1.3正方形的性质与判定1
- 格式:ppt
- 大小:596.50 KB
- 文档页数:32
3. 正方形的性质与判定(一)一.预习新知(课本20页),并归纳正方形的性质正方形的性质性质应用例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF 之间又怎样的关系?请说明理由。
②选用课本议一议进行阶段小结“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”二.随堂练习:1:如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?2:如图,在正方形ABCD中,点F为对角线AC上一点,连接BF,DF。
你能找出图中的全等三角形吗?选择其中一对进行证明。
三/巩固练习:1.在四边形ABCD中,若AD∥BC,AD=BC,AB=BC,∠B=90°,则四边形ABCD的形状是()A.平行四边形B.矩形C.菱形D.正方形2.如图,∠ACB=90°,CD平分∠ACB,DE⊥AC于点E,DF⊥BC于点F,那么四边形DECF 是__.3.(2014·泉州)正方形的对称轴的条数为()A.1B.2C.3D.44.正方形具有而菱形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.对角线平分一组对角5.(2014·福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°,第5题图),第6题图) 6.如图,边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连接BD并延长交EG于点T,交FG于点P,则GT=()A. 2 B.2 2 C.2 D.1,第8题图),第9题图)7.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是____.8.(易错题)如图,已知正方形纸片ABCD,点M,N分别是AD,BC的中点,把BC边向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=____.9.(2014·济宁)如图,正方形AEFG的顶点E,G在正方形ABCD的边AB,AD上,连接BF,DF.(1)求证:BF=DF;(2)连接CF,请直接写出BE∶CF=__.。
1.3正方形的性质与判定学习目标1.理解正方形的概念和对称性,探索并证明正方形的性质和判定定理.2.通过探索和证明定理的活动,掌握一些基本的数学思想,如转化、类比、分类等思想.重点难点重点探索并证明正方形的性质定理和判定定理.难点学会并积累一些分析问题的思路和解题的方法.课堂导入我们已经知道形平行四边形是特殊的四边形,那特殊的平行四边形是什么图形呢?对了,是矩形和菱形.那你知道特殊的矩形与菱形是什么图形呢?就是这节课我们要学习的正方形·正方形是特殊的矩形和菱形,也是特殊的平行四边形和四边形,它还有没有其他的性质呢?它的判定定理又都是哪些呢?这节课。
我们将揭示一下答案.预习导学。
基础梳理1.正方形的四条边——,四个角——.2.正方形既是——,又是——,它既有——的性质,又有——的性质.3.有一个角是直角的——是正方形.4.有一组邻边相等的——是正方形.答案1.都相等都是直角2.菱形矩形菱形矩形3.菱形4.矩形预习思考1.正方形具有而矩形不一定具有的性质是 ( )A.四个角相等B.对角线互相垂直平分C.对角互补D.对角线相等2.正方形具有而菱形不一定具有的性质 ( )A四条边相等B对角线互相垂直平分C.对角线平分一组对角D.对角线相等3.下列命题正确的是 ( )A四个角都相等的四边形是正方形B四条边都相等的四边形是正方形C.对角线相等的平行四边形是正方形D.对角线互相垂直的矩形是正方形答案1.8 2.D 3.D探究点1正方形的性质知识讲解—正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有:(1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.典例剖析【例l】如图,正方形ABCD中,对角线的交点为0,E是OB上的一点,DG⊥AE于G,DG交OA于F.求证:OE=OF.解析要证明OE=OF,只需证明△AEO≌△DF0,由于正方形的对角线垂直平分且相等,可以得到∠AOE=∠DOF=90°,AO=D0,再由同角或等角的余角相等可以得到么∠EA0=∠FD0,根据ASA可以得到这两个三角形全等,故结论可得.【类题突破1】如图(1),在正方形ABCD的BC、CD边上取E 、F 两点,使么∠EAF=45°,AG ⊥EF 于G .求证:AG=AB(1) (2)答案把△AFD 绕A 点旋转90°至△AHB(或延长EB 至 H 使BH=DF).如图(2).∵∠EAF=45°.∴∠l+∠2=45°. ∵∠2=∠3,∴∠1+∠3=45°. 又由旋转所得AH=AF ,AE=AE . ∴△A EF ≌△AEH(SAS),∴AG=AB .探究点2正方形的判定你会设计吗?今有一片正方形土地,要在其上修筑两条垂直的道路,使道路把这片地分成形状相同且面积相等的四部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.知识讲解正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形;(4)既是矩形又是菱形的四边形是正方形.典例剖析【例2】已知:如图,四边形ABCD 是正方形,分别过点A ,C 两点作l l ∥l 2,作BM ⊥l 1。
1.3.正方形的性质与判定(第1课时)第一章特殊平行四边形3. 正方形的性质与判定(一)教学内容:1.3 正方形的性质与判定(一)教学目标:1、在对平行四边形、矩形、菱形的认识基础上探索正方形的性质,体验数学发现的过程,并得出正确的结论.2、进一步了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,并形成文本信息与图形信息相互转化的能力.3、在观察、操作、推理、归纳等探索过程中,发展合情推理能力,进一步培养自己的说理习惯与能力.同时培养学生勇于探索、团结协作交流的精神。
激发学生学习的积极性与主动性。
教学重点:探索正方形的性质定理.教学难点:掌握正方形的性质的应用方法.教学过程:一、课前准备活动内容:搜集身边的矩形(提前布置)。
以合作小组为单位,开展调查活动:各尽所能收集生活中应用的各种矩形图形。
准备好数学常用的度量工具:直尺、量角器、圆规。
二、情境引入展示学生的成果,包括图片以及实物等各种学生能得到的“图形”。
并让学生利用适当的度量工具,对搜集到的图形素材进行度量或者对素材进行适当的操作,并记录、整理数据。
老师可以给学生一个示范性的数据整理模式(如下表),但不要强求。
选取一些有代表性的小组,对其得到的的数据或是操作得到的结论进行交流。
①引出“有一组邻边相等的矩形叫做正方形”②通过数据的交流自然的回答了“议一议”中的两个问题:(1)正方形是菱形吗?(2)你认为正方形有哪些性质?通过引导学生回顾关于矩形、菱形的性质、“正方形既是矩形又是菱形”得出关于正方形的两个定理“正方形的四个角都是直角四条边都相等”“正方形的对角线互相垂直平分”议一议,让学生解决“正方形有几条对称轴”四、性质应用①引用课本例1:如图1-18,在正方形ABCD中,E为CD上一点,F为BC边延长线上一点,且CE=CF.BE与DF之间又怎样的关系?请说明理由。
②选用课本议一议进行阶段小结“平行四边形、菱形、矩形、正方形之间有什么关系?你能用一个图直观地表示它们之间的关系吗?与同伴交流”五、练习提高1.如图,在正方形ABCD中,对角线AC与BD相交于点O,图中有多少个等腰三角形?错误!未找到引用源。