蛋白表达、分离和纯化
- 格式:doc
- 大小:75.50 KB
- 文档页数:6
原核蛋白的表达、分离和纯化实验原理:携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG 诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MCAC)。
蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。
实验材料:大肠杆菌BL21试剂、试剂盒:LB液体培养基、氨苄青霉素、Washing Buffer、Elution Buffer、IPTG、蒸馏水、胰蛋白胨、酵母粉、氯化钠仪器、耗材:摇床、离心机、层析柱、离心管、移液枪、枪头盒、烧杯、玻璃棒实验步骤:一、试剂准备1. LB液体培养基:Trytone 10 g,yeast extract 5 g,NaCl 10 g,用蒸馏水配至1000 mL。
2. 氨苄青霉素:100 mg/mL。
3. 上样缓冲液:100 mM NaH2PO4,10 mM Tris,8M Urea,10 mM2-ME,pH8.0。
4. Washing Buffer:100 mM NaH2PO4,10 mM Tris,8 M Urea,pH6.3。
5. Elution Buffer:100 mM NaH2PO4,10 mMTris,8M Urea,500 mM Imidazole,pH8.0。
6. IPTG:100mM IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于100ml ddH2O中,0.22μm滤膜抽滤,-20℃保存。
二、获得目的基因1. 通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。
2. 通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。
实验目的1.了解外源基因在大肠杆菌细胞中的诱导表达情况2.学会用SDS-PAGE电泳法分离不同分子量的蛋白质3.学习通过亲和层析法纯化目的蛋白4.学会考马斯亮蓝染色法和蛋白质杂交法检测蛋白质实验原理1.外源基因在大肠杆菌细胞中的诱导表达:将外源基因克隆在特殊的表达载体中,让其在E. coli中表达,该表达载体上含有lac操作子的启动子。
在不加诱导剂的条件下培养宿主菌,lacI基因表达的阻遏蛋白LacI与lac操作子结合,使外源基因不能表达;向培养基中加入诱导物IPTG后,LacI阻遏蛋白变构失活,不能与lac操作子结合,外源基因就表达。
2.蛋白质SDS-PAGE电泳分离:SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量。
其分离原理是根据蛋白质分子量的差异,因为SDS-PAGE的样品处理液及缓冲液的加入破坏了蛋白质的二级、三级、四级等结构,并使SDS与蛋白质充分结合形成SDS-蛋白质复合物,稳定地存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基。
3.考马斯亮蓝法检测蛋白质:考马斯亮蓝是一种蛋白质染料,主要有R-250和G-250两种类型。
考马斯亮蓝可以和蛋白肽链中碱性氨基酸残基或芳香族氨基酸残基(Arg,Trp,Tyr,His,Phe)结合。
考马斯亮蓝R250多用于聚丙烯酰胺凝胶电泳后蛋白质条带的染色;因为考马斯亮蓝R250中的R代表Red,偏红,红蓝色,与蛋白质结合虽然比较缓慢,但是染料可以穿透凝胶,染胶效果好,染色后为蓝色,且与胶的结合可以被洗脱下去,所以可以用来对电泳条带染色。
4.基因融合就是将两个或多个开放读码框按一定顺序连接在一起,融合阅读框架的表达产物是一个杂和蛋白。
实验一氨基酸的别离鉴定——纸层析法实验目的1.学习氨基酸纸层析的根本原理。
2.掌握氨基酸纸层析的操作技术。
实验原理纸层析法是用滤纸作为惰性支持物的分配层析法。
层析溶剂由有机溶剂和水组成,滤纸和水的亲和力强,与有机溶剂的亲和和弱,因此在展层时,水是固定相,有机溶剂是流动相。
将样品点在滤纸上〔原点〕,进展展层,样品中的各种AA在两相溶剂中不断进展分配,由于它们的分配系数不同,不同AA随流动相移动速率就不同,于是将这些AA别离开来,形成距原点距离不等的层析点。
溶质在滤纸上的移动速率用比移〔rate of flow ,Rf〕来表示Rf= 原点到层析点中心的距离〔*〕/原点到溶剂前沿的距离(Y)只要条件〔如温度、展层剂的组成〕不变,*种物质的Rf值是常数。
可根据R f 作为定性依据。
Rf值的大小与物质的构造、性质、溶剂系统、层析滤纸的质量和层析温度等因素有关。
样品中如有多种AA,其中有些AA的Rf值一样或相近,此时只用一种溶剂展层,就不能将它们分开,为此,当用一种溶剂展层后,将滤纸转90度再用另一种溶剂展层,从而到达别离的目的,这种方法叫双向层析。
仪器、试剂1、扩展剂:是水饱和的正丁醇和醋酸以体积比4:1进展混合得混合液。
将20 ml正丁醇和5 ml冰醋酸放入分液漏斗中,与15 ml水混合,充分振荡,静置后分层,放出下层水层,漏斗内即为扩展剂。
取漏斗内的扩展剂约5 ml置于小烧杯中做平衡溶剂,其余的倒入培养皿中备用。
2、氨基酸溶液⑴.单一氨基酸:5%赖氨酸、脯氨酸、苯丙氨酸、⑵.混合氨基酸:各5 ml混合。
3、显色剂:0.1%水合茚三酮正丁醇溶液。
4、层析缸、滤纸〔14*17〕、喷雾器、电吹风实验步骤1.放置平衡溶剂:用量筒量取约5 ml平衡溶剂,放入培养皿中,然后置于密闭的层析缸中。
2.准备滤纸:取层析滤纸〔长17㎝、宽14㎝〕一*。
在纸的一端距边缘2㎝处用铅笔划一条直线,在此直线上每间隔1.5㎝作一记号——点样线。
蛋白质表达与纯化步骤一、蛋白质表达的那些事儿蛋白质表达就像是一场神奇的魔法秀,要让小小的基因变成实实在在的蛋白质呢。
咱先得从基因开始说起。
基因就像是一个藏着宝藏密码的小纸条,我们要把这个密码找出来,然后送到一个特殊的“工厂”里,这个“工厂”就是细胞啦。
在细胞这个“大工厂”里,有各种各样的“小工人”,也就是各种酶和分子机器。
我们要把基因送到细胞里,就像是把宝藏密码送到工厂里一样。
不过这可不是随随便便就能送进去的,得用一些特殊的方法,就像你要进一个很严格的地方得有通行证一样。
比如说,我们可以用一些载体,这些载体就像是小飞船,带着基因这个“乘客”进入细胞。
而且呀,不同的细胞就像不同的工厂,有的擅长生产这种蛋白质,有的擅长生产那种蛋白质。
所以我们得挑选合适的细胞。
要是选错了细胞,就可能像把做蛋糕的配方送到做鞋子的工厂一样,完全不对路嘛。
1. 基因的准备我们得先把想要表达的基因从它原来的地方给找出来。
这有时候就像在一个超级大的图书馆里找一本特定的书一样难。
我们可能得用一些特殊的工具,像是限制酶,它就像一把小剪刀,可以把基因从长长的DNA链上准确地剪下来。
然后我们还得把基因整理得干干净净的,不能有其他乱七八糟的东西混在里面,就像我们要把书擦干净,不能有灰尘一样。
2. 载体的选择载体的种类可多啦。
有质粒载体,它就像一个小小的环状“快递盒”,可以把基因装在里面。
还有病毒载体,这就更酷了,就像用一个小病毒来当快递员,不过这个病毒是经过我们改造的,不会让人生病的哦。
选择载体的时候,我们要考虑很多东西,比如这个载体能不能在我们选定的细胞里生存呀,它能装多少基因呀,就像我们选快递盒的时候要考虑大小和能不能送到目的地一样。
二、蛋白质纯化的趣味之旅当蛋白质在细胞里被表达出来后,就像一堆宝贝混在沙子里一样,我们得把蛋白质这个宝贝给挑出来,这就是蛋白质纯化啦。
这可不容易呢,因为细胞里有各种各样的东西,有其他的蛋白质,有核酸,还有各种小分子。
实验目的1.了解外源基因在大肠杆菌细胞中的诱导表达情况2.学会用SDS-PAGE电泳法分离不同分子量的蛋白质3.学习通过亲和层析法纯化目的蛋白4.学会考马斯亮蓝染色法和蛋白质杂交法检测蛋白质实验原理1.外源基因在大肠杆菌细胞中的诱导表达:将外源基因克隆在特殊的表达载体中,让其在E. coli中表达,该表达载体上含有lac操作子的启动子。
在不加诱导剂的条件下培养宿主菌,lacI基因表达的阻遏蛋白LacI与lac操作子结合,使外源基因不能表达;向培养基中加入诱导物IPTG后,LacI阻遏蛋白变构失活,不能与lac操作子结合,外源基因就表达。
2.蛋白质SDS-PAGE电泳分离:SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量。
其分离原理是根据蛋白质分子量的差异,因为SDS-PAGE的样品处理液及缓冲液的加入破坏了蛋白质的二级、三级、四级等结构,并使SDS与蛋白质充分结合形成SDS-蛋白质复合物,稳定地存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基。
3.考马斯亮蓝法检测蛋白质:考马斯亮蓝是一种蛋白质染料,主要有R-250和G-250两种类型。
考马斯亮蓝可以和蛋白肽链中碱性氨基酸残基或芳香族氨基酸残基(Arg,Trp,Tyr,His,Phe)结合。
考马斯亮蓝R250多用于聚丙烯酰胺凝胶电泳后蛋白质条带的染色;因为考马斯亮蓝R250中的R代表Red,偏红,红蓝色,与蛋白质结合虽然比较缓慢,但是染料可以穿透凝胶,染胶效果好,染色后为蓝色,且与胶的结合可以被洗脱下去,所以可以用来对电泳条带染色。
4.基因融合就是将两个或多个开放读码框按一定顺序连接在一起,融合阅读框架的表达产物是一个杂和蛋白。
蛋白质的表达、分离、纯化和鉴定
来源:易生物实验浏览次数:2704网友评论0 条第一部分蛋白质的表达、分离、纯化克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。
通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作
结构与功能的研究。
第二部分蛋白质的鉴定电泳可用于分离复杂的蛋白质混合物,研究蛋白质的亚基组成等。
在聚丙烯酰胺凝胶电泳中,凝胶的孔径,蛋白质的电荷,大小,性质等因素共同决定了蛋白质的电泳迁移率。
关键词:蛋白质蛋白质表达克隆基因聚丙烯酰胺凝胶电泳氯霉素酰基转移酶十二烷基硫酸钠SDS聚丙烯酰
胺凝胶
第一部分蛋白质的表达、分离、纯化
目的要求
(1)了解克隆基因表达的方法和意义。
(2)了解重组蛋白亲和层析分离纯化的方法。
实验原理
克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。
通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作结构与功能的研究。
大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。
本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MC AC)。
蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。
试剂和器材
一、试剂
[1] LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL.
[2] 氨苄青霉素:100mg/mL
[3] 上样
缓冲液:100 mM NaH2PO4, 10 mM Tris, 8M Urea, 10 mM2-ME, pH8.0
[4] Washing Buffer:100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3
[5] Elution Buffer:100 mM NaH2PO4, 10 mMTris, 8M Urea, 500 mM Imidazole, pH 8.0
[6] IPTG
易生物仪器库:.ebioe./yp/product-list-42.html
易生物试剂库:.ebioe./yp/product-list-43.html
二、器材
摇床,离心机,层析柱(1′10 cm)
操作方法
一、氯霉素酰基转移酶重组蛋白的诱导
1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21菌株于5mL LB液体培养基中(含100ug/mL 氨苄青霉素),37℃震荡培养过夜。
2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 - 0.8。
取10ul 样品用于SDS-PAGE 分析。
3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h.
4. 12,000rpm 离心10 min, 弃上清,菌体沉淀保存于-20℃或-70℃冰箱中。
二、氯霉素酰基转移酶重组蛋白的分离,纯化
1. NTA层析柱的准备:在层析柱中加入1mL NTA介质,并分别用8mL 去离子水,8mL 上样缓冲液洗涤。
2. 重组蛋白的变性裂解:在冰浴中冻融菌体沉淀,加入5mL上样缓冲液, 用吸管抽吸重悬,超声波破裂菌体,用振荡器等轻柔的混匀样品60min, 4℃12000rpm 离心30 min, 将上清吸至一个干净的容器中,并弃沉淀。
取10ul 上清样品用于SDS-PAGE 分析。
3. 上清样品以10-15mL/h 流速上Ni2+-NTA柱,收集流出液,取10ul样品用于SDS-PA GE 分析。
4. 洗脱杂蛋白:用Washing Buffer以10-15mL/h流速洗柱,直至OD280 = 0.01.分步收集洗脱液,约3-4h,取10ul洗脱开始时的样品用于SDS-PAGE 分析。
5. 洗脱目标蛋白:用Elution Buffer洗柱,收集每1 mL 级分,分别取10ul样品用于SD S-PAGE 分析。
第二部分蛋白质的鉴定
目的要求
(1)了解SDS-聚丙烯酰胺凝胶电泳实验原理。
(2)掌握凝胶电泳实验操作规程。
实验原理
电泳可用于分离复杂的蛋白质混合物,研究蛋白质的亚基组成等。
在聚丙烯酰胺凝胶电泳中,凝胶的孔径,蛋白质的电荷,大小,性质等因素共同决定了蛋白质的电泳迁移率。
蛋白质在聚丙烯酰胺凝胶中电泳时,它的迁移率取决于它所带净电荷以及分子的大小和形状等因素。
但如果加入某种试剂使电荷因素消除,则电泳迁移率就取决于分子的大小,就可以用电泳技术测定蛋白质的分子量。
十二烷基硫酸钠(SDS)就具有这种作用。
在蛋白质溶液中加入足够量SDS和巯基乙醇,SDS可使蛋白质分子中的二硫键还原,蛋白质—SDS 复合物带上相同密度的负电荷,并可引起蛋白质构象改变,使蛋白质在凝胶中的迁移率,不再受蛋白质原的电荷和形状的影响,而取决于分子量的大小,因此聚丙烯酰胺凝胶电泳可以用于测定蛋白质的分子量。
SDS聚丙烯酰胺凝胶电泳大多在不连续系统中进行,其电泳漕缓冲液的pH值与离子强度不同于配胶缓冲液。
该凝胶包括积层胶和分离胶两部分。
当两电极间接通电流后,凝胶中形成移动界面,并带动加入凝胶的样品中的SDS多肽复合物向前推进。
样品通过高度多孔性的积层胶后,复合物在分离胶表面聚集成一条很薄的区带(或称积层)。
由于不连续缓冲系统具有把样品中的复合物全部浓缩于极小体积的能力,从而大大提高了SDS聚丙烯酰胺凝胶的分辨率,使蛋白依各自的大小得到分离。
试剂和器材
一、试剂
[1] 30%Acr-Bis贮存液:30g Acr,0.8g Bis, 用无离子水溶解后定容至100mL,不溶物过滤去除后置棕色瓶贮于冰箱。
[2] 1.5mol/L Tris(pH8.8)
[3] 10% (w/v) SDS
[4] 10% 过硫酸铵:4℃保存。
[5] TEMED
[6] 3×SDS凝胶加样缓冲液:50mmol/L Tris-HCl(pH6.8), 300mmol/L DTT, 6% SDS, 0.
6%溴酚蓝,30% 甘油
[7] 5×Tris-甘氨酸电泳缓冲液:15.1g Tris碱,94g甘氨酸(电泳级),50mL 10% SDS,
配至1000mL.
[8] 考马斯亮蓝染液:0.25g考马斯亮蓝R250溶于90mL甲醇:水(1:1)和10mL冰乙
酸的混合液中。
[9] 脱色液:水:乙酸:乙醇= 6.7:0.8:2.5
二、器材
DYCZ-24D型垂直板电泳槽, 移液管(1,5,10mL),烧杯(25,50,100mL),细长头的吸管,微量注射器(10μL或者50μL)。
操作方法
一、SDS聚丙烯酰胺凝胶的配置:
1. 安装玻璃板,检查漏液情况。
2. 制备分离胶:按表1分离胶所示,依次在试管中混合各成分,一旦加入TEMED后,凝
胶马上开始聚合,故应立即快速悬动混合物,迅速在两玻板的间隙中灌注丙烯酰胺溶液,注意流出积层胶所需空间。
并在其上覆盖一层水或异丁醇溶液。
将凝胶垂直放置于室温下。
•分离胶聚合后(约30min),倒出覆盖层液体,用枪将残留液体吸净。
•制备浓缩胶:按表1积层胶所示,依次在试管中混合各成分,一旦加入TEMED后,应立即快速悬动混合物,迅速在分离胶上灌注浓缩胶溶液,并立即在浓缩胶溶液中插入干净的电泳梳,小心避免混入气泡。
将凝胶垂直放置于室温下。
分离胶(5mL)
水30%丙烯酰胺 1.5M Tris(PH8.8)10%SDS 10%过硫酸铵TEMED
1.1mL
2.5mL 1.3mL 50μl50μl2μl
浓缩胶(4mL)
水30%丙烯酰胺1M Tris(PH8.8)10%SDS 10%过硫酸铵TEMED
2.7mL 0.67mL 0.5mL 40μl40μl4μl
二、上样样品的处理:
将样品置于1×SDS 凝胶加样缓冲液中,在100℃加热5min使蛋白质变性。
加热后3000r pm离心1min.
三、电泳:
1. 浓缩胶聚合完全后(约30min),将凝胶固定于电泳装置上,并加入Tris-甘氨酸电泳缓冲液,然后小心移出电泳梳。
2. 按预定顺序加样,小心缓慢加入样品,每样品加12ul。
3. 将电泳与电源相接,凝胶上所加电压为8V/cm,当染料前沿进入分离胶后,把电压提高到15V/cm,继续电泳直至溴酚蓝到达分离胶底部(约4h),然后关闭电源。
4. 将玻璃板从电泳装置上卸下,并将凝胶取出,在第一点样孔侧的凝胶上切去一角以标注凝胶的方位。
四、考马斯亮蓝染色
1. 用染液浸泡凝胶,用保鲜膜封好,略微加热,放在水平摇床上染色15min, 重复加热染色1 次。
2. 移出并回收染液,将凝胶浸泡于脱色液中,用保鲜膜封好,略微加热,放在水平摇床上脱色30min,更换脱色液,直至检出蛋白质条带。
3. 拍照并分析蛋白质的诱导,表达,分离纯化情况。