(第2章 非线性方程与方程组的数值解法)
- 格式:ppt
- 大小:2.09 MB
- 文档页数:18
1. 使用二分法求3250x x --=在区间[2,3]上的根,要求误差不超过30.510-⨯.解:首先确定二分次数,根据误差估计式得,取k=10即可。
使用二分法计算10次,结果见下表2. 利用0)ln(=+x x 构造收敛的迭代格式,并求在0.5附近的根.解 首先考虑迭代格式1ln ,0,1,2,...k k x x k +=-=,相应的迭代函数()ln ,x x ϕ=-容易计算'1()x xϕ=-,在0.5附近有 ''()2,()21x x ϕϕ≈-≈>.迭代格式1ln ,0,1,2k k x x k +=-=不收敛,利用上题结论,函数()ln x x ϕ=-的反函数1()x x e ϕ--=,建立迭代格式1,0,1,2,...,k x k x e k -+==取初值00.5x =,计算结果见下表:最后*180.5671408x x≈=3.求方程310x x--=在]2,1[上的唯一正根,精度410-解考虑函数3()1, f x x x=--显然(1)10,(2)50f f=-<=>,故在[1,2]上方程有根存在;另外'2()312,[1,2],f x x x=-≥∈因此在[1,2]上方程有唯一的根。
建立迭代格式1nx+=迭代函数()xϕ=在[1,2]上满足23'131()(1)3x xϕ-=+<根据收敛性定理,迭代格式1nx+=[1,2]x∈均收敛。
例如,取初值x=1.5,并计算结果如下:方程31x x--=0在[]1,2上的精确解是* 1.324718x=4.利用简单加速方法,求方程xx e-=在x=0.5附近得一个根,精度510-。
解考虑'(),()0.6x xx e x e Lϕϕ--==-=≈-.利用简单加速方法()1111111n nnn nL Lx xx x xϕ+++--⎧=⎪⎨=-⎪⎩得()1111 1.60.6nxnnn nx ex x x-+++⎧=⎪⎨=+⎪⎩取初值00.5x =,计算结果列表如下:5. 利用Newton 法解方程x=cosx ,取初值0x =1.解 考虑()cos f x x x =-,建立Newton 迭代格式:()()01'1,,0,1,2.....n n n n x f x x x n f x +=⎧⎪⎨=-=⎪⎩方程x=cosx 的精确解是*x =0.739 085 133……。
《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -2191-38-2473-223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
第一章 非线性方程和方程组的数值解法 1)二分法的基本原理,误差:~12k b ax α+--<2)迭代法收敛阶:1lim0i pi ic εε+→∞=≠,若1p =则要求01c <<3)单点迭代收敛定理:定理一:若当[],x a b ∈时,[](),x a b ϕ∈且'()1x l ϕ≤<,[],x a b ∀∈,则迭代格式收敛于唯一的根;定理二:设()x ϕ满足:①[],x a b ∈时,[](),x a b ϕ∈, ②[]121212,,, ()(),01x x a b x x l x x l ϕϕ∀∈-≤-<<有 则对任意初值[]0,x a b ∈迭代收敛,且:110111i i iii x x x ll x x x lαα+-≤---≤--定理三:设()x ϕ在α的邻域内具有连续的一阶导数,且'()1ϕα<,则迭代格式具有局部收敛性;定理四:假设()x ϕ在根α的邻域内充分可导,则迭代格式1()i i x x ϕ+=是P 阶收敛的 ()()()0,1,,1,()0j P j P ϕαϕα==-≠L (Taylor 展开证明)4)Newton 迭代法:1'()()i i i i f x x x f x +=-,平方收敛 5)Newton 迭代法收敛定理:设()f x 在有根区间[],a b 上有二阶导数,且满足: ①:()()0f a f b <; ②:[]'()0,,f x x a b ≠∈;③:[]'',,f x a b ∈不变号④:初值[]0,x a b ∈使得''()()0f x f x <;则Newton 迭代法收敛于根α。
6)多点迭代法:1111111()()()()()()()()()i i i i i i i i i i i i i i i f x f x f x x x x x f x f x f x f x f x f x x x -+-----=-=+----收敛阶:P =7)Newton 迭代法求重根(收敛仍为线性收敛),对Newton 法进行修改 ①:已知根的重数r ,1'()()i i i i f x x x rf x +=-(平方收敛) ②:未知根的重数:1''()(),()()()i i i i u x f x x x u x u x f x +=-=,α为()f x 的重根,则α为()u x 的单根。
实用文档《数值计算方法》复习资料第一章数值计算方法与误差分析第二章非线性方程的数值解法第三章线性方程组的数值解法第四章插值与曲线拟合第五章数值积分与数值微分第六章常微分方程的数值解法自测题课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1.知道产生误差的主要来源。
2.了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3.知道四则运算中的误差传播公式。
实用文档三例题例 1 设x*= =3.1415926⋯近似值 x=3.14 = 0.314× 101,即 m=1,它的绝对误差是- 0.001 592 6 ,⋯有即 n=3,故 x=3.14 有 3 位有效数字 .x=3.14准确到小数点后第 2 位 .又近似值 x=3.1416,它的绝对误差是0.0000074 ⋯,有即 m=1,n= 5, x=3.1416 有 5 位有效数字 .而近似值x=3.1415,它的绝对误差是0.0000926 ⋯,有即 m=1,n= 4, x=3.1415 有 4 位有效数字 .这就是说某数有s 位数,若末位数字是四舍五入得到的,那么该数有s 位有效数字;例 2指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4-0.002 009 0009 000.00解因为 x1=2.000 4= 0.200 04× 101, 它的绝对误差限 0.000 05=0.5 × 10 1―5,即m=1,n=5, 故 x=2.000 4 有 5 位有效数字 . a1=2,相对误差限x2=- 0.002 00,绝对误差限0.000 005,因为 m=-2,n=3 ,x2=- 0.002 00 有 3 位有效数字 . a1=2 ,相对误差限r ==0.002 5实用文档x3=9 000 ,绝对误差限为0.5× 100,因为 m=4, n=4, x3=9 000 有 4 位有效数字, a=9 ,相对误差限r== 0.000 056x4=9 000.00 ,绝对误差限0.005,因为 m=4, n=6, x4=9 000.00 有 6 位有效数字,相对误差限为r== 0.000 000 56由 x3与 x4可以看到小数点之后的0,不是可有可无的,它是有实际意义的.例 3 ln2=0.69314718⋯,精确到10-3的近似值是多少?解精确到 10-3= 0.001,意旨两个近似值x1,x2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是=0.0005,故至少要保留小数点后三位才可以。
第二章非线性方程数值解法本章将讨论非线性方程0)(=x f (2.1)的数值解法,我们最为熟悉的非线性方程是一元二次方程02=++c bx ax也是最简单的非线性方程,其解为:aac b b x 2422,1-±-=但是对于(2.1)式中一般形式的非线性函数)(x f ,很难甚至不可能找到解析形式的解,通常只能用数值的方法求其近似数值解。
2.1 基本概念定义2.1如果*x 满足0)(*=x f ,则称*x 为方程(2.1)的解或根,也称*x 为函数)(x f 的零点或根。
用数值方法求解非线性方程的解,通常需要我们对其解有一个初步的估计,或知道其解的一个限定区间,因此确定包含解的区间将是我们首先需要解决的问题。
定义2.2若连续函数)(x f 在],[b a 内至少有一个根,则称],[b a 为有根区间,若在],[b a 内恰有一个根,则称],[b a 为隔根区间。
定理2.1 如果函数)(x f 在],[b a 上连续且0)()(<b f a f ,则)(x f 在),(b a 内至少有一个根,如果函数)(x f 另外满足在],[b a 上单调连续,则)(x f 在),(b a 内恰有一个根。
寻找隔根区间的通常方法有:图形法, 试探法。
例2.1 求033)(3=+-=x x x f 的有根区间。
解:作出函数)(x f y =的曲线图形图2.1 例2.1曲线示意图观察图中的曲线与X 轴的交点,可判断在区间)2,3(--之间方程有一个根。
例2.2 求033)(23=--+=x x x x f 的有根区间。
解:计算出)(x f 在一些点的值。
从表中可以看出1-=x 是一个根,区间)2,1(是一个有根区间。
如果在[-2,-1]之间把间隔再缩小到0.25我们可以得到下列表格在这个表格里我们又发现一个有根区间)5.1,75.1(--。
从此例中我们可以体会到试探法有可能漏掉某些有根区间,具有一定的局限性。