2.用基底表示其他向量 主要有以下三种方法: 方法一:通过观察图形直接寻求 向量之间的关系. 方法二:采用方程思想. 方法三:建立坐标系,根据向量 的坐标运算求解.
第一步,观察并将待求向量表示成两个 (或多个)相关向量a,b(或a,b,c,…)的和 或差;
第二步,把向量a,b(或a,b,c,…)分别进 行分解,直到用基底表示出向量a,b(或 a,b,c,…) ; 第三步,将a,b(或a,b,c,…)代入第一步 中的式子,从而得到结果.
第一步,把待求向量看作未知量; 第二步,列出方程组; 第三步,用解方程组的方法求解待求向 量.
考点29 平面向量的基本定理及坐标运算
考点29 考法3 平面向量基本定理的应用
1.基底的选择 (1)一组基底有两个向量; (2)这两个向量不共线.
2.用基底表示其他向量 主要有以下三种方法: 方法一:通过观察图形直接寻求 向量之间的关系. 方法二:采用方程思想. 方法三:建立坐标系,根据向量 的坐标运算求解.
3.平面向量的坐标运算
考点29 平面向量的基本定理及坐标运算
平面向量的基本定理及坐标运算
考点29
✓ 考法3 平面向量基本定理的应用
✓ 考法4 平面向量的共线问题 ✓ 考法5 平面向量的坐标表示与运算
考点29 平面向量的基本定理及坐标运算
考点29 考法3 平面向量基本定理的应用
1.基底的选择 (1)一组基底有两个向量; (2)这两个向量不共线.
应注意的是,基底的选择并不唯一,只 要两个向量不共线,都可作为一组基底. 2.平面向量的坐标表示
在平面直角坐标系内,分别取与x轴、y轴 正方向相同的两个单位向量i, j作为基底,对 平面内任一向量a,有且仅有一对实数x,y,使得 a=xi+yj,则实数对(x,y)叫做向量a的直角坐 标,记作a=(x,y),其中x,y分别叫做a在x轴,y 轴上的坐标,相等向量的坐标相同,坐标相同 的向量是相等向量.