,若存在?求出⊙E的标准方程;若不存在,说明理由.
课外作业——直线与圆(3)姓名:。
直线与圆的位置关系教案直线与圆的位置关系教案范文作为一位兢兢业业的人民教师,总不可避免地需要编写教案,借助教案可以有效提升自己的教学能力。
我们应该怎么写教案呢?以下是小编收集整理的直线与圆的位置关系教案范文,仅供参考,大家一起来看看吧。
教学目标:1.使学生理解直线和圆的相交、相切、相离的概念。
2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。
3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。
重点难点:1.重点:直线与圆的三种位置关系的概念。
2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。
教学过程:一.复习引入1.提问:复习点和圆的三种位置关系。
(目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系)2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。
(目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力)二.定义、性质和判定1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。
(1)线和圆有两个公共点时,叫做直线和圆相交。
这时直线叫做圆的割线。
(2)直线和圆有唯一的公点时,叫做直线和圆相切。
这时直线叫做圆的切线。
唯一的公共点叫做切点。
(3)直线和圆没有公共点时,叫做直线和圆相离。
2.直线和圆三种位置关系的性质和判定:如果⊙O半径为r,圆心O到直线l的距离为d,那么:(1)线l与⊙O相交 d<r(2)直线l与⊙O相切d=r(3)直线l与⊙O相离d>r三.例题分析:例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。
①当r= 时,圆与AB相切。
②当r=2cm时,圆与AB有怎样的位置关系,为什么?③当r=3cm时,圆与AB又是怎样的位置关系,为什么?④思考:当r满足什么条件时圆与斜边AB有一个交点?四.小结(学生完成)五、随堂练习:(1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。
《直线与圆的位置关系(复习课)》教学课例【教学设计】一、教学目标1.知识与能力:理解并掌握直线与圆的三种位置关系的定义及应用,尤其是切线的性质与判定,并应用这些知识解决相似及锐角三角函数等问题;2.过程与方法:通过通过复习培养学生综合运用知识的能力;3.情感、态度与价值观:体验数学活动中的探索与创造,感受数学的严谨性和数学结论的正确性,在学习活动中获得成功的体验;通过“转化”数学思想的运用,让学生认识到事物之间是普遍联系、相互转化的二、教材分析圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为圆与圆的位置关系作铺垫的知识,解题及几何证明中,起到重要的作用。
辨证唯物主义思想。
三、教学重点与难点教学重点:直线和圆三种位置关系的定义、性质及判定的理解和应用。
教学难点:圆的切线性质的应用以及切线的判定,尤其是辅助线的做法。
四、教学方法采用“讨论式”教学方法,通过“问题情景引入――基础知识重温――相关类题演练――归纳概括总结――综合知识应用”,引导学生对解决问题的思路和方法进行总结,对同类的问题的解题思路进行归纳,形成比较系统的解决这一类问题的常用方法。
五、教学过程中考命题分析1.主要考察直线与圆的位置关系的定义,圆的切线性质的应用以及切线的判定;2.值得关注的是圆与三角形相似、三角函数的综合以及开放探究题。
知识要点再现相关练习例1.已知⊿ABC中,∠B=90°,若AB=BC=4 ,以B为圆心的⊙B的半径为r,请回答:(1)当r=2.5时,⊙B与直线AC的位置关系如何?(2)当⊙B与直线AC相切时,求⊙B的半径为r的值。
(3)若⊙B与直线AC相交所截的线段MN长为2,求⊙B的半径r 。
例2.已知:垂直⊿ABC为⊙O内接三角形,直线EF与⊙O相切与点A, 求证:∠ABC=∠CAF.例3.如图,⊙O的直径等于8,OA⊥OB,,OA=45,OB=25.求证:AB与⊙O相切。
第十三单元 直线与圆教材复习课“直线与圆”相关基础知识一课过1.直线的倾斜角与斜率 (1)直线的倾斜角①定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角;②规定:当直线l 与x 轴平行或重合时,规定它的倾斜角为0; ③范围:直线l 的倾斜角的取值范围是[0,π). (2)直线的斜率①定义:当直线l 的倾斜角α≠π2时,其倾斜角α的正切值tan α叫做这条直线的斜率,斜率通常用小写字母k 表示,即k =tan_α;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1. 2.直线方程的五种形式1.已知A (m ,-2),B (3,0),若直线AB 的斜率为2,则m 的值为( ) A .-1 B .2 C .-1或2D .-2解析:选B 由直线AB 的斜率k =-2-0m -3=2,解得m =2.2.若经过两点(5,m )和(m,8)的直线的斜率大于1,则m 的取值范围是( ) A .(5,8) B .(8,+∞)C.⎝⎛⎭⎪⎫132,8D.⎝⎛⎭⎪⎫5,132解析:选D 由题意知8-mm -5>1,即2m -13m -5<0,∴5<m <132. 3.过点C (2,-1)且与直线x +y -3=0垂直的直线是( ) A .x +y -1=0 B .x +y +1=0 C .x -y -3=0D .x -y -1=0解析:选C 设所求直线斜率为k , ∵直线x +y -3=0的斜率为-1,且所求直线与直线x +y -3=0垂直,∴k =1. 又∵直线过点C (2,-1), ∴所求直线方程为y +1=x -2, 即x -y -3=0.4.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( ) A .1 B .-1 C .-2或-1D .-2或1 解析:选D 由题意可知a ≠0.当x =0时,y =a +2. 当y =0时,x =a +2a. ∴a +2a=a +2,解得a =-2或a =1. 5.经过点(-4,1),且倾斜角为直线y =-x +1的倾斜角的13的直线方程为________.解析:由题意可知,所求直线方程的倾斜角为45°,即斜率k =1,故所求直线方程为y -1=x +4,即x -y +5=0.答案:x -y +5=0[清易错]1.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.2.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 1.过点(5,10)且到原点的距离是5的直线的方程为________.解析:当斜率不存在时,所求直线方程为x -5=0; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0. 由点到直线的距离公式,得|10-5k |k 2+1=5, 解得k =34.故所求直线方程为3x -4y +25=0.综上可知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=02.经过点A (1,1),且在两坐标轴上的截距相等的直线方程为________. 解析:当直线过原点时,方程为y =x ,即x -y =0; 当直线不过原点时,设直线方程为x +y =a , 把点(1,1)代入直线方程可得a =2, 故直线方程为x +y -2=0.综上可得所求的直线方程为x -y =0或x +y -2=0. 答案:x -y =0或x +y -2=01.圆的定义及方程点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. [小题速通]1.若方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( )A .(-∞,-2)∪⎝ ⎛⎭⎪⎫23,+∞ B.⎝ ⎛⎭⎪⎫-23,0C .(-2,0)D.⎝⎛⎭⎪⎫-2,23 解析:选D 由题意知a 2+4a 2-4(2a 2+a -1)>0, 解得-2<a <23.2.(2018·天津模拟)若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( )A .(-1,1)B .(-3,3)C .(-2,2)D.⎝ ⎛⎭⎪⎫-22,22 解析:选C 因为(0,0)在(x -m )2+(y +m )2=4的内部,则有(0-m )2+(0+m )2<4,解得-2<m < 2.3.(2015·北京高考)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 解析:选D 圆的半径r =-2+-2=2,圆心坐标为(1,1),所以圆的标准方程为(x -1)2+(y -1)2=2.4.若圆C 的圆心在x 轴上,且过点A (-1,1)和B (1,3),则圆C 的方程为________________. 解析:设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |, 即a +2+1=a -2+9,解得a =2,所以圆心为C (2,0), 半径|CA |=+2+1=10,∴圆C 的方程为(x -2)2+y 2=10. 答案:(x -2)2+y 2=101.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2. 2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.距离|P 1P 2|=x 2-x 12+y 2-y 121.已知直线l 1:(3+a )x +4y =5-3a 和直线l 2:2x +(5+a )y =8平行,则a =( ) A .-7或-1 B .-7 C .7或1D .-1解析:选B 由题意可得a ≠-5,所以3+a 2=45+a ≠5-3a8,解得a =-7(a =-1舍去).2.圆x 2+y 2-6x -2y +3=0的圆心到直线x +ay -1=0的距离为1,则a =( ) A .-43B .-34C. 3D .2解析:选B 圆x 2+y 2-6x -2y +3=0可化为(x -3)2+(y -1)2=7,其圆心(3,1)到直线x +ay -1=0的距离d =|2+a |1+a2=1,解得a =-34. 3.已知直线l 1:(m +2)x -y +5=0与l 2:(m +3)x +(18+m )y +2=0垂直,则实数m 的值为( )A .2或4B .1或4C .1或2D .-6或2解析:选D 当m =-18时,两条直线不垂直,舍去; 当m ≠-18时,由l 1⊥l 2,可得(m +2)·⎝ ⎛⎭⎪⎫-m +318+m =-1,化简得(m +6)(m -2)=0,解得m =-6或2.4.若两条平行直线4x +3y -6=0和4x +3y +a =0之间的距离等于2,则实数a =________.解析:∵两条平行直线的方程为4x +3y -6=0和4x +3y +a =0, ∴由平行线间的距离公式可得2=|-6-a |42+32, 即|-6-a |=10, 解得a =4或-16. 答案:4或-16[清易错]1.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.1.已知直线l 1:x +(a -2)y -2=0,直线l 2:(a -2)x +ay -1=0,则“a =-1”是“l 1⊥l 2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:(1)当直线l 1的斜率不存在,即a =2时,有l 1:x -2=0,l 2:2y -1=0,此时符合l 1⊥l 2.(2)当直线l 1的斜率存在,即a ≠2时,直线l 1的斜率k 1=-1a -2≠0,若l 1⊥l 2,则必有直线l 2的斜率k 2=-a -2a ,所以⎝ ⎛⎭⎪⎫-1a -2·⎝ ⎛⎭⎪⎫-a -2a =-1,解得a =-1.综上所述,l 1⊥l 2⇔a =-1或a =2.故“a =-1”是“l 1⊥l 2”的充分不必要条件. 法二:l 1⊥l 2⇔1×(a -2)+(a -2)×a =0, 解得a =-1或a =2.所以“a =-1”是“l 1⊥l 2”的充分不必要条件.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为( )A.95B.185C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行.由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.直线与圆的位置关系(半径r ,圆心到直线的距离为d )1.直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切 B .相交C .相离D .随a 的变化而变化解析:选B 因为直线y =ax +1恒过定点(0,1),又点(0,1)在圆x 2+y 2-2x -3=0的内部,故直线与圆相交.2.(2018·大连模拟)若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A.12 B .1 C.22D. 2解析:选D 因为圆心(0,0)到直线ax +by +c =0的距离d =|c |a 2+b2=|c |2|c |=22,因此根据直角三角形的关系,弦长的一半就等于1-⎝⎛⎭⎪⎫222=22,所以弦长为 2. 3.已知圆C :x 2+y 2-6x +8=0,则圆心C 的坐标为______;若直线y =kx 与圆C 相切,且切点在第四象限,则k 的值为________.解析:圆的方程可化为(x -3)2+y 2=1,故圆心坐标为(3,0);由|3k |1+k2=1,解得k =±24,由切点在第四象限,可得k =-24. 答案:(3,0) -24圆与圆的位置关系(两圆半径r 1,r 2,d =|O 1O 2|)1.若圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a =________. 答案:±25或02.圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦长为________.解析:由⎩⎪⎨⎪⎧x 2+y 2-4=0,x 2+y 2-4x +4y -12=0,得x -y +2=0.又圆x 2+y 2=4的圆心到直线x -y +2=0的距离为22= 2.由勾股定理得弦长的一半为4-2=2,所以所求弦长为2 2. 答案:2 2一、选择题1.直线 3x +y -3=0的倾斜角为( ) A.π6 B.π3 C.2π3D.5π6解析:选C ∵直线3x +y -3=0可化为y =-3x +3, ∴直线的斜率为-3,设倾斜角为α,则tan α=-3,又∵0≤α<π, ∴α=2π3.2.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则必有( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 2解析:选D 由图可知k 1<0,k 2>0,k 3>0,且k 2>k 3,所以k 1<k 3<k 2. 3.经过点(1,0),且圆心是两直线x =1与x +y =2的交点的圆的方程为( ) A .(x -1)2+y 2=1 B .(x -1)2+(y -1)2=1 C .x 2+(y -1)2=1 D .(x -1)2+(y -1)2=2解析:选B 由⎩⎪⎨⎪⎧x =1,x +y =2,得⎩⎪⎨⎪⎧x =1,y =1,即所求圆的圆心坐标为(1,1), 又由该圆过点(1,0),得其半径为1, 故圆的方程为(x -1)2+(y -1)2=1.4.过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线方程是( )A .2x +y -8=0B .2x -y -8=0C .2x +y +8=0D .2x -y +8=0解析:选A 设过直线2x -y +4=0与x -y +5=0的交点的直线方程为2x -y +4+λ(x -y +5)=0,即(2+λ)x -(1+λ)y +4+5λ=0, ∵该直线与直线x -2y =0垂直, ∴k =2+λ1+λ=-2,解得λ=-43.∴所求的直线方程为⎝ ⎛⎭⎪⎫2-43x -⎝ ⎛⎭⎪⎫1-43y +4+5×-43=0,即2x +y -8=0.5.已知直线l 1:x +2y +t 2=0和直线l 2:2x +4y +2t -3=0,则当l 1与l 2间的距离最短时t 的值为( )A .1 B.12 C.13D .2解析:选B ∵直线l 2:2x +4y +2t -3=0, 即x +2y +2t -32=0.∴l 1∥l 2,∴l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪t 2-2t -3212+22=⎝ ⎛⎭⎪⎫t -122+545≥54,当且仅当t =12时取等号.∴当l 1与l 2间的距离最短时t 的值为12.6.已知直线l 1:(a +3)x +y -4=0与直线l 2:x +(a -1)y +4=0垂直,则直线l 1在x 轴上的截距是( )A .1B .2C .3D .4解析:选B ∵直线l 1:(a +3)x +y -4=0与直线l 2:x +(a -1)y +4=0垂直, ∴a +3+a -1=0,解得a =-1, ∴直线l 1:2x +y -4=0, ∴直线l 1在x 轴上的截距是2.7.一条光线从A ⎝ ⎛⎭⎪⎫-12,0处射到点B (0,1)后被y 轴反射,则反射光线所在直线的方程为( )A .2x -y -1=0B .2x +y -1=0C .x -2y -1=0D .x +2y +1=0解析:选B 由题意可得点A ⎝ ⎛⎭⎪⎫-12,0关于y 轴的对称点A ′⎝ ⎛⎭⎪⎫12,0在反射光线所在的直线上,又点B (0,1)也在反射光线所在的直线上,则两点式求得反射光线所在的直线方程为y -10-1=x -012-0,即2x +y -1=0.8.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+()y -12=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1 D.()x -32+(y -1)2=1解析:选A 由于圆心在第一象限且与x 轴相切,故设圆心为(a,1)(a >0),又由圆与直线4x -3y =0相切可得|4a -3|5=1,解得a =2,故圆的标准方程为(x -2)2+(y -1)2=1.二、填空题9.已知直线l 过点A (0,2)和B (-3,3m 2+12m +13)(m ∈R),则直线l 的倾斜角的取值范围为________.解析:设此直线的倾斜角为θ,0≤θ<π,则tan θ=3m 2+12m +13-2-3-0=-3(m +2)2+33≤33.因为θ∈[0,π),所以θ∈⎣⎢⎡⎦⎥⎤0,π6∪⎝ ⎛⎭⎪⎫π2,π.答案:⎣⎢⎡⎦⎥⎤0,π6∪⎝ ⎛⎭⎪⎫π2,π10.已知点A (-1,-2),B (2,3),若直线l :x +y -c =0与线段AB 有公共点,则直线l 在y 轴上的截距的取值范围为__________.解析:如图,把A (-1,-2),B (2,3)分别代入直线l :x +y -c =0,得c 的值分别为-3,5. 故若直线l :x +y -c =0与线段AB 有公共点,则直线l 在y 轴上的截距的取值范围为[-3,5].答案:[-3,5]11.已知直线x +y -3m =0与2x -y +2m -1=0的交点在第四象限,则实数m 的取值范围为________.解析:联立⎩⎪⎨⎪⎧x +y -3m =0,2x -y +2m -1=0,解得⎩⎪⎨⎪⎧x =m +13,y =8m -13.∵两直线的交点在第四象限,∴m +13>0,且8m -13<0, 解得-1<m <18,∴实数m 的取值范围是⎝ ⎛⎭⎪⎫-1,18. 答案:⎝⎛⎭⎪⎫-1,1812.已知圆C :(x +1)2+(y -1)2=1与x 轴切于A 点,与y 轴切于B 点,设劣弧AB 的中点为M ,则过点M 的圆C 的切线方程是______________.解析:因为圆C 与两坐标轴相切,且M 是劣弧AB 的中点, 所以直线CM 是第二、四象限的角平分线, 所以斜率为-1,所以过M 的切线的斜率为1. 因为圆心到原点的距离为2,所以|OM |=2-1, 所以M ⎝⎛⎭⎪⎫22-1,1-22,所以切线方程为y -1+22=x -22+1, 整理得x -y +2-2=0. 答案:x -y +2-2=0 三、解答题13.已知△ABC 的三个顶点分别为A (-3,0),B (2,1),C (-2,3),求: (1)BC 边所在直线的方程;(2)BC 边上中线AD 所在直线的方程; (3)BC 边的垂直平分线DE 的方程.解:(1)因为直线BC 经过B (2,1)和C (-2,3)两点,由两点式得BC 的方程为y -13-1=x -2-2-2,即x +2y -4=0.(2)设BC 边的中点D 的坐标为(x ,y ), 则x =2-22=0,y =1+32=2.BC 边的中线AD 过点A (-3,0),D (0,2)两点,由截距式得AD 所在直线方程为x -3+y2=1,即2x -3y +6=0.(3)由(1)知,直线BC 的斜率k 1=-12,则直线BC 的垂直平分线DE 的斜率k 2=2. 由(2)知,点D 的坐标为(0,2).由点斜式得直线DE 的方程为y -2=2(x -0), 即2x -y +2=0.14.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2, 设P (a,2a ),则a 2+a -2=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125. (2)证明:设P (b,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0,即(x 2+y 2-4y )-b (x +2y -8)=0.由⎩⎪⎨⎪⎧x 2+y 2-4y =0,x +2y -8=0,解得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =85,y =165,所以该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165. 高考研究课(一)直线方程命题4角度——求方程、判位置、定距离、用对称 [全国卷5年命题分析]直线方程的求法[典例] (1)求过点A (1,3),斜率是直线y =-4x 的斜率的3的直线方程.(2)求经过点A (-5,2),且在x 轴上的截距等于在y 轴上截距的2倍的直线方程. [解] (1)设所求直线的斜率为k ,依题意k =-4×13=-43.又直线经过点A (1,3),因此所求直线方程为y -3=-43(x -1),即4x +3y -13=0.(2)当直线不过原点时,设所求直线方程为x 2a +ya =1,将(-5,2)代入所设方程,解得a=-12,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得k =-25,所以直线方程为y =-25x ,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0. [方法技巧]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时演练]1.若直线l 过点A (3,4),且点B (-3,2)到直线l 的距离最远,则直线l 的方程为( ) A .3x -y -5=0 B .3x -y +5=0 C .3x +y +13=0D .3x +y -13=0解析:选D 当l ⊥AB 时满足条件. ∵k AB =2-4-3-3=13,则k l =-3.∴直线l 的方程为y -4=-3(x -3), 即3x +y -13=0.2.已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,则当|OA |+|OB |取得最小值时,直线l 的方程为____________.解析:设A (a,0),B (0,b )(a >0,b >0).设直线l 的方程为x a +y b=1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =2+a b +ba ≥2+2·a b ·ba=4,当且仅当a =b =2时取等号,此时直线l 的方程为x +y -2=0.答案:x +y -2=0[典例] (1)12y -8=0平行,则m 的值为( )A .-7B .-1或-7C .-6D .-6或-7(2)已知倾斜角为α的直线l 与直线x +2y -3=0垂直,则cos ⎝ ⎛⎭⎪⎫2 0172π-2α的值为( )A.45 B .-45C .1D .-12[解析] (1)直线l 1的斜率一定存在,因为l 2:2x +(m +5)y -8=0, 当m =-5时,l 2的斜率不存在,两直线不平行. 当m ≠-5时,由l 1∥l 2,得(m +3)(m +5)-2×4=0, 解得m =-1或-7.当m =-1时,两直线重合,故不满足条件;经检验,m =-7满足条件,故选A. (2)由已知得tan α=2,则cos ⎝ ⎛⎭⎪⎫2 0172π-2α=sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=45. [答案] (1)A (2)A [方法技巧]由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.[即时演练]1.过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0D .x +2y -1=0解析:选A 依题意,设所求的直线方程为x -2y +a =0,由点(1,0)在所求直线上,得1+a =0,即a =-1,则所求的直线方程为x -2y -1=0.2.若直线l 经过点P (1,2),且垂直于直线2x +y -1=0,则直线l 的方程是______________.解析:设垂直于直线2x +y -1=0的直线l 的方程为x -2y +c =0, ∵直线l 经过点P (1,2), ∴1-4+c =0,解得c =3, ∴直线l 的方程是x -2y +3=0. 答案:x -2y +3=0[典例] (1)过直线x 1的直线有( )A .0条B .1条C .2条D .3条(2)直线l 经过点P (2,-5)且与点A (3,-2)和点B (-1,6)的距离之比为1∶2,求直线l 的方程.[解析] (1)解方程组⎩⎨⎧x -3y +1=0,3x +y -3=0,得⎩⎪⎨⎪⎧x =12,y =32.由于⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1,则所求直线只有1条.[答案] B(2)当直线l 与x 轴垂直时,此时直线l 的方程为x =2,点A 到直线l 的距离为d 1=1,点B 到直线l 的距离为d 2=3,不符合题意,故直线l 的斜率必存在.∵直线l 过点P (2,-5),∴设直线l 的方程为y +5=k (x -2).即kx -y -2k -5=0.∴点A (3,-2)到直线l 的距离d 1=|3k ---2k -5|k 2+1=|k -3|k 2+1, 点B (-1,6)到直线l 的距离d 2=|-k -6-2k -5|k 2+1=|3k +11|k 2+1.∵d 1∶d 2=1∶2, ∴|k -3||3k +11|=12,∴k 2+18k +17=0,∴k 1=-1,k 2=-17. ∴所求直线方程为x +y +3=0和17x +y -29=0. [方法技巧]求解距离问题的注意点解决与点到直线的距离有关的问题应熟记点到直线的距离公式,若已知点到直线的距离求直线方程,一般考虑待定斜率法,此时必须讨论斜率是否存在.[即时演练]1.已知点A (a,2)到直线l :x -y +3=0距离为2,则a 等于( ) A .1 B .±1 C .-3D .1或-3解析:选D ∵点A (a,2)到直线l :x -y +3=0距离为2, ∴|a -2+3|2=2, ∴a +1=±2. 解得a =1或-3.2.直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为__________.解析:当直线l 的斜率存在时, 设直线l 的方程为y -2=k (x +1), 即kx -y +k +2=0.由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|, ∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 答案:x =-1或x +3y -5=0对称问题对称问题是高考常考内容之一,也是考查转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称; (3)线关于线对称; (4)对称问题的应用. 1.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且AB 线段的中点为P ⎝⎛⎭⎪⎫0,10a ,则线段AB 的长为( )A .11B .10C .9D .8解析:选B 依题意a =2,P (0,5),设A (x,2x ),B (-2y ,y ),由⎩⎪⎨⎪⎧x -2y =0,2x +y =10,得A (4,8),B (-4,2),所以|AB |=+2+-2=10.[方法技巧]点P (x ,y )关于O (a ,b )的对称点P ′(x ′,y ′)满足⎩⎪⎨⎪⎧x ′=2a -x ,y ′=2b -y .角度二:点关于线的对称问题2.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n =( )A.345B.365C.283D.323解析:选A 由题意可知纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x-3,它也是点(7,3)与点(m ,n )连线的中垂线,于是⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎪⎨⎪⎧m =35,n =315,故m +n =345[方法技巧]解决点关于直线对称问题要把握两点,点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.角度三:线关于线对称问题3.已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程; (2)直线l 关于点A (-1,-2)对称的直线l ′的方程.解:(1)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设对称点为M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝ ⎛⎭⎪⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0,得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.(2)在直线l :2x -3y +1=0上任取两点,如M (1,1),N (4,3),则M ,N 关于点A (-1,-2)的对称点M ′,N ′均在直线l ′上.易得M ′(-3,-5),N ′(-6,-7),再由两点式可得l ′的方程为2x -3y -9=0.[方法技巧]若直线l 1,l 2关于直线l 对称,则有如下性质:①若直线l 1与l 2相交,则交点在直线l 上;②若点B 在直线l 1上,则其关于直线l 的对称点B ′在直线l 2上.角度四:对称问题的应用4.已知有条光线从点A (-2,1)出发射向x 轴上的B 点,经过x 轴反射后射向y 轴上的C 点,再经过y 轴反射后到达点D (-2,7).(1)求直线BC 的方程;(2)求光线从A 点到达D 点所经过的路程.解:作出草图,如图所示, (1)∵A (-2,1),∴点A 关于x 轴的对称点A ′(-2,-1), ∵D (-2,7),∴点D 关于y 轴的对称点D ′(2,7).由对称性可得,A ′,D ′所在直线方程即为BC 所在直线方程,由两点式得直线BC 的方程为y -7-1-7=x -2-2-2,整理得2x -y +3=0.(2)由图可得,光线从A 点到达D 点所经过的路程即为 |A ′D ′|=-2-2+-1-2=4 5.[方法技巧]解决中心对称问题的关键在于运用中点坐标公式,而解决轴对称问题,一般是转化为求对称点的问题,在求对称点时,关键是抓住两点:一是两对称点的连线与对称轴垂直;二是两对称点的中心在对称轴上,即抓住“垂直平分”,由“垂直”列出一个方程,由“平分”列出一个方程,联立求解.1.(2013·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1)解析:选C 法一:如图所示,作出抛物线的准线l 1及点A ,B 到准线的垂线段AA 1,BB 1,并设直线l 交准线于点M .设|BF |=m ,由抛物线的定义可知|BB 1|=m ,|AA 1|=|AF |=3m .由BB 1∥AA 1可知|BB 1||AA 1|=|MB ||MA |,即m 3m =|MB ||MB |+4m ,所以|MB |=2m ,则|MA |=6m .故∠AMA 1=30°,得∠AFx =∠MAA 1=60°,结合选项知选C 项.法二:由|AF |=3|BF |可知AF ―→=3FB ―→,易知F (1,0),设B (x 0,y 0),则⎩⎪⎨⎪⎧1-x A =x 0-,-y A =3y 0,从而可解得A 的坐标为(4-3x 0,-3y 0).因为点A ,B 都在抛物线上,所以⎩⎪⎨⎪⎧y 20=4x 0,-3y 02=-3x 0,解得x 0=13,y 0=±23,所以k l =y 0-0x 0-1=± 3. 2.(2013·全国卷Ⅱ)已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1) B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13 D.⎣⎢⎡⎭⎪⎫13,12解析:选B 由⎩⎪⎨⎪⎧x +y =1,y =ax +b消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝ ⎛⎭⎪⎫-b a ,0,结合图形知12×a +b a +1×⎝ ⎛⎭⎪⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b .∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故选B.一、选择题1.如果AB >0,BC <0,则直线Ax +By +C =0不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选C 由AB >0,BC <0,可得直线Ax +By +C =0的斜率为-AB<0,直线在y 轴上的截距-C B>0, 故直线不经过第三象限.2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π)B.⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,πC.⎣⎢⎡⎦⎥⎤0,π4D.⎣⎢⎡⎦⎥⎤0,π4∪⎝ ⎛⎭⎪⎫π2,π解析:选B 直线x sin α+y +2=0的斜率为k =-sin α,∵-1≤sin α≤1, ∴-1≤k ≤1,∴直线倾斜角的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.3.已知点M 是直线x +3y =2上的一个动点,且点P (3,-1),则|PM |的最小值为( ) A.12 B .1 C .2D .3解析:选B |PM |的最小值即点P (3,-1)到直线x +3y =2的距离,又|3-3-2|1+3=1,故|PM |的最小值为1.4.(2018·郑州质量预测)“a =1”是“直线ax +y +1=0与直线(a +2)x -3y -2=0垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:选B ∵ax +y +1=0与(a +2)x -3y -2=0垂直, ∴a (a +2)-3=0,解得a =1或a =-3. ∴“a =1”是两直线垂直的充分不必要条件.5.已知点A (1,-2),B (m,2),若线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值为( )A .-2B .-7C .3D .1解析:选C ∵A (1,-2)和B (m,2)的中点⎝ ⎛⎭⎪⎫1+m 2,0在直线x +2y -2=0上,∴1+m2+2×0-2=0, ∴m =3.6.已知直线l 过点P (1,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,则当△AOB 的面积取得最小值时,直线l 的方程为( )A .2x +y -4=0B .x -2y +3=0C .x +y -3=0D .x -y +1=0解析:选A 由题可知,直线l 的斜率k 存在,且k <0,则直线l 的方程为y -2=k (x -1).∴A ⎝⎛⎭⎪⎫1-2k,0,B (0,2-k ), ∴S △OAB =12⎝ ⎛⎭⎪⎫1-2k (2-k )=12⎝ ⎛⎭⎪⎫4-k +4-k ≥12⎣⎢⎡⎦⎥⎤4+2-k⎝ ⎛⎭⎪⎫4-k =4,当且仅当k =-2时取等号.∴直线l 的方程为y -2=-2(x -1),即2x +y -4=0.7.(2018·豫南九校质量考评)若直线x +ay -2=0与以A (3,1),B (1,2)为端点的线段没有公共点,则实数a 的取值范围是( )A .(-2,1)B .(-∞,-2)∪(1,+∞) C.⎝⎛⎭⎪⎫-1,12 D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞解析:选D 直线x +ay -2=0过定点C (2,0),直线CB 的斜率k CB =-2,直线CA 的斜率k CA =1,所以由题意可得a ≠0且-2<-1a <1,解得a <-1或a >12.8.已知P (x 0,y 0)是直线l :Ax +By +C =0外一点,则方程Ax +By +C +(Ax 0+By 0+C )=0表示( )A .过点P 且与l 垂直的直线B .过点P 且与l 平行的直线C .不过点P 且与l 垂直的直线D .不过点P 且与l 平行的直线解析:选D 因为P (x 0,y 0)是直线l :Ax +By +C =0外一点,所以Ax 0+By 0+C =k ,k ≠0. 若方程Ax +By +C +(Ax 0+By 0+C )=0, 则Ax +By +C +k =0.因为直线Ax +By +C +k =0和直线l 斜率相等, 但在y 轴上的截距不相等,故直线Ax +By +C +k =0和直线l 平行. 因为Ax 0+By 0+C =k ,且k ≠0, 所以Ax 0+By 0+C +k ≠0,所以直线Ax +By +C +k =0不过点P ,故选D. 二、填空题9.已知点A (-3,-4),B (6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值为________.解析:由题意及点到直线的距离公式得|-3a -4+1|a 2+1=|6a +3+1|a 2+1,解得a =-13或-79. 答案:-13或-7910.与直线2x +3y +5=0平行,且在两坐标轴上截距的和为6的直线方程是________________.解析:由平行关系设所求直线方程为2x +3y +c =0, 令x =0,可得y =-c 3;令y =0,可得x =-c2,∴-c 2-c 3=6,解得c =-365,∴所求直线方程为2x +3y -365=0,化为一般式可得10x +15y -36=0. 答案:10x +15y -36=011.已知直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,则直线l 1与l 2的距离为________.解析:直线l 1的方程为3x +4y -7=0,直线l 2的方程为6x +8y +1=0,即3x +4y +12=0,∴直线l 1与l 2的距离为⎪⎪⎪⎪⎪⎪12+732+42=32.答案:3212.在平面直角坐标系中,已知点P (-2,2),对于任意不全为零的实数a ,b ,直线l :a (x -1)+b (y +2)=0,若点P 到直线l 的距离为d ,则d 的取值范围是____________.解析:由题意,直线过定点Q (1,-2),PQ ⊥l 时,d 取得最大值+2+-2-2=5,直线l 过点P 时,d 取得最小值0, 所以d 的取值范围[0,5]. 答案:[0,5] 三、解答题13.已知方程(m 2-2m -3)x +(2m 2+m -1)y +5-2m =0(m ∈R). (1)求方程表示一条直线的条件;(2)当m 为何值时,方程表示的直线与x 轴垂直;(3)若方程表示的直线在两坐标轴上的截距相等,求实数m 的值.解:(1)由⎩⎪⎨⎪⎧m 2-2m -3=0,2m 2+m -1=0,解得m =-1,∵方程(m 2-2m -3)x +(2m 2+m -1)y +5-2m =0(m ∈R)表示直线, ∴m 2-2m -3,2m 2+m -1不同时为0,∴m ≠-1. 故方程表示一条直线的条件为m ≠-1. (2)∵方程表示的直线与x 轴垂直,∴⎩⎪⎨⎪⎧m 2-2m -3≠0,2m 2+m -1=0,解得m =12.(3)当5-2m =0,即m =52时,直线过原点,在两坐标轴上的截距均为0;当m ≠52时,由2m -5m 2-2m -3=2m -52m 2+m -1,解得m =-2.故实数m 的值为52或-2.14.已知直线m :2x -y -3=0与直线n :x +y -3=0的交点为P .(1)若直线l 过点P ,且点A (1,3)和点B (3,2)到直线l 的距离相等,求直线l 的方程; (2)若直线l 1过点P 且与x 轴、y 轴的正半轴分别交于A ,B 两点,△ABO 的面积为4,求直线l 1的方程.解:(1)由⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0,得⎩⎪⎨⎪⎧x =2,y =1,即交点P (2,1).由直线l 与A ,B 的距离相等可知,l ∥AB 或l 过AB 的中点. ①由l ∥AB ,得k l =k AB =2-33-1=-12,所以直线l 的方程为y -1=-12(x -2),即x +2y -4=0,②由l 过AB 的中点得l 的方程为x =2, 故x +2y -4=0或x =2为所求.(2)法一:由题可知,直线l 1的斜率k 存在,且k <0. 则直线l 1的方程为y =k (x -2)+1=kx -2k +1. 令x =0,得y =1-2k >0, 令y =0,得x =2k -1k>0,∴S △ABO =12×(1-2k )×2k -1k =4,解得k =-12,故直线l 1的方程为y =-12x +2,即x +2y -4=0.法二:由题可知,直线l 1的横、纵截距a ,b 存在,且a >0,b >0,则l 1:x a +yb=1. 又l 1过点(2,1),△ABO 的面积为4, ∴⎩⎪⎨⎪⎧2a +1b =1,12ab =4,解得⎩⎪⎨⎪⎧a =4,b =2,故直线l 1的方程为x 4+y2=1,即x +2y -4=0.1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△PAB 的面积最大值是( )A .2 5B .5 C.52D. 5解析:选C 由题意可知,动直线x +my =0过定点A (0,0). 动直线mx -y -m +3=0⇒m (x -1)+3-y =0, 因此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12×1×3=32.当m ≠0时,两条直线的斜率分别为-1m,m ,则-1m·m =-1,因此两条直线相互垂直.当|PA |=|PB |时,△PAB 的面积取得最大值. 由2|PA |=|AB |=12+32=10, 解得|PA |= 5. ∴S △PAB =12|PA |2=52.综上可得,△PAB 的面积最大值是52.2.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x 2,解得⎩⎪⎨⎪⎧x =4,y =-2,即(4,-2).∴直线BC 所在方程为y -1=-2-14-3(x -3),即3x +y -10=0.联立⎩⎪⎨⎪⎧3x +y -10=0,y =2x ,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4).3.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________.解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.∵k AC =6-23-1=2,∴直线AC 的方程为y -2=2(x -1),即2x -y =0.① 又∵k BD =5--1-7=-1,∴直线BD 的方程为y -5=-(x -1),即x +y -6=0.②由①②得⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,∴⎩⎪⎨⎪⎧x =2,y =4,即M (2,4).答案:(2,4) 高考研究课(二)圆的方程命题3角度——求方程、算最值、定轨迹 [全国卷5年命题分析]圆的方程圆的方程的求法,应根据条件选用合适的圆的方程,一般来说,求圆的方程有两种方法:几何法,通过研究圆的性质进而求出圆的基本量. 代数法,即设出圆的方程,用待定系数法求解.[典例] [解] 法一:用“几何法”解题由题意知k AB =2,AB 的中点为(4,0),设圆心为C (a ,b ), ∵圆过A (5,2),B (3,-2)两点, ∴圆心一定在线段AB 的垂直平分线上.则⎩⎪⎨⎪⎧b a -4=-12,2a -b -3=0,解得⎩⎪⎨⎪⎧a =2,b =1,∴C (2,1),∴r =|CA |=-2+-2=10.∴所求圆的方程为(x -2)2+(y -1)2=10. 法二:用“代数法”解题设圆的方程为(x -a )2+(y -b )2=r 2, 则⎩⎪⎨⎪⎧2a -b -3=0,-a 2+-b 2=r 2,-a 2+-2-b 2=r 2,解得⎩⎨⎧a=2,b =1,r =10,故圆的方程为(x -2)2+(y -1)2=10. 法三:用“代数法”解题设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 则⎩⎪⎨⎪⎧25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E2-3=0,解得⎩⎪⎨⎪⎧D =-4,E =-2,F =-5,∴所求圆的方程为x 2+y 2-4x -2y -5=0. [方法技巧]求圆的方程的方法(1)方程选择原则若条件中圆心坐标明确时,常设为圆的标准方程,不明确时,常设为一般方程. (2)求圆的方程的方法和步骤确定圆的方程的主要方法是代数法,大致步骤如下:①根据题意,选择标准方程或一般方程;②根据条件列出关于a ,b ,r 或D ,E ,F 的方程组; ③解出a ,b ,r 或D ,E ,F 代入标准方程或一般方程. [即时演练]根据下列条件,求圆的方程.(1)已知圆心为C 的圆经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上; (2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2).解:(1)法一:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则圆心坐标为⎝ ⎛⎭⎪⎫-D 2,-E 2. 由题意可得⎩⎪⎨⎪⎧-2-6E +F =0,12+-2+D -5E +F =0,D -E -2=0,解得⎩⎪⎨⎪⎧D =6,E =4,F =-12,所以圆的方程为x 2+y 2+6x +4y -12=0. 法二:因为A (0,-6),B (1,-5), 所以线段AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫12,-112,直线AB 的斜率k AB =-5--1-0=1,因此线段AB 的垂直平分线的方程是y +112=-⎝⎛⎭⎪⎫x -12,即x +y +5=0.则圆心C 的坐标是方程组⎩⎪⎨⎪⎧x +y +5=0,x -y +1=0的解,解得⎩⎪⎨⎪⎧x =-3,y =-2,所以圆心C 的坐标是(-3,-2).圆的半径长r =|AC |=+2+-6+2=5,所以圆的方程为(x +3)2+(y +2)2=25.(2)法一:如图,设圆心坐标为(x 0,-4x 0),依题意得-2--4x 03-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =-2+-4+2=22,故圆的方程为(x -1)2+(y +4)2=8.法二:设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎩⎪⎨⎪⎧y 0=-4x 0,-x 02+-2-y2=r 2,|x 0+y 0-1|2=r ,解得⎩⎨⎧x0=1,y 0=-4,r =2 2.因此所求圆的方程为(x -1)2+(y +4)2=8.1.已知实数x ,y 满足方程x 2+y 2-4x +1=0,求y x的最大值和最小值. 解:原方程可化为(x -2)2+y 2=3, 表示以(2,0)为圆心,3为半径的圆.yx的几何意义是圆上一点与原点连线的斜率, 所以设y x=k ,即y =kx .当直线y =kx 与圆相切时(如图),斜率k 取最大值或最小值, 此时|2k -0|k 2+1=3,解得k =± 3.所以y x的最大值为3,最小值为- 3.角度二:截距型最值问题2.在[角度一]条件下求y -x 的最大值和最小值.解:y -x 可看作是直线y =x +b 在y 轴上的截距,如图所示,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2± 6.所以y -x 的最大值为-2+6,最小值为-2- 6.角度三:距离型最值问题3.设P (x ,y )是圆(x -2)2+y 2=1上的任意一点,则(x -5)2+(y +4)2的最大值为( ) A .6 B .25 C .26D .36解析:选D (x -5)2+(y +4)2表示点P (x ,y )到点(5,-4)的距离的平方,又点(5,-4)到圆心(2,0)的距离d =-2+-2=5,则点P (x ,y )到点(5,-4)的距离最大值为6,从而(x -5)2+(y +4)2的最大值为36. 角度四:距离和(差)的最值问题4.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( )A .52-4 B.17-1 C .6-2 2D.17解析:选A 圆心C 1(2,3),C 2(3,4),作C 1关于x 轴的对称点C 1′(2,-3),连接C 1′C 2与x 轴交于点P ,此时|PM |+|PN |取得最小值,为|C 1′C 2|-1-3=52-4.角度五:三角形的面积的最值问题5.已知两点A (-1,0),B (0,2),点P 是圆(x -1)2+y 2=1上任意一点,则△PAB 面积的最大值与最小值分别是( )A .2,12(4-5)B.12(4+5),12(4-5) C.5,4- 5D.12(5+2),12(5-2) 解析:选B 直线AB 的方程为x -1+y2=1,即2x -y +2=0,圆心(1,0)到直线AB 的距离d =2+25=455,则点P 到直线AB 的距离最大值为455+1,最小值为455-1,又|AB |=5,则(S △PAB )max =12×5×⎝ ⎛⎭⎪⎫455+1=12(4+5),(S △PAB )min =12×5×⎝ ⎛⎭⎪⎫455-1=12(4-5),故选B. [方法技巧]求解与圆有关的最值问题的2大规律(1)借助几何性质求最值处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,借助数形结合思想求解.(2)建立函数关系式求最值根据题目条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用基本不等式法、参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.与圆有关的轨迹问题[典例] 已知圆22,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ). 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,。
高三数学第一轮复习直线和圆的方程详细教案知识结构第一节直线的倾斜角和斜率学习目标1.了解直线的方程、方程的直线的定义;2.掌握直线的倾斜角、直线的斜率的定义及其取值范围;3.掌握过两点的直线的斜率公式,会运用公式求出有关直线的斜率和倾斜角.重点难点本节重点:正确地理解斜率的概念,熟练地掌握已知直线上两点求直线斜率的公式,这是学好直线这部分内容的关键.本节难点:正确理解直线倾斜角定义中的几个条件,如直线与x轴相交与不相交,按逆时针方向旋转、最小正角等.求倾斜角时,要特别注意其取值范围是高考中,由于本节内容是解析几何成果中最基础的部分,一般是隐含在综合题中进行考查.典型例题【分析】【解】【点评】【分析】【解】【点评】【解法一】代数方法:套两点斜率公式.【解法二】【点评】“解析几何的特点之一是数形结合,数无形时少直观,形无数时难入微.”在学习数学时,应该记住华罗庚的这段话.教材上还涉及证明三点共线的练习题,怎样证明三点共线呢?请看下面例4.【分析】证明三点共线,可以用代数方法、几何方法,可以用直接证法、间接证法,你能想出至少一个方法吗?下面是同学们讨论出的几种证法供参考.【证法一】【证法二】【证法三】第二节直线的方程学习目标掌握直线方程的点斜式、两点式、参数式、一般式,并能根据条件熟练地求出直线的方程式.重点难点本节重点:直线方程的点斜式和一般式,点斜式是推导直线方程其他形式的基础,一般式是直线方程统一的表述形式.本节难点:灵活运用直线方程的各种形式解题.在高考中几乎每年都要考查这部分内容,题型以选择题、填空题居多.典型例题【分析】关键是确定直线方程中的待定系数.【解】【点评】学习直线的方程常犯的错误是忽略方程各种形式的应用条件,因此造成丢解.本例中各个小题均为两解,你做对了吗?第(4)小题的解法一要用到下节学到的公式,解法二用到课外知识,供有兴趣的同学欣赏.【解法一】【解法二】【解法三】【点评】灵活运用直线方程的各种形式,常常要和平面几何的有关知识相结合.本题还有别的解法,不再一一列举.【解法一】【解法二】【解法三】【证明】【点评】【分析】【解法一】【解法二】【解法三】【点评】第三节两条直线的位置关系学习目标1.掌握两条直线平行与垂直的条件,以及两条直线的夹角和点到直线的距离公式.2.能够根据直线的方程判断两条直线的位置关系.重点难点本节重点:两条直线平行与垂直的条件,点到直线的距离公式.本节难点:了解解析几何的基本思想,并用解析几何方法研究角.在高考中,两条直线的位置关系几乎年年必考,常常单独出现在选择题和填空题中,或作为综合题的一部分出现在解答题中.典型例题学习了本节以后,应该对两条直线平行与垂直的充要条件,怎样求直线的斜率、距离与角有哪些公式等问题进行归纳小结,以便提纲挈领地掌握有关知识,并灵活运用这些知识解决问题.1.两条直线平行、垂直的充要条件是什么?答:2.怎样求直线的斜率?答:3.距离和角有哪些公式?能灵活运用吗?答:【解】用下面的例题检验是否理解和掌握了以上这些内容.1.两条直线的位置关系【解】2.两条直线所成的角【解】【解法一】【解法二】3.有关交点的问题(A)1 (B)2 (C)3 (D)4【解法一】【解】【解法二】4.点到直线的距离【错误的解】【正确的解】【解法一】【解法二】【解法三】【解法四】第四节简单的线性规划学习目标1.了解用二元一次不等式表示平面区域.2.了解线性规划的意义,并会简单的应用.重点难点典型例题学习了简单的线性规划以后,常见的题型是用二元一次不等式表示平面区域,以及用线性规划的知识来解决一些简单的问题.下面的例题可检验是否掌握了这些内容.1.二元一次不等式表示的区域【分析】【解】【点评】例2 试讨论点线距离公式中,去掉绝对值符号的规律?【分析】【解】【点评】2.线性规划初步例3钢管长11.1米,需要截下1.5米和2.5米两种不同长度的小钢管,问如何截取可使残料最少?【分析】关键是利用约束条件,列出线性目标函数.【解】【评析】例4 用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有().(A)5种(B)6种(C)7种(D)8种【解法一】【解法二】【解法三】列表数点.故选(C).【点评】本题为1999年全国高考试题第14题,难度系数0.47.如果有利用二元一次不等式表示平面区域的知识,此题将不再困难.【分析】甲的解法错误,错在(1)、(2)(3)、(4),反之不行,用必要不充分条件代替原条件,使解的范围扩大,[6,10]是[5,11]的子集.乙的解法正确.本题数形结合,利用本节的知识还可以有以下的解法.【解】【点评】第六节曲线和方程学习目标1.掌握曲线的方程、方程的曲线等概念.2.了解解析几何的基本思想和解析法,学习运动变化、对立统一等辩证唯物主义思想.重点难点本节重点:了解曲线的点集与方程的解集之间的一一对应关系,从而掌握曲线的方程和方程的曲线这两个重要概念,并掌握由曲线的已知条件求方程的方法和步骤,熟悉解析法.本节难点:理解曲线和方程的概念,以及求曲线的方程的方法.在高考中,曲线和方程常是重点考查的内容,出现在解答题中.典型例题学习了本节后主要要掌握求曲线的方程的步骤,以及用解析法解题的步骤,以下归纳供参考.求曲线的方程的步骤是:一建--选取适当的点和直线,建立坐标系;二设--设曲线上点,以及利用已知条件设出其他有关点的坐标等;三列式--根据动点符合的条件,列出含、的方程0;四化简--化方程0为最简形式;五证明--证曲线上点的坐标都是方程的解,以这个方程的解为坐标的点都在曲线上(这一步不要求写出).解析法的主要步骤是:一建--建立适当的坐标系.建系原则是使已知条件好用,使表达式简明,运算简便.因此,尽量利用已知点和已知直线;二设--选取一组基本量,用字母表示出题目涉及的点的坐标和曲线的方程;三算--通过运算,得到所要的结果.用以下例题检验是否理解和掌握了这些内容.1.怎样求轨迹方程【解法一】【解法二】【点评】【错误解法】【正确解法】【点评】【解法一】【解法二】【点评】2.解析法与综合法【证法一】【证法二】【证法三】【证法四】【点评】不同证法,以解析法较简便,复数将在高三年级学习,这里的证法实质和解析法一样,不过是换个说法.【分析】【解】【点评】解析法与综合法的特点,从中你体会到了吗?解析法的优点是程序固定(一建二设三算),操作简便,但一般运算量较大;综合法的优点是思路灵活,但如何添加辅助线不易掌握.【解法一】【解法二】【解法三】【解法四】【点评】“是否可以用代数中的计算过程代替几何中的证明?”“让代数和几何中一切最好的东西互相取长补短”等是笛卡儿创立解析几何的初衷.解析几何既然是用代数方法来研究几何对象的特征和性质,当然对运算能力要求较高.运算能力是一种计算化了的推理能力,是逻辑思维能力与计算知识、方法、技能和技巧的结合.在解析几何中,如果不注意运算方法上的特点和技能,就可能陷入有思路但算不出或很难算出正确结果的窘境,如本题的思路一、二.解析几何中常用的运算方法和技能是:①注意利用平面几何知识,如思路四;②不忘利用定义,尤其是圆锥曲线的定义解题;③充分利用一元二次方程根与系数的关系,并不忘对判别式的要求,如思路三;④合理利用曲线系;⑤数形结合,依形判数,就数论形;⑥灵活运用字母的可轮换性,减少同类量的重复运算.以上方法和技能,要在实际解题中逐步掌握.第七节圆的方程学习目标1.掌握圆的标准方程和一般方程,理解圆的参数方程.2.初步了解直线和圆中反映出的运动变化、对立统一等辩证思想和观点.重点难点本节重点:圆的标准方程、一般方程、参数方程及其相互转化.本节难点:直线和圆的综合运用.在高考中,圆的方程在选择题、填空题、解答题等各类题型中出现.本节要掌握三种类型的问题,之一是求圆的方程,之二是直线和圆的综合题,之三是应用直线和圆的知识解决一些问题.1.圆的方程有哪些形式?典型例题用下面的例题检验是否理解和掌握了圆的方程的三种形式:【解法一】【解法二】【解法三】【点评】怎样求圆的方程?这三条思路具有典型意义.【解法一】【解法二】【点评】【解法一】【解法二】【点评】【分析】关键确定圆心坐标和半径.【解】【点评】本题为1997年全国高考理科第25题,难度系数0.20.难在什么地方呢?第一文字叙述较长,有同学读不懂题;第二涉及众多知识,有同学不会运用;第三丢解,忽略了不同的位置关系.会不会用知识和怎样用知识,是一个人有没有能力和能力高低的重要标志,努力吧!2.直线和圆综合题【分析】【解】【点评】【解法一】【解法二】【分析】【点评】【解】【点评】【解法一】【解法二】【点评】分类是自然科学的基本方法,数学中的分类讨论的思想方法,就是依据数学对象的共同点和差异点,将其区分为不同种类,分类讨论并归纳结论,这一思想方法,在近代数学和现代数学中占有重要地位,是应该学习和掌握的重要思想方法.3.怎样利用直线和圆的知识解题?【分析】数形结合,将代数式或方程赋予几何意义.【解】【点评】从“数”中认识“形”,从“形”中认识“数”,数形结合相互转化,是数学思维的基本方法之一.“数学是一个有机的统一体,它的生命力的一个必要条件是所有的各个部分不可分离地结合.”(希尔伯特)数形结合的思维能力不仅是中学生的数学能力、数学素养的主要标志之一,而且也是学习高等数学和现代数学的基本能力.本题是利用直线和圆的知识求最值的典型题目.【解法一】【解法二】【解法三】【点评】。
直线和圆的位置关系复习课教案教学目标:1.通过复习,巩固和掌握直线和圆的位置关系的判断方法及切线的判断和性质,并灵活运用所学知识解决实践问题.2.通过解答涉及直线与圆的有关问题,让学生经历观察、猜想、证明的过程;了解、认识常规证明的分析方法和一些常规辅助线的添法;了解开放探究性、运动型问题的基本分析思路;通过复习培养学生综合运用知识的能力.教学重点:直线和圆的位置关系的判断方法及切线的判断和性质的运用.教学难点:运用直线和圆位置关系判断方法及切线的判断和性质的解题技巧.教法及学法指导:本节课主要采用导学案题组复习,在教学过程中先通过互查反馈题组,回忆复习本节课的内容,然后由“题组训练——构建知识框架——基础训练——错题警示—考题再现——拓展应用—检测达标”的方式完成本节课的教学,本着先易后难,循序渐进的原则,通过小题组练习、考题再现、拓展应用层层推进,学生通过自主学习,动脑、动手、动口,展开小组合作和互动式学习,让学生真正成为课堂的主人。
课前准备:老师:导学案、多媒体课件学生:导学案、练习本、课本(九年级下册)教学过程:一﹑导入复习 明确考试要求师:同学们,直线和圆的位置关系是初中数学的重要内容,在中考中经常和垂径定理、勾股定理、扇形阴影面积等内容相联系,我们今天就来复习直线和圆的位置关系(板书课题).首先请同学们了解一下中考对这部分内容的要求:1.了解直线与圆的位置关系及切线的概念.2.掌握切线的性质与判定,并能综合运用解决有关证明计算.3.了解三角形的内心.预计2013年会在选择题中考查与圆有关的位置关系的试题,带有一定的开放性,在解答题中仍以证明切线及求线段的长为重点.设计意图:直接导入,了解中考要求及题型,为复习直线与圆的位置关系作好准备。
师:拿出导学案,完成题组一,并说明考查的主要知识点。
题组一:自主完成 互查反馈2.已知Rt △ABC 的斜边AB =6cm ,直角边AC =3cm ,以点C 为圆心,半径分别为2cm 和4cm 画两个圆,这两个圆与AB 位置关系是 ;当半径为 cm 时,AB 与⊙C 相切。
直线与圆的方程1.直线的方程【复习要求】【知识点梳理】1.直线的方向向量和法向量(1)方向向量:与直线l平行的非零向量叫做直线l的方向向量,通常用d表示;(2)法向量:与直线l平行的非零向量叫做直线l的方向向量,通常用n表示。
2.直线的倾斜角和斜率(1)倾斜角:设直线l与x轴相较于点M,将x轴绕点M逆时针方向旋转至与直线l重合时所成的最小正角α叫做直线l的倾斜角.注:错误!当直线l与x轴平行或重合时,规定直线l的倾斜角为0;错误!直线l的倾斜角的范围为[)0,π。
(2)斜率:把倾斜角不为90°的直线l的倾斜角α的正切值叫做直线l的斜率,用k表示,即tan=kα注:错误!当2πα=时,斜率k 不存在;○,2当0k ≥时,arctan k α=;当0k <时,arctan k απ=+。
错误!当直线l 经过点()111,P x y 、()222,P x y ()21x x ≠时,1212y y k x x -=-. 3. 直线方程的各种形式(,d u v =(),n a b =垂直)2y ()00,x y【基本例题】例1 求直线210x y ++=的倾斜角.解:斜率2k =-,所以倾斜角arctan2απ=-.例2 已知直线:1l y kx =+与两点()1,5A -、()4,2B -,若直线l 与线段AB 相交,求k 的取值范围. 解:直线l 恒过定点()0,1C ,4AC k =-,34BC k =-,数形结合知(]3,4,4k ⎡⎫∈-∞--+∞⎪⎢⎣⎭。
例3 已知()4,6A 、()3,1B --、()4,5C -三点, (1) 求经过点A 且与BC 平行的直线l 1的方程; (2) 求过点A 、B 的直线方程l 2; (3) 求BC 边上的高所在直线的方程l 3。
解:(1)直线l 1的一个方向向量()7,4BC -=,所以直线l 1的点方向式方程为4674x y --=-,化为一般式方程为47580x y +-=.(2)直线l 2的一个方向向量()7,7AB =--,所以直线l 2的点方向式方程为4677x y --=--,化为一般式方程为20x y -+=.(3)直线l 3的一个法向量()7,4BC =-,所以直线l 3的点法向式方程为()()74460x y ---=,化为一般式方程为7440x y --=。
专题13 直线与圆【考情解读】(1)以客观题形式考查两条直线平行与垂直的关系判断,常常是求参数值或取值范围,有时也与命题、充要条件结合,属常考点之一.(2)与三角函数、数列等其他知识结合,考查直线的斜率、倾斜角、直线与圆的位置关系等,以客观题形式考查.(3)本部分内容主要以客观题形式考查,若在大题中考查,较少单独命制试题,常常与圆锥曲线相结合,把直线与圆的位置关系的判断或应用作为题目条件的一部分或一个小题出现,只要掌握最基本的位置关系,一般都不难获解.【重点知识梳理】1.直线方程(1)直线的倾斜角与斜率的关系倾斜角α的取值范围:0°≤α<180°.倾斜角为α(α≠90°)的直线的斜率k=tanα,倾斜角为90°的直线斜率不存在.当0°<α<90°时,k>0且k随倾斜角α的增大而增大.当90°<α<180°时,k<0且k随倾斜角α的增大而增大.(2)直线方程(3)两直线的位置关系(4)距离公式①两点P 1(x 1,y 1),P (x 2,y 2)间的距离 |P 1P 2|=x 1-x 22+y 1-y 22.②点P (x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2.2.圆的方程 (1)圆的方程①标准方程:(x -a )2+(y -b )2=r 2,圆心坐标为(a ,b ),半径为r .②一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心坐标为⎝⎛⎭⎫-D2,-E 2,半径r =D 2+E 2-4F2. (2)点与圆的位置关系①几何法:利用点到圆心的距离d 与半径r 的关系判断:d >r ⇔点在圆外,d =r ⇔点在圆上;d <r ⇔点在圆内.②代数法:将点的坐标代入圆的标准(或一般)方程的左边,将所得值与r 2(或0)作比较,大于r 2(或0)时,点在圆外;等于r 2(或0)时,点在圆上;小于r 2(或0)时,点在圆内.(3)直线与圆的位置关系直线l :Ax +By +C =0(A 2+B 2≠0)与圆:(x -a )2+(y -b )2=r 2(r >0)的位置关系如下表.代数法:⎩⎪⎨⎪⎧Ax +By +C =0x -a 2+y -b 2=r 2消元得一元二次方程,根据判别式Δ的符号 (4)圆与圆的位置关系【误区警示】1.应用点斜式或斜截式求直线方程时,注意斜率不存在情形的讨论,应用截距式求直线方程时,注意过原点的情形.2.判断两直线平行与垂直时,不要忘记斜率不存在的情形. 【高频考点突破】考点一 直线及其方程例1. 【2017江苏,13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-【解析】设(,)P x y ,由20PA PB ⋅≤,易得250x y -+≤,由2225050x y x y -+=⎧⎨+=⎩,可得5:5x A y =-⎧⎨=-⎩或1:7x B y =⎧⎨=⎩,由250x y -+≤得P 点在圆左边弧AB 上,结合限制条件x -≤≤,可得点P 横坐标的取值范围为[-.【变式探究】【2016高考新课标3文数】已知直线l :30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =||CD =__________________.【答案】4【变式探究】已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( )A .(0,1)B.⎝ ⎛⎭⎪⎫1-22,12 C.⎝ ⎛⎦⎥⎤1-22,13D.⎣⎡⎭⎫13,12【答案】B【解析】(1)当直线y =ax +b 与AB 、BC 相交时(如图①),由⎩⎪⎨⎪⎧y =ax +b ,x +y =1得y E =a +ba +1,又易知x D =-b a ,∴|BD |=1+b a ,由S △DBE =12×a +b a ×a +b a +1=12得b =11+1a +1∈⎝⎛⎭⎫0,12.图① 图②(2)当直线y =ax +b 与AC 、BC 相交时(如图②),由S △FCG =12(x G -x F )·|CM |=12得b =1-221-a 2∈⎝ ⎛⎭⎪⎫1-22,1 (∵0<a <1),∵对于任意的a >0恒成立 ,∴b ∈⎝⎛⎭⎫0,12∩⎝ ⎛⎭⎪⎫1-22,1,即b ∈⎝ ⎛⎭⎪⎫1-22,12.故选B.考点二 两直线的位置关系例2、【2016高考上海文数】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离___________.【答案】5【解析】利用两平行线间距离公式得d ===. 已知点O (0,0),A (0,b ),B (a ,a 3).若△OAB 为直角三角形,则必有( )A .b =a 3B .b =a 3+1aC .(b -a 3)(b -a 3-1a )=0 D .|b -a 3|+|b -a 3-1a |=0【答案】C【变式探究】设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.【答案】5【解析】易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,不难验证PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.考点三 圆的方程例3.【2017课标3,文20】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】(1)不会;(2)详见解析 【解析】(1)不能出现AC ⊥BC 的情况,理由如下:设1,0A x (), 2,0B x (),则12x x ,满足220x mx +-=,所以122x x =-. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --=-,所以不能出现AC ⊥BC 的情况.【变式探究】【2016高考新课标2文数】圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34- (C(D )2 【答案】A【解析】圆的方程可化为22(x 1)(y 4)4-+-=,所以圆心坐标为(1,4),由点到直线的距离公式得:1d ==,解得43a =-,故选A .【变式探究】(2015·新课标全国Ⅰ,14)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.【解析】由题意知圆过(4,0),(0,2),(0,-2)三点,(4,0),(0,-2)两点的垂直平分线方程为y +1=-2(x -2),令y =0,解得x =32,圆心为⎝⎛⎭⎫32,0,半径为52.故圆的标准方程为⎝⎛⎭⎫x -322+y 2=254.【答案】⎝⎛⎭⎫x -322+y 2=254考点四 直线与圆、圆与圆的位置关系 例4.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围。
【答案】(1)22(6)(1)1x y -+-=(2):25215l y x y x =+=-或(3)22t -≤+【解析】d ==因为BC OA ==而222,2BC MC d =+() 所以()252555m +=+,解得m=5或m=-15.【变式探究】(2015·新课标全国Ⅱ,7)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |=( )A .2 6B .8C .4 6D .10【答案】C【解析】由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以|MN |=|y 1-y 2|=46,选C.【真题感悟】1.【2017江苏,13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-2.【2017课标3,文20】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】(1)不会;(2)详见解析 【解析】(1)不能出现AC ⊥BC 的情况,理由如下:设1,0A x (), 2,0B x (),则12x x ,满足220x mx +-=,所以122x x =-. 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --=-,所以不能出现AC ⊥BC 的情况.(2)BC 的中点坐标为(2122x ,),可得BC 的中垂线方程为22x 122y x x -=-(). 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-.联立222{ 122m x x y x x =--=-,,又22220x mx +-=,可得2{ 12m x y =-=-,,所以过A 、B 、C 三点的圆的圆心坐标为(122m--,),半径2r =故圆在y 轴上截得的弦长为3=,即过A 、B 、C 三点的圆在y 轴上截得的弦长为定值.1.【2016高考新课标2文数】圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34-(C (D )2 【答案】A【解析】圆的方程可化为22(x 1)(y 4)4-+-=,所以圆心坐标为(1,4),由点到直线的距离公式得:1d ==,解得43a =-,故选A .2.【2016高考上海文数】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离___________.【答案】5【解析】利用两平行线间距离公式得d ===.3.【2016高考新课标3文数】已知直线l :30mx y m ++=与圆2212x y +=交于,A B两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =||CD =__________________.【答案】44.【2016高考新课标1卷】(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[. 5.【2016高考江苏卷】(本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程; (3)设点(,0)T t 满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围。