非线性方程组的求解
- 格式:ppt
- 大小:995.00 KB
- 文档页数:32
1. 非线性方程组求解1.分别用牛顿法,及基于牛顿算法下的Steffensen 加速法。
(1) 求ln(sin )x x +的根。
初值0x 分别取0.1,1,1.5,2,4进行计算。
(2) 求sin =0x 的根。
初值0x 分别取1,1.4,1.6,1.8,3进行计算。
分析其中遇到的现象与问题。
(1)牛顿法牛顿法实质上是一种线性化方法,其基本思想是将非线性方程()0f x =逐步归结为某种线性方程来求解。
将已知方程()0f x =在近似值k x 附近展开,有()()()()'0k k k f x f x f x f x x ≈+-=,构造迭代公式,则1k x +的计算公式为:()()1',0,1,,k k k k f x x x k f x +=-= (1-1)根据Taylor 级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解()0f x =的过程,第一次迭代()()'1000/x x f x f x =-,其中()()'00/f x f x 的几何意义很明显,就是0x 到1x 的线段长度(这可以从直角三角形的知识得到)。
第二次迭代()()'2111/x x f x f x =-,其中()()'11/f x f x 的几何意义很明显,就是1x 到2x 的线段长度。
同理可以进行第三次迭代第四次迭代,可以明显的看出x 的取值在不断逼近真实解*x 。
如图1-1所示:图1-1○1求ln(sin )=0x x +的根时,迭代公式为()1ln(sin )sin 1cos k k x x x x x x x+++=++,0示。
计算结果见附录1表F.1-1所示。
初值取1.5,2,4进行计算时结果不收敛。
表 1-1 牛顿法计算结果○2求sin =0x 的根时,迭代公式为1cos k k x x x+=+,初值0x 分别取1、1.4、1.6、1.8、3计算时结果收敛,误差小于510-时,近似解如表1-2所示。
非线性方程组的解法
非线性方程组的解法包括:
(1)近似法。
近似法是根据所给非线性方程组,使用一定的数值方法,建立非线性方程组结果的拟合曲线,以此求解非线性方程组的常用方法,目前有贝塔、拉格朗日近似法和微分近似法等。
(2)多元分割法。
多元分割法根据非线性方程组的参数和变量空间,
将整个运算范围分割成多余小区间,利用各区间中只含有一个未知变
量的简单方程组,将非线性方程组转换成多个一元方程组,再用一次法、弦截法和二分法等算法求解,最终得出整个非线性方程组的解。
(3)迭代映射法。
迭代映射法是通过给定一个初始值,然后利用迭代,反复运算,最终达到收敛点的一种方法,主要包括牛顿法、收敛法、
弦截法、松弛法和隐函数法等。
(4)最小二乘法。
最小二乘法是将非线性方程组表示为残差函数,然
后求解残差函数最小值,获得未知变量的最优解,常用于数值分析中。
(5)特征法。
特征法是采用将非线性方程组表示为线性方程组特征值
和它们关于某一特征量的关系式,利用梯度下降法,最小化残差函数,求解非线性方程组的方法。
以上是非线性方程组的解法的简单综述,它们在一定程度上增加了解决非线性方程组的效率,但并非所有情况都能使用以上求解方法。
正确使用相应的求解方法就可以有效的求解非线性方程组,以便更好的解决实际问题。