当前位置:文档之家› 高增益大功率放大器

高增益大功率放大器

高增益大功率放大器
高增益大功率放大器

高增益大功率放大器

(一)功率放大器是很重要的一个部分,它的基本要求有:1.要求输出功率尽可能大;

为了获得大的输出功率,要求输出电压和输出电流均有较大的幅度,即三极管处于大信号状态(往往在接近截止区与饱和区之间摆动),因此晶体管在尽限应用。选择功放管时要保留一定的余量。不得超越极限参数进入安全区,以保证功放管安全可靠的工作。

2.非线性失真要小;

功率放大器是在大信号下工作的,所以不可避免要产生非线性失真,而且同一功放管输出功率越大,非线性失真越严重,就使得输出功率与非线性失真成为一对主要矛盾。

3.效率要高;

由于功率放大器的输出功率大,因此直流电源消耗的功率也大,就存在一个效率问题。所谓效率就是最大交流功率P0与电源供给的支流功率P e的比值,即:η= P0 / P e,比值越大,放大器的效率就越高。

4.要充分考虑功放管的散热;

在功率放大器中,电源供给的直流功率,一部分转换成负载有用的功率,而另一部分则成为功放管的损耗,使功放管发热,热的积累

将导致晶体管性能恶化,甚至烧坏,为使管子输出足够大的功率,还要保证管子安全可靠的工作,因此管子的散热及防止击穿等问题应特别给予考虑。

(二)微波功率晶体管的性能参数

(1)极限工作电压、结击穿电压和最高工作电压;

极限工作电压(V c)是指发生下列三种情况之一的最小电压值:P-N结发生击穿,或甚至完全损坏;晶体管的参数发生显著的变化,以至暂时丧失工作能力;管子的参数发生缓慢的,而不是不可恢复的变化。

结击穿电压V b(极电结或发射结击穿电压,这里统称为结击穿电压)是指极电结或发射结在加有反向电压下发生击穿现象时的电压值。通常将P-N结反向电流达到一定值时的反向电压值定为击穿电压值。

最高工作电压(V m)是指晶体管能够安全工作的最高电压。为了防止可能出现的偶然不利因素,以及保证晶体管工作的可靠性,稳定性和使用寿命,V m必须小于晶体管的极限工作电压。

(2)极限工作温度、最高结温度和最高储存温度;

极限工作温度,通常理解为保证晶体管能够正常工作的最高温度。当晶体管内部温度超过结温时,它就要暂时失去工作的能力,或者完全失效。最高结温度是指晶体管正常工作时的最高P-N结温度(主要指集电结温度,因为热量主要在该处产生)。最高储存温度,

它是保证晶体管未加电压时不遭受破坏的最高温度当温度超过最高存储温度时,其工作能力会发生不可恢复的突然丧失,或引起管子特性的不可恢复的恶化。

(3)热阻和最大集电极耗散功率;

热阻是功率晶体管是一个重要参数,它表征晶体管工作时所产生的热量向外界散发的能力。单位是“℃/W”,它的物理意义是当管子的耗散功率等于1W时晶体管的管内温升度数。它越小,晶体管散发所产生的热量本领越大,因而在相同环境温度下能够承受更大的耗散功率,热阻的定义是:R t =(T2 - T1 )/ P c。

其中T2是热源温度(即极电结温度);T1是环境温度;P c是晶体管工作时的极电结耗散功率。

晶体管的热阻由三个部分组成:R t = R ti + R tc + R to

其中R ti表示热流由热源流至晶体管底座的那部分热阻,称为内热阻;R tc表示热流由管子底座流至外散热器的热阻,称为接触热阻。R to表示由散热器向周围介质(一般为空气)散发热量的热阻,称为外热阻。

最大集电极耗散功率是指在一定环境温度T1 = T0下,使极电结温度到达允许的最高值。即T2 = T jm时的集电极耗散功率。

(4)饱和电阻和最大集电极电流;

晶体管的饱和电阻是指晶体管处在饱和状态下集电极-发射极之间的电阻(在一定的集电极电流下),可用公式:R ces = V ces / I c。其中V ces为晶体管在饱和状态时集电极-发射极之间的压降,称为晶体管的

饱和压降(在一定集电极电流下)。

无论是从制造工艺难易程度来看,还是从使用方便,安全可靠的角度来看,通常希望功率晶体管工作在低电压大电流的状态,而不是工作在高电压小电流状态。在很低的电压范围内,晶体管的饱和电阻是限制最大工作电流的主要因素。当工作电压稍大时,管子的电流放大系数(α或β)将随电流增加而下降,从而限制了工作电流的增加。当工作电压增大到一定值后,管子允许的P cm就成为限制工作电流的决定因素了。

I c

0 E V ce

如图所示的功率晶体管的安全工作区。当管子工作在ABCDE曲线所规定的区域内时,可以认为是安全的。其中AB是管子最大集电极工作电流I cm的限制曲线。CD为二次击穿限制曲线。DE为集电极-发射极最大耐压V CEmaxc曲线。

(5)特征频率;

特征频率定义为晶体管的电流增益β下降到1时的频率。它是表征晶体管在高频时放大能力的一个基本参量。由于特征频率与电流有关,故必须考虑它随电流分布关系。但特征频率高的管子在高频工作

时,并不一定能够输出大的功率,只有在大的工作电流范围内特征频率高的管子在高频下工作才能达到大的功率输出,因此对应于特征频率峰值下的I fm的大小是衡量晶体管输出能力的重要标志。(如图)

f T

fm c

(6)功率增益;

功率增益G p是微波功率晶体管重要参数之一。微波功率晶体管由于受到材料和工艺的限制,一般其G p都不是很高,而且还受带宽和增益乘积的限制。如果要求带宽宽G p就低,反之就大。同时G p也是随着工作频率升高而下降,在微波功率晶体管中,由于各种因素的影响。它不遵循每倍频程6dB的下降规律,而通常以每倍频程(3~5)dB规律下降。

(7)输出功率;

微波功率晶体管的输出功率P o不仅与工作功率和工作状态有关,而且极大的依赖于管子的热状态和电流分布的均匀性。器件内部局部过热点的出现是限制最大安全输出功率的重要参数。

对于兆赫以上的微波功率晶体管。连续输出功率P o不可能超过最大集电极耗散功率P cm值的40-50%,因为在连续使用时,管子的工作温度很高。如果一旦发生偶然的负载失配现象,反射回管子的功率将使结温继续升高,为了使结温始终保持在200℃以下,必须有良好的匹配。

(8)集电极效率;

集电极效率η定义为晶体管的输出功率与电源总消耗的比值:

η=P o /( V cc×I c× 100 %)

其中V cc是集电极供电电源值;I c是流经集电极的电流值。

提高功率晶体管的效率值具有重要意义,因为效率高,电源利用率也就高,而且降低了消耗在管子内部的功率,因而降低了管子的工作温度,这就使管子的热稳定性得到改善。

提高η值总是与扩大管子的输出特性曲线的工作区域相一致,为此应当采用饱和压降小的管子并提高工作电压,而且还需要改善在不同工作电流下放大系数的均匀性,使得非线性失真不因工作区域的扩大而增加,此外η值还与工作状态有重大关系,而且是工作频率的函数。

线性微波功率放大器的主要性能指标有:

(1)、工作频带

指放大器的输出功率的波动或增益不平坦度在一定范围内时,放大器所对应的工作频率宽度。

(2)、增益

定义为标称输出功率和输入功率之比。

(3)、输出功率

如图所示:

图中是功率放大器输出功率和输入功率的关系。由图可知,在小信号区,功率增益基本不变,这时功率增益(G pmax)与输入功率大小无关。但随信号加大,功率增益便下降。通常把增益由G pmax下降1dB 的点D(即G p(1dB))称为1dB增益压缩点,把该点对应的输出功率称为1dB增益压缩点输出功率P o(1dB)。当输入功率超过P i(1dB)以后,放大器很快进入饱和区工作。此时所对应的输出功率便是饱和输出功率。

(4)、电源效率

电源效率定义为

ηdc=( P o / P dc ) × 100 %

式中,P o是射频输出功率,P dc是放大器电源消耗的功率。

(5)、三阶交调系数

它反映功率放大器的非线性。在两个正弦信号(ω1与ω2)激励下,由于非线性,功率放大器将产生一些新的频率分量。三阶交调系数就是(2ω1-ω2)或(2ω2-ω1)频率信号的幅度与基波ω1或ω2的信号幅度之比值。有时为了方便,也可以直接做输入-输出功率关系曲线,来定性观察这项指标。

(三)微波晶体管S参量

将微波晶体管看成是一个线性有源两端口网络,其输入端输出端传输线的特性阻抗值为Z o,输入端信号源内阻为Z s,输出端负载阻抗为Z l。如图所示:

由于微波传输线上任何一点的电压波都看成由一个入射电压波和一个反射电压波叠加而成,并能方便的进行测量,故选择入射电压波和反射电压波为网络端口的变量。设输入端入射电压波为a1,反射电压波为b1,输入端入射电压波为a2,反射电压波为b2,若输入端输

入电压为V1,输入电压为I1,输出端的输出电压为V2,输出电流为I2,则a , b可用V,I表示如下:

a1 =(1/2)( V1 /

Z+I10Z) = ( V1+I1Z0 ) / 20Z

b1 =(1/2)( V1 /

Z- I10Z) = ( V1 - I1Z0 ) / 20Z

a2 =(1/2)( V2 /

Z+ I20Z) = ( V2+I2Z0 ) / 20Z

b2 =(1/2)( V2 /

Z- I20Z) = ( V2 - I2Z0 ) / 20Z

以入射波a1 , a2为自变量,反射波b1 , b2为因变量,则可得线性网络方程为:

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

式中系数S11,S12,S21,S22即称为微波晶体管S参量,由此可求得其表示式为:

S11 = b1/a1 |a2=0 = (V1-I1Z0) / (V1+I1Z0) = (Z1-Z0) / (Z1+Z0) 式中Z1 = V1 / I1为输入端阻抗。因a2 = 0,有Z l = Z0,故S11表示输出端阻抗匹配时,输入端的电压反射系数。

S12 = b1 / a2 |a1=0 = -2Z0I1 / ( V2 + I2Z0 )

因a1 = 0,有Z s = Z0,故S12表示输入端阻抗匹配时的反向电压传输系数。

S21 = b2 / a1 |a2=0 = -2Z0I2 / ( V2+I2Z0 )

S21表示输出端阻抗匹配时的正向电压传输系数。

S22 = b2 / a2 |a1=0 = ( V2-I2Z0 ) / ( V2+I0Z0 ) = ( Z2-Z0 ) / ( Z2+Z0 ) 式中Z2 = V2 / I2为输出端阻抗,S22表示输入端阻抗匹配时,输出

端的电压反射系数。

在一定条件下,测出微波晶体管的S参数,就可将微波晶体管等效为两端口的S参数的线性网络,从而大大方便了微波电路的设计和计算。

(四)晶体管的选择

研制微带功率晶体管放大器遇到的第一个问题,就是正确选择晶体管,选择晶体管时,应当根据电路设计要求,晶体管参数和现实条件进行。

为了得到大的功率输出,我们应当选用热阻小,电流容量大,效率高,输入和输出阻抗匹配能力好的晶体管。应当选用集电极耗散功率比所需要的输出功率大一倍以上的功率晶体管。并设法使耗散功率在晶体管内部的分布要均匀,这样即可以降低热阻,又可改善晶体管的热稳定性和效率。这一般是通过在晶体管管芯内制作适当阻值(零点几欧姆)的发射极镇流电阻来实现的。

提高晶体管的功率增益具有重要意义,因为采用功率增益大的晶体管可以减少放大器的级数,从而减少了电路元件数目,这样就简化了电路结构,降低了成本。采用功率增益大的晶体管还可以在高频输入信号功率较小时,达到预期的输出功率指标。因而有利于提高放大器的总效率。

考虑到功率晶体管的负载一般是由电感电容组成的谐振回路,因此在工作时,电感线圈两端所产生的感应电动势将与电源电压叠加在一起施加在管子的集电极-发射极之间,因此晶体管实际承受的电压

将超过电源电压值近一倍。此外还需考虑到由于开关电源等因素在电路中产生的瞬时高压现象。

值得注意,我们不可以在一个以上极限参数条件下使用晶体管,一般应留有20%的余量,特别是晶体管的结温应当控制在最大额定值的80%以内,因为晶体管的大多数参数都与热状态有关。例如温度升高后管子的输出功率,增益和效率都要下降。功率晶体管在工作过程中,由于极间电压和流经管子的电流值随时间不断变化,因此即使保持管子周围环境温度不变,管子在工作过程中也要经受剧烈的温度循环作用。如果使用时不留余量,则外部电流等因素将使管子烧毁。经验表明,管子的可靠性是随温度升高而按指数规律下降的(温度每升高10℃,可靠性大约降低50%)。为提高晶体管的可靠性,除需要降低热阻和功率分布合理以外,还需要使晶体管在失配情况下强行饱和以限制峰值电流容量的能力。

现在我们一般都选用场效应管。结型场效应管是利用电场对半导体电阻的影响而获得电流控制能力,改变反向偏置的P-N结上的电压,就能改变P-N结的的空间电参考层,而空间电荷层是一个耗尽层,几乎不能导电,因此改变P-N结的反向偏置电压就能改变半导体区域的截面积,从而控制通过半导体的电流。

场效应晶体管的优点有:

1、场效应晶体管是依靠多数截流子工作的器件,这使它没有少子存储效应,适宜了高频和高速工作,抗幅照能力强,具有负的电流温度系数,可以避免热奔和热不稳定性二次击穿等;

2、场效应晶体管在很低的温度下仍有较高的跨导(常常高于室温下的跨导值),可以工作在液氮,其至液氮温度下;

3、场效应管输入阻抗高,使输入电路功耗小,便于极间直接耦合;

4、场效应晶体管制造工艺相对比较简单;

5、电压控制,控制电路较为简单;

6、开关速度高,开关时间短,减少开关过程的功率损耗,有利于效率的提高。

选择场效应管,还因为功率场效应管的特性:

1、输出特性

功率MOS FET的基本输出特性如图所示:

输出特性分为三个区域:可调电阻区,饱和电阻区和雪崩区。可调电阻区的漏级电流I D与V DS几乎成线性关系,当I D随V DS增加到某一值后,器件内的沟道被夹断,开始进入饱和区,I D趋于稳定不变,而继续增加V DS,当漏级P-N结发生雪崩击穿时漏级I D剧增,进入雪

崩区,直至器件损坏。

2、转移特性

MOS FET的栅源间用硅氧化膜进行隔离,输入阻抗极高,约1000MΩ,为电压控制器件。如图所示:

若在功率MOS FET的栅极加的电压超过规定值,则漏级电压称为门限电压或开启电压,温度越高,门限电压越小。

3、开关特性

功率MOS FET是靠多数载流子传导电流的,没有少数载流子蓄积而产生的延迟时间。开关速度高,开关时间很短,其开关时间主要由寄生电容大小而决定,即与栅-源极间以及栅漏极间结电容的充放电时间成比例,时间常数为结电容与信号源阻抗的乘积。

功率MOS FET开关特性主要表现为开通时间与关断时间,开通时间分为延迟时间和上升时间,延迟时间就是由输入信号把栅极电压由开启电压经线性区充电到产生所决定漏级电流所必要的电压(5-8V)的时间。

关断时间分为存储时间和下降时间,存储时间就是栅极电压由过

激电压(10V)放到有效区电压(5-8V)所需要的时间,下降时间就是栅极电压从有效区放电到开启电压所需要的时间。

4、极间电容

功率MOS FET极间电容有输入电容(栅源极间电容),输出电容(漏源极间电容),和反馈电容(栅漏极间电容)。通常对于垂直导电结构的MOS FET,为减小导通电阻,栅极仍为网状结构,面积增大,因此电容量也增大。

5、通态,电阻与温度之间的关系

通态电阻随漏级电流变化较大,随温度变化也较大,温度由25℃变到125℃时通态电阻约增大2倍。

6、漏源极间的二极管

功率MOS FET结构上是在漏级极间构成的二极管,对于N沟道MOS FET,源极电压对于漏级电压为正向电压而导通,可以流经最大定额的漏级电流,二极管的反向恢复时间极短,约0.1~1uS。

7、安全工作区与功率

功率MOS FET转移特性为负温度系数,因此不会出现因电流集中而引起器件损坏,在高压范围内,具有非常宽的安全工作区。

场效应管有如此之多的优点,所以我们选择它,而它的材料目前·一般都用砷化镓(GaAs)。

GaAs是微电子的基础材料,为直接带隙,具有电子饱和和漂移速度高,耐高温,抗辐射等特点。在超高速、超高频、低功耗、低噪

音器件和电路,特别是在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨。

GaAs器件与电路的持续发展,主要基于它有如下优点:

(1)在GaAs中,传导电子迁移率比Si中大五倍,电子峰值漂移速度比Si中快一倍,所在寄生电阻较小,跨导较大,电子在高场区内渡越时间较短,因此GaAs器件可获得比Si更高的工作频率和放大增益,从而可能将双端口固态器件向微波高端发展,而此前在该频段双端口器件一直使用磁控管和调速器一类的热电子器件。

(2)Si , Ge材料本征电阻率不高,而GaAs有源层可生长在自身电阻率大于107Ω。Cm的半绝缘衬底上,因而可以通过把压点放在衬底上的办法来消除栅极压点上产生的大寄生电容,便于低损耗互连和高密度封装下的隔离,集成方便。

(3)从器件结构和加工工艺上来说,需要精确控制的尺寸相对比较容易,也比较少(只有栅长和沟道厚度),因此便于实现微细加工以达到更高的性能,实现多种多样的FET结构和小型化等。

(4)在输出功率和工作频率相近的情况下,肖特基势垒比P-N结的输入阻抗要高,器件的反向隔离度较大,因此便于使用。

(5)和二极管(如INPUT,GUNN)相比,GaAs器件噪声低,频率高,使用方便,和双极型器件相比,GaAs MESFET不存在基区电导调制效应,因此线性较双极型器件要好,三阶交调失真测量结果表明优于5~10dB;GaAs MESFET是多子器件,而且栅下没有电荷存留

的氧化层,因此本征上具有抗中子、γ光子幅照的能力,在导弹、核武器、航天使用中具有优越性。和真空电子管相比,电子管的输出功率一般来说要大的多。但电子管的噪声、线性、增益平坦度等则差得多,尤其是寿命一般来说要短得多。

GaAs器件的发展趋势是:

(1).增大晶体直径;

(2).提高材料的电学和光学微区均匀性;

(3).降低单晶的缺陷密度,特别是位错;

(4).GaAs单晶的VGF生长技术发展。

我国早在1970年就开始低噪声GaAs MESFET的研究开发工作,并于1978年设计定型了国内第一个砷化镓微波低噪声场效应管;1974年开始研究砷化镓功率器件,并且在1980年国内首次定型砷化镓微波功率场效应管。此后研究范围扩展到数字电路,模拟电路和毫米波领域,在微波通信、航天等多方面得到了广泛应用。

(五)微带线技术

在连接方面我们采用微带线技术,微带线是一种应用于微波功率晶体管放大电路,十分有效和方便的。主要有:

(1)整个电路无论其图形如何复杂,均可用淀积、照相光刻的方法,精确地复制在介质基片上,将基片固定在作用接地板的金属基座上就构成一完整的电路。其制造成本远比同功能的波导和同轴电路低;

(2)在多级电路中可以消除许多接头,这就消除了许多难以预计的接头反射和接触损耗,故电路制作的重复性好,性能优良;

(3)功率晶体管易于安装在微带基片上,尤其是特为微带电路生产的最新型的微波功率晶体管更加容易安装;

(4)晶体管的引线长度在微带传输线中容易裁合以获得阻抗匹配,尤其是特为微带电路所设计的微波晶体管更是如此;

(5)采用微带线能保证有良好的接地平面,并能使元件间的分布电容小;

(6)微波功率晶体管的输入阻抗低,输出阻抗也低,更适用于微带线;

(7)大多数微带电路体积小,重量轻,可靠性高;

为了增大微带线的功率容量,必须减小它的热阻,因此应当选用导热系数大的介质材料做为微带电路基片,并且使基片接地面与散热器有良好的热接触。同时还应当减小基片厚度,使散热更好。但是基片厚度不宜过分的减小。因为微带线的导体衰减系数与基片厚度成反比。导体的衰减太大显然是不允许的。

由于微带线损耗较大,散热能力较差,在大功率应用中,应当采用氧化铂陶瓷做为基片,因为它的导热能力与普通氧化铝陶瓷的大十倍,必要时还可以考虑整个微带电路强制冷却。

微带线十分有用和方便,其封装形式也有其特点:

(1).寄生参量对微波功率晶体管性能的影响;

为了保护管芯免遭机械损伤,以及防潮防尘等考虑,晶体管总是要封装的。封装不可避免地要引入寄生参量(寄生电感、寄生电容和各种消耗),这些寄生参量对于微波功率晶体管的性能有重大影响,甚至会破坏已制成的管芯的良好性能。

(2).微波功率晶体管的封装形式;

微波功率晶体管对管壳有下列特殊要求:良好的散热性能(小的管壳热阻);寄生参量要小;管壳应与集电极电绝缘。若发射极或基极(而不是集电极)与管壳连通,可使发射极或基极的引线电感大大降低,此外,管壳与集电极电绝缘之后,安装散热器也方便。

(六)接地方式

接地方式的选择直接影响着管子的使用和效率。放大器的接地方式有发射极接地、基极接地和集电极接地三种,而通常因集电极接地方式功率增益小,故很少使用。究竟选择发射极接地还是基极接地,则要根据使用频率、输出功率和稳定度等因素来决定。(在微波频段上,还要由管子的结构决定)。一般在满足决定稳定条件(无论负载如何,输入阻抗的实部一定不为负值)的频率范围内,可以证明发射极接地比基极接地方式用得广泛。但是在很高频率时,发射极引线电感对发射极接地电路要比对基极接地电路产生更坏的影响。对于给定的输出功率和功率增益,采用基极接地方式比采用发射极接地方式,对于晶体管的要求更低,因而成本也低。更重要的是基极接地晶体管

的功率增益比发射极接地晶体管的功率增益要高2~3dB。但是,这种较高的增益在实际中并不能轻易的取得。计算机分析表明,基极接地晶体管功率增益的增加,主要是由于基极扩展电阻和基极引线电感的正的再生作用提供的,在这里电感值是相当临界的。如果过大,器件就不稳定。因此在目前一般来说,在高频大功率应用中多采用基极接地方式,在功率较小时多采用发射极接地方式。

在较高频率下,接地电路的质量对于放大器的稳定工作是很重要的,由于功率晶体管工作时的输入或输出阻抗很低,故接地电路的质量问题就特别突出。接地电路的电阻要尽可能的低。(这与降低热阻的要求通常是一致的。)

(七)寄生振荡的消除

在微波功率晶体管放大器中,经常碰到的问题是可能出现寄生振荡,例如低频振荡,参量振荡或负阻特性引起的振荡等等。消除这些寄生振荡,是放大器稳定工作的首要前提。

(1)低频寄生振荡

晶体管的增益是随着频率的降低以每倍频程约(3~5)dB的比例增加。因此,在单级放大器中,当由于某种原因形成低频谐振电路时,便可能引起低频寄生振荡。原因有(1)由热反馈效应产生的低频振荡(2)电源去耦合不良(3)耦合场的外回授(4)晶体管极间电容C bc的内回授。等等。

(2)参量振荡

在微带功率放大器中,由于晶体管工作于大信号的非线性状态。其参量(如β,f T,C ec,及C bc等)将随各电级电压变化,其中特别是C bc,如图所示:

当集电极输出电压增加时,它是按非线性规律减小的。由于C bc 的非线性特性,当晶体管工作于输出特性曲线的临界线附近时,若C bc则集电极回路必呈感性,这时反映在输入端就出现一个负电阻,于是就有可能产生自激振荡。这种振荡是由晶体管的自身的参量变化引起的,故称之为参量振荡。

(3)高频振荡

这类负载特性是由晶体管的渡越时间效应和雪崩击穿效应产生的。前者较难克服,后者可通过适当选择工作点,使晶体管不要工作在大电流高电压区内。进行电路设计时,应采用适当的保护电路,以防止负载及电压变化时使晶体管处于安全工作区之外。

这些对放大器的工作有很大的影响,必须予以消除,具体的措施

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

音频功率放大器的设计与制作

电子技术课程设计报告 设计课题:音频功率放大器的设计与制作 拔河游戏机的设计与制作

模电部分 音频功率放大器的设计与制作 一、设计任务与要求 1)话筒放大器和前置放大器由于话筒的输出信号一般只有5mV左右,而输出阻抗达到20kΩ(也有低输出阻抗的话筒如20Ω,200Ω等),所以话筒放大器的作用是不失真的放大声音信号(最高频率达到20kHz)。其输入阻抗应远大于输出阻抗。前置放大器要求失真小、通频带宽。 2)电子混响器电子混响器的作用是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。该部分电路有专用电路可以选用,不作设计要求。 3)音调控制器音调控制器的作用是控制、调节音响放大器输出频率的高低,音调控制器只对低音频或高音频的增益进行提升或衰减,中音频增益保持不变。这部分参考电路较多,要求通过仿真进行选取,并进行必要的计算。 4)功率放大器功率放大器的作用是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能的大,输出信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有单电源供电的OTL电路和正负双电源供电的OCL 电路。有专用集成电路功率放大器芯片。可采用由集成运算放大器和晶体管组成的功率放大器,要求进行必要的计算和计算机仿真。 设计参数 ①放大器的失真度<1%。 ②放大器的功率>1W。 ③放大器的频响为50Hz—20kHz。 ④音调控制特性为自选。 (3)设计要求 1)调研,查找并收集资料。 2)总体设计,画出框图。

3)单元电路设计。 4)电气原理设计---绘制原理图。 5)参数计算——列元器件明细表。 6)用EWB对设计电路进行仿真实验,并给出仿真结果及关键点的波形。 7)撰写设计说明书。 8)参考资料目录。 二、方案设计与论证 2.1 音响模块流图 图2-1电路整体框图 话音放大器:话音放大器的作用是不失真地放大音频信号。 电子混响器:电子混响器是用电路模拟声音的多次反射,产生混响效果,使声音听起来具有一定的深度感和空间立体感。 混合前置放大器:混合前置放大器的作用是将音乐信号和电子混响后的声音信号混合放大。 音调控制器:音调控制器主要是控制、调节音响放大器的幅频特性。 功率放大器:功率放大器的作用是给音响放大器的负载RL提供一定的输出功率 电路方案的比较与论证 2.2话音放大电路的比较与论证 方案一:采用uA741运算放大器设计电路,uA741通用高增益运算通用放大器,早些年最常用的运放之一。应用非常广泛,双列直插8脚或圆筒8脚封装。工

低噪放大器的原理应用及其常用规格

低噪放大器定义: 噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数 F=1(0分贝),其物理意义是输入信噪比等于输出信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于 2 分贝。放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。为了兼顾低噪声和高增益的要求,常采用共发射极一共基极基联的低噪声放大电路。 低噪放大器的原理: 地球站的品质因数(G/T)主要取决于天线和低噪声放大器(LNA)的性能。接收系统的噪声温度Ts是指折算到LNA输入端的系统等效噪声温度,它主要由天线噪声温度TA、馈线损耗LALA 和低噪声接收机噪声三个部分组成。 低噪放大器的应用: 低噪放大器(LNA)主要面向移动通信基础设施基站应用,例如收发器无线通信卡、塔顶放大器(TMA)、组合器、中继器以及远端/数字无线宽带头端设备等应用设计,并为低噪声指数(NF, Noise Figure)立下了新标竿。目前无线通信基础设施产业正面临必须在拥挤的频谱内提供信号质量和覆盖度的挑战,接收器灵敏度是基站接收路径设计中最关键的要求之一,合适的LNA选择,特别是第一级LNA可以大幅度改善基站接收器的灵敏度表现,低噪声指数也是关键的设计目标,Avago提供了1900MHz下0.48dB同级产品的噪声指数。另一个关键设计为线性度,它影响了接收器分辨紧密接近信号和假信号分别的能力,三阶截点OIP3可以用来定义线性度,在1900MHz和5V/51mA的典型工作条件下,Avago特有的GaAs增强模式pHEMT工艺技术可以带来0.48dB的噪声指数和35dBm的OIP3,在2500MHz和5V/56mA的典型工作条件下,噪声指数为0.59dB,OIP3则为35dBm。通过低噪声指数和高OIP3,这些Avago的新低噪声放大器可以提供基站接收器路径比现有放大器产品更大的设计空间。 LNA经历了早期液氦致冷的参量放大器、常温参量放大器的发展过程,随着现代科学技术的高速发展,近几年已被微波场效应晶体管放大器所取代,此种放大器具有尺寸小、重量轻和成本低的优异特性。特别是在射频特性方面具有低噪声、宽频带和高增益的特点。在C、Ku、Kv 等频段中已被广泛的使用,目前常用的低噪声放大器的噪声温度可低于45K。 在雷达射频接收系统中,对系统性能指标的要求越来越高,其中低噪声放大器是影响着整个接收系统的噪声指标的重要因素。与普通的放大器相比,低噪声放大器作用比较突出,一方面可以减少系统的杂波干扰,提高系统的灵敏度;另一方面可以放大系统的射频信号,保证系统正常工作。因此,低噪声放大器的性能制约着整个接收系统的性能,对整个接收系统性能的提高起了决定性的作用。因此,研制宽频带、高性能、更低噪声的放大器,已经成为微波技术中发展的核心之一。 由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数F=1(0分贝),其物理意义是输出信噪比等于输入信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于2分贝。

电压控制增益可变放大器

电压控制增益可变放大器(VGA)设计 摘要 本设计以VCA822芯片为核心,加以其它辅助电路实现对宽带电压放大器的电压放大倍数、输出电压进行精确控制。放大器的电压放大倍数从0.1倍到10倍变更,通过电压跟随器确保输入阻抗>1012Ω。选用高增益带宽积的运放保证放大器的带宽大于15MHz。 关键词:宽带直流放大器;控制电压;电压变换;VCA822; ABSTRACT This experiment is designed with VCA822 chip as the core, with other auxiliary circuit to realize the voltage gain of the broadband voltage magnification, as well as the accurate control of the output voltage. Amplifier voltage magnification changes from 0.1 times to 0.1 times through the voltage follower to ensure that the input impedance > 1012Ω. At the same time, the selection of high gain bandwidth product of the op-amp is to ensure the bandwidth of the amplifier greater than 15 MHZ.

目录 1.系统方案比较与设计 2.理论分析与计算 3.单元电路设计与计算 3.1一级同相放大电路 3.2二级可控放大电路 3.3三级同相放大电路 3.4四级反向放大电路 3.5甲乙类功率放大电路 4.系统测试 5.结论 6.参考文献

低频低噪声高增益放大器讲解

低频低噪声高增益放大器 一、基本要求 (1)放大器 a.电压放大倍数200~2000倍,放大倍数可预置步进(间隔不大于200倍),有数字显示额外加分。 b.通频带3kHz~5kHz。 c.放大倍数为2000倍时,测得输出噪声电压峰—峰值等效到输入端小于800nV。d.最大不失真输出幅度不小于8V。 e.输入电阻不小于1kΩ,输出电阻不大于20Ω。 (2)自制供电电源。单相交流220伏电压供电,电源波动±10%时可正常工作。 (3)自制适合于本放大器测试用的信号源。 发挥部分 (1)电压放大倍数更高、步长更小 (2)等效输入噪声不大于200nV。 (3)等效输入电阻大于10kΩ。 (4)数字显示精度进一步改善 二、方案设计 2.1方案流程图

2.2 信号源制作模块 信号源原理图

信号源效果图 说明:单片机制作4.5KHZ的信号源,为电路提高信号源。 2.3 π网络衰减射随器带通滤波器模块制作 衰减网络 说明:由于单片机制作的信号源输出幅度很大,4V左右,而题目的要求知,信号源提供的电压幅度在10mV左右,因此通过衰减网络达到目的。

射随器 说明:射随器提高输入阻抗,以达到题目指定的要求。 带通滤波器 说明:带通滤波器的范围为3kHz~5kHz,因此可以满足通频带3kHz~5kHz的要求。 2.4 DAC0832程控网络

说明:通过DAC0832实现电压放大倍数200~3000倍的控制,把放大3000倍后的信号作为DAC0832的参考电压,通过数字量实现步进100倍的增益控制。 2.5 后级放大

说明:放大倍数进一步放大,固定放大1000倍。 2.6 电源制作模块

低频低噪声高增益放大器

低 频 低 噪 声 高 增 益 放 大 器——设计与报告总结 2012年7月15日 目录: 一.方案设计与论证 A.题目要求和指标分析

B.信号源部分 C.前级放大部分 D.滤波器部分 E.压控放大模块 F.功率放大模块 G.负反馈放大模块 二.电路设计 A.整体电路设计 B.信号源部分 C.前级放大部分 D.滤波器部分 E.压控放大部分 F.功率放大部分 G.负反馈部分 三.测试方法与测试结果 a.仿真部分 b.实测部分 本次设计是以vca810,op07,tda2030,msp430为核心器件的低频低噪声放大器。带宽为3kHz~5kHz,电压放大系数可达200~2000倍,

能保证波形不失真,噪声系数小,性能良好。信号由自制正弦波振荡器产生,经过前级放大,再经vca810进行压控放大,而后经过3阶有源切比雪夫带通滤波器,最后经过tda2030为核心的功率放大器,输出给负载。而由Msp430单片机进行AD采样和DA输出,实现负反馈。设计方案具有放大倍数高,预置步长小,低噪声,数字显示精度高等特点,达到了设计要求,切实可行。 一.方案论证 1.题目要求和指标分析 根据题目要求,设计方案应该实现电压放大,预置步进,数字显示,并且信号的通频带要在3kHz~5kHz,低噪声。综合各项设计指标,将该系统设计为以下模块:信号发生模块,前级放大模块,步进放大模块,滤波器模块,功率放大模块,反馈模块; 具体设计框图如下: 2. 信号源部分 方案1:以为LM358为核心的正弦波振荡器,优点是元器件少,成本低,稳定性好,失真度小,幅度频率可调,常用于音频电路。

基于宽带高增益的放大器设计

基于宽带高增益的放大器设计 陈亮名,杨昆 (西南交通大学四川成都611756) 摘要:文中介绍了一种基于集成运算放大器实现的宽带高增益放大器,本系统创造性地利用两级宽带运放VCA822压控放大,宽带运算放大器OPA690输出,完成了一个通频带50kHz~40MHz ,增益0~68dB 可调的宽带高增益放大器。放大器噪声小,通频带范围宽,最大放大倍数大,后级加入了开关手动切换的自动增益控制电路模块,自制电源降压模块。系统采用多种方式消除了高增益,高频自激。放大器输入输出阻抗均为50Ω,方便和前后级电路匹配。关键词:VCA822;压控增益;自动增益控制;宽带放大器;放大倍数中图分类号:TN721.1 文献标识码:A 文章编号:1674鄄6236(2014)15鄄0146鄄03 Based on broadband high 鄄gain amplifier design CHEN Liang 鄄ming ,YANG Kun (Southwest Jiaotong University ,Chengdu 611756,China ) Abstract:This paper describes an approach based on integrated operational amplifier for wideband high gain amplifier ,this system creative use two wideband voltage controlled amplifier VCA822,with wideband op amp OPA690,completed a passband 50kHz~40MHz ,0~68db adjustable gain broadband high 鄄gain amplifiers.Amplifier noise ,the pass band range ,a large maximum magnification level after adding the switching manual switching automatic gain control circuit module power down module is made.System uses a variety of ways to eliminate the high 鄄gain ,high 鄄frequency self 鄄excited.Amplifier input and output impedances are 50Ω,convenient and front stage circuit match.Key words:VCA822;VCO gain ;AGC ;broadband amplifier 收稿日期:2013-12-02稿件编号:201312007 作者简介:陈亮名(1993—),男,湖南邵阳人。研究方向:自动化。 当代无线通讯领域中,宽带高增益放大器必不可少,但随着电子电路的发展,通信系统对其带内平坦度,增益范围,带宽,噪声等性能指标提出了越来越高的要求。特别是在通行链路的传输中,宽带高增益放大器是其中的关键设备,因为在传输过程中,放大器的特性易受环境,材质,温度噪声等多方面的影响,也就造成该技术的研制设计一直是生活,工业,军用,医疗等多个领域的前沿课题,其研究价值极大。微电子技术,芯片工艺的发展带动了通信电路的进步,宽带高增益放大器被广泛应用于雷达,无线通信,导航,卫星通讯,电子对抗技术等,研究其高频,高增益,低失真,低噪声的放大器特性具有非常重要的意义[1]。目前宽带高增益放大器一般线性度不好,噪声大,设计难,易自激等缺点,文中给出了一种宽带高增益放大器的具体设计及消除自激的方法。 1 系统电路 1.1 系统组成 本宽带高增益放大器由宽带放大模块、自动增益控制模 块、电源模块组成。系统组成框图如图1所示。 1.2宽带放大模块 宽带放大器由两级宽带压控放大器,配合宽带运算放大 器实现,电路原理图见图2。两级构成的宽带压控放大部分完成了0~52dB 动态范围的增益可调,使用进行可调电压放大达到最大电压增益为16dB ,使整体的增益达到68dB 。 VCA822是一款直流耦合型宽频带压控增益放大器,最 大工作频带宽度可到达150MHz ,增益大于40dB 的控制范围,160mA 的输出电流,并且具有优越的噪声特性和高精度的增益控制。放大器增益由控制电压和外围电阻阻值共同决定[2]。在控制电压的作用下,该器件可提供精确的增益,且按 V /V 线性变化,且有良好的稳定性。同时在后级加入500MHz 的电压反馈型运放OPA690。若只采用1级VCA822直接放大的话,很容易在A v ≥30dB 和高频的时候产生自激,因此,我们采用3级级联分别进行放大的方案。 根据TI 提供的VCA822数据手册,可以决定外围电阻的具体参数。由单级放大倍数Av (max )=20>10,则1.33k Ω< R f <845Ω;通过Av (max )=2R f /R G 选择133Ω

带啸叫检测与抑制的音频功率放大器报告

带啸叫检测与抑制的音频功率放大器(D题) 摘要:该设计是基于功率放大器TPA3112D1的带啸叫检测与抑制功能的音频放大器。其音频放大器是由五个模块构成即拾音电路模块,啸叫抑制模块,功率放大器电路模块,MSP430控制与显示模块,音频输出模块。其能产生优质的放大音量并能有效的抑制啸叫。 关键字:拾音电路,功率放大,啸叫检测和抑制。

目录 1.方案设计与论证 (3) 1.1拾音电路的方案设计 (3) 1.2功率放大电路方案设计 (3) 1.3啸叫抑制电路方案设计 (3) 1.4显示控制电路方案设计 (4) 2.硬件的设计 (4) 2.1拾音电路的设计 (4) 2.2电源模块设计 (5) 2.3程控放大电路 (6) 2.4 峰峰值检测 (7) 2.5啸叫抑制电路 (7) 3.软件的设计 (7) 4.系统测试 (9) 4.1测试方案 (9) 4.2测试结果与分析 (9) 5.设计总结 (9) 6.参考文献 (9) 7.附件 (10)

1.方案设计与论证 1.1拾音电路的方案选择 方案一:采用Maxim公司生产的一款高性能放大器MAX9814,具有自动增益控制(AGC)和低噪声麦克风偏置,器件具有低噪声前端放大器,可变增益放大器(VGA)输出放大器,麦克风偏置电压发生器和AGC控制电路。低噪声前置放大器具有12dB固定增益;VGA增益根据输出电压和AGC门限在20dB至0dB间自动调节。输出放大器提供可选择的8dB,18dB和28dB增益。在未压缩的情况下,放大器的级联增益为40dB,50dB和60dB。输出放大器增益由一个三态数字输入编程。AGC门限由一个外部电阻分压器控制,动作/释放时间由单个电容编程。动作/释放时间比由一个三态数字输入设置。AGC保持时间固定为30ms。低噪声麦克风偏置电压发生器可为绝大部分驻极体麦克风提供偏置。但电路设计难度大且成本高。 方案二:采用TI公司生产的双功放LM358通过外接电阻电路构成一个能放大拾音电路,运放的两个输出端接入降噪芯片的左右声输入通道。LM358内部包括有两个独立的,高增益,内部频率补偿的双运放放大器。电路设计和制造较难。方案三:采用NE5532这种双运放高性能低噪声运算放大器。其有很好的输出驱动能力和噪声能力。该方案具有噪声小,音质好,功耗低,稳定性好且方案间单成本低。 故选择方案三。 1.2程控放大电路方案选择 方案一:宽带电压增益控制放大器VCA822的控制电压输入端VG的电压范围为-1V~1V,可以用含有电位器的电路来调节,其优点是电压连续可调,缺点是精确调节较难另外也与本设计要求不符。 方案二:用TPA3112D1作为音频放大模块。TPA3112D1是一个25W单声道,无需外加滤波器的D类音频放大器,其供电的范围为8V~26V;采用H桥作为功率输出级,使得其可在没输出没有传统的LC滤波器的情况下直接驱动感性负载;输入的音频信号可以是差分形式,其中在24V供电情况下,满负载驱动8的桥接式扬声器,声音失真率仅为0.1%。 所以选择方案二。 1.3啸叫抑制电路方案选择。 方案一:频率均衡法由于传声器拾音和发声设备的频率曲线不是理想平坦的直线,特别是一些质量比较差的放音设备,由于厅堂声场的声学往往都有谐振作用,使频率响应起伏很大。可以用频率均衡器补偿扩声曲线,把系统的频率响应调成近似的直线,使各频段的频响基本一致进而提高系统的传声增益,这种方法也叫做宽带陷波法。通常应该使用21段以上的均衡器,在要求比较高的场合还应该配置参量均衡器,要求更高时,则可采用反馈抑制器。实际上扩声系统在出现反馈自激时,频率只是固定在某一点上的纯音,只要用一个频带很窄的陷波器将此频率切除,即可进行有效抑制。选择频率特性比较平直的传声器和扬声器,减少由于峰值易引起的自激。 方案二:移相方式抑制啸叫:顾名思义,移相就是移动相位。在前面我们曾提到过“相位”一词,在空中某点,当反馈回来的声音和原始声音同时压缩或扩张了该点空气,我们称反馈声与原始声相位“同相”,该点声音增大;相反,如果一个声音压缩该点空气的同时另一个声音却扩张了该点的空气,我们称这两个

放大器知识经典问答

放大器知识经典问答 放大器知识经典问答(第一部分) 1.什么是开环电压增益? 开环电压增益是指当放大器输入输出开路时既开环,放大器输出端的电压变化与输入端的电压变化之比。 2.什么是共模抑制比? 共模抑制比是指放大器对差分电压信号放大倍数与共模电压信号放大倍数之比,单位为分贝(dB)。 3. 什么是输入电流噪声(in)? 输入电流噪声(Input Current Noise (in )):是和无噪声放大器的输入并联应用的等效电流噪声。 4. 电压反馈放大器和电流反馈放大器之间有什么区别? 两种运放的内部电路是不同的,所以对于一个已给的配臵,两种类型运放是没有必要去互换的。电压反馈的运放受制于内部设计,只有非常低的输入偏流,但内部没有限制差分输入电压,仅仅当外部的反馈需要时才会做出限制。相反,对于电流反馈放大器,其差分输入电压受制于内部设计,但并没有限制它的输入偏流为低,所以仅仅当外部反馈需要时才会限制。尽管,大多数高校仍没有授关于电流反馈放大器的基础知识,但使用电流反馈放大器有许多优点,尤其在高速的应用中请看下面的应用笔记: https://www.doczj.com/doc/644595404.html,/an/OA/OA-30.pdf OA-30,电流电压反馈放大器的比较 https://www.doczj.com/doc/644595404.html,/an/OA/OA-07.pdf OA-07,电流反馈放大器应用电路指导https://www.doczj.com/doc/644595404.html,/an/OA/OA-13.pdf OA-13,电流闭环反馈增益分析和性能提高https://www.doczj.com/doc/644595404.html,/an/OA/OA-15.pdf OA-15, 在运用宽带电流反馈放大器时,频繁失真https://www.doczj.com/doc/644595404.html,/an/OA/OA-20.pdf OA-20, 电流反馈误判断https://www.doczj.com/doc/644595404.html,/appinfo/webench/放大器放大器WEBENCH 支持电流模式和电压模式的放大器类型。 5. 开环和闭环之间有什么差别? “开环增益”实际上是没有反馈的运放的“内部”增益,通常取 1,000 到10,000,000之间的任意值。请看数据手册中的“开环增益”图;“闭环增益”是整个电路的增益,带有由用户选择适当的反馈电阻值选择的反馈,比如“增益为+10”“或"增益为-2 ”。 6. 什么是输出电流? 输出电流是指运放的输出端得到的驱动负载的电流。它通常是一个功能:输入过驱动,输出电压和电源的相关性、温度。源极和漏极的特性会有所不同。 7. 我选择了轨对轨(Rail-to-Rail)输入/输出(Input/Output)放大器,但是输出并不是一直是负轨,或一直是正轨。我做错了什么吗? 单词“轨对轨(Rail-to-Rail)”是易令人误解的。完全正确的应该是“几乎是轨对轨”或“非常接近轨对轨”。大多数R-R放大器任一电源轨上的输出电压为从20到200mv,几乎从未有过对轨的。当需要更多的负载电流时,输出要更远离电源电压轨。大多数放大器通过100k ?或更大的负载提供最大输出电压摆动。在产品数据手册中电气特性表和特性曲线上,指定的输出电压波动都是期望值。此外,当通过https://www.doczj.com/doc/644595404.html,/appinfo/webench/放大器放

高效音频功率放大器

高效音频功率放大器 一、设计任务与要求 1、设计任务 设计并制作一个高效率音频功率放大器及其参数的测量、显示装置。功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。 2、设计要求 ⑴基本要求 ①功率放大器 a.3 dB通频带为300~3400Hz,输出正弦信号无明显失真。 b.最大不失真输出功率≥1W。 c.输入阻抗>10kΩ,电压放大倍数1~20连续可调。 d.低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。 e.在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。 ②设计并制作一个放大倍数为1的信号变换电路,将功率放大器双端输出的信号转换为单端输出,经RC滤波供外接测试仪表用,如下图所示。图中,高效率功率放大器组成框图可参见本题第3项“说明”。 图1 系统组成框图 ③设计并制作一个测量放大器输出功率的装置,要求具有3位数字显示,精度优于5%。 ⑵发挥部分 ① 3dB通频带扩展至300Hz~20kHz。 ②输出功率保持为200mW,尽量提高放大器效率。 ③输出功率保持为200mW,尽量降低放大器电源电压。 ④增加输出短路保护功能。 ⑤其他。 1、说明 ⑴采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。

图2 D类放大原理框图 ⑵效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),不包括“基本要求”中第(2)、(3)项涉及的电路部分功耗。制作时要注意便于效率测试。 ⑶在整个测试过程中,要求输出波形无明显失真。 二、方案论证与比较 根据设计任务的要求,本系统的组成方框图如图1所示。下面对每个框电路的设计方案分别进行论证与比较。 1、高效率功率放大器 ⑴高效率功放类型的选择 方案一:采用A类、B类、AB类功率放大器。这三类功放的效率均达不到题目的要求。 方案二:采用D类功率放大器。D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。 ⑵高效D类功率放大器实现电路的选择本题目的核心就是功率放大器部分,采用何种电路形式以达到题目要求的性能指标,这是关键。 图3 脉宽调制器电路 ①脉宽调制器(PWM) 方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。 方案二:采用图3所示方式来实现。三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。 ②高速开关电路

高增益宽带放大器的研究与设计

南京师范大学中北学院 毕业设计(论文)(2013届) 题目:高增益宽带放大器的研究与设计 专业:电子信息工程 姓名:XXX 学号: XXX 指导教师:王兴和职称:教授 填写日期: 2013-5-10 南京师范大学中北学院教务处制

摘要 在无线通信系统中,高增益宽带放大是其重要的组成部分,它性能的好坏对整个系统起着重要的的作用。随着通信技术的发展,军用和民用对其提出了更高的要求,对射发系统的研制提出了更高的要求甚至是全新的要求。 文章介绍了一种基于模拟运算放大器实现的增益可控的宽带放大器。该器件由三个部分组成,第一部分由运算放大器OPA2613组成,第二部分中间级连续可调增益由放大器OPA842完成,第三部分功放由AD811完成。工作频带宽可达3.9MHZ,增益调节0dB-53dB。放大器噪声小, 动态范围宽。在通频带内增益起伏为1dB左右。通过反馈电阻可调,可实现增益的变化。通过Multisim的仿真能达到良好的效果。整个系统工作可靠,稳定,而且成本低效率高。 关键词:OPA2613 OPA8421 AD811 可控增益带宽放大器

ABSTRACT In a wireless communication system, high-gain broadband amplification is an important part of that, It is good or bad performance of the whole system plays an important role. With the development of communication technology, military and civilian put forward higher requirements for it, Hair on the radio system development put forward higher requirements even entirely new requirements. This paper presents a simulation-based operational amplifier gain controlled wideband amplifier. The device consists of three parts, the first part of the operational amplifier OPA2613, and the second part of the intermediate stage adjustable gain amplifier OPA842 completed by the third part of the amplifier by the AD811 is completed. Frequency band up to 3.9MHZ, gain adjustment 0dB-53dB. Amplifier noise, wide dynamic range. Ups and downs in the pass band gain is about 1dB.. Adjustable through the feedback resistor, the gain variation can be achieved. By Multisim simulation can achieve good results. The whole system is reliable, stable and cost-inefficient rate. Key words: OPA2613 OPA8421 AD811 Controllable gain Bandwidth amplifier

带前置放大的音频功率放大器设计报告

带前置放大的音频功率放大器设计 姓 名 学 号 院、系、部 班 号 完成时间 ※ ※※※※※※※ ※ ※※ ※ ※ ※ ※ ※※※※※ ※※※※ 2013级 模拟电子技术课程设计

摘要 前置放大电路须由低噪声,高保真,高增益,快响应,宽带音响集成电路,所以采用NE5534实现,NE5534是单路高效低噪音运算放大器相比于其他放大器来说拥有更好的噪声性能,更高的外部驱动能力以及更加高的小信号输入和更高的功率带宽。这使得它们特别适合应用于高质量和专业的音频设备以及仪器仪表,控制电路和电话信道。集成功率放大电路成熟,低频性能好,内部设计具有复合保护电路,可以增加其工作的可靠性,尤其集成厚膜器件参数稳定,无须调整,信噪比较小,而且电路布局合理,外围电路简单,保护功能齐全,还可外加散热片解决散热问题。功率放大器在家电和数码产品中使用越来越广泛,与我们日常生活有着密切的联系,功率放大器随着科技的不断进步也经历了几个不同的阶段,从最初的电子管功率放大器到现在的集成功率放大器,按所用放大器的分类可分为电子管式放大器,晶体管式功率放大器(包括场效应管)和集成功率放大器,目前以晶体管和和集成电路式功率放大器为主,晶体管的功率放大器是被使用最广泛的,人们研制出许多优质的新型电路使功放的谐波失真很容易减少到0.05%以下,场效应管是很有潜力的功率放大器,它具有噪音小、动态范围大、负温度特性等特点,音色和电子管相似,保护电路简单。场效应管的生产技术还在不断发展,集成功率放大器也大量的涌现出来,其工艺和指标都达到了很高的水平,它的突出特点是体积小、电路简单和性能优越、保护功能齐全。 关键词:功率放大器场效应管 NE5534

低噪声放大器lna

低噪声放大器设计指南 1.低噪声放大器在通讯系统中的作用 随着通讯工业的飞速发展,人们对各种无线通讯工具的要求也越来越高,功率辐射小、作用距离远、覆盖范围大已成为各运营商乃至无线通讯设备制造商的普遍追求,这就对系统的接收灵敏度提出了更高的要求,我们知道,系统接收灵敏度的计算公式如下: S = -174+ NF+10㏒BW+S/N (1) min 由上式可见,在各种特定(带宽、解调S/N 已定)的无线通讯系统中,能有效提高灵敏度的关键因素就是降低接收机的噪声系数NF,而决定接收机的噪声系数的关键部件就是处于接收机最前端的低噪声放大器。 低噪声放大器的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,以供系统解调出所需的信息数据,所以低噪声放大器的设计对整个接收机来说是至关重要的。 2. 低噪声放大器的主要技术指标: 2.1 噪声系数NF 噪声系数的定义为放大器输入信噪比与输出信噪比的比值,即: out out in in N S N S NF //= 对单级放大器而言,其噪声系数的计算为: 222min |1)||1(||4opt s opt s n R NF NF Γ?Γ?Γ?Γ+= 其中 F min 为晶体管最小噪声系数,是由放大器的管子本身决定的, Γopt 、Rn 和Γs分 别为获得 F min 时的最佳源反射系数、 晶体管等效噪声电阻、以及晶体管输入端的源反射系数。 对多级放大器而言,其噪声系数的计算为: NF=NF 1+(NF -1)/G 1+(NF -1)/G 1G +…… (4) 232其中NF n 为第n级放大器的噪声系数,G n 为第n级放大器的增益。 在某些噪声系数要求非常高的系统,由于噪声系数很小,用噪声系数表示很不方便,常常用噪声温度来表示,噪声温度与噪声系数的换算关系为: T e = T 0 ( NF – 1 ) (5) 其中T e 为放大器的噪声温度,T 0 =2900 K,NF为放大器的噪声系数。 NF(dB) = 10LgNF (6) 2. 2 放大器增益G: 放大器的增益定义为放大器输出功率与输入功率的比值: G=P out / P in (7) 从式(4)中可见,提高低噪声放大器的增益对降低整机的噪声系数非常有利,但低噪声放大器的增益过高会影响整个接收机的动态范围。 所以,一般来说低噪声放大器的增益确定应与系统的整机噪声系数、接收机动态范围等结合起来考虑。

简易音频功率放大器

闽南师范大学《模拟电子技术》课程设计 设计题目:简易音频功率放大器 姓名:庄伟彬 学号:1205000425 系别:物理与信息工程学院 专业电气工程及其自动化 年级:12级 指导教师:周锦荣老师 2014年 5月 1 日

目录 一系统设计┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 1.设计任务┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 2.设计要求┄┄┄┄┄┄┄┄┄┄┄┄┄ 2 二电路设计原理┄┄┄┄┄┄┄┄┄┄┄┄ 3 1.系统原理┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 2.方案比较┄┄┄┄┄┄┄┄┄┄┄┄┄ 3 3.芯片介绍┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 三PCB布板┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 10 四实物安装与调试┄┄┄┄┄┄┄┄┄┄┄┄ 11 1.实物图┄┄┄┄┄┄┄┄┄┄┄┄┄11 2.测试的波形┄┄┄┄┄┄┄┄┄┄┄12 3.实验结果分析及与理论对比┄┄┄┄┄ 15 五附录┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 15 1.设计总结┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 2. 原件清单┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 3.参考文献┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 16

摘要:本方案采用LM358,LM386集成运放芯片,外加电阻、电容等元器件调整、滤波,滑动变阻器实现音量可调,构成简易音频功率放大器,音频功率放大器主要用于推动扬声器发声。 关键词:LM358;LM386;音频放大 一系统设计 1 设计任务 利用集成运算放大器LM358,LM386设计一个简易音频功率放大器。 2 设计要求 设计一个简易的音频功率放大器,要求如下: (1)系统主要由前置放大电路和后级功率放大器电路构成,电路具有音量可调; (2)前置放大电路主要有集成芯片LM358构成;后级功率放大器电路主要由集成芯片LM386音频功率放大芯片构成; (3)要求输入音频信号在10mV/1kHz时,输出功率1 (负载:8Ω),输出音频信号无 Po W 明显失真,输出功率大小可调; (4)系统测试可以由函数信号发生器产生音频信号,系统所需电源可由实验室现有学生电源提供; (5)完成相应的电路原理图设计、硬件电路设计和调试及相关结果测试; (6)完成课程设计报告撰写。

多级放大电路电压增益的计算

多级放大电路电压增益的计算 在求分立元件多级放大电路的电压放大倍数时有两种处理方法: 一是将后一级的输入电阻作为前一级的负载考虑,即将第二级的输入电阻与第一级集电极负载电阻并联,简称输入电阻法。 二是将后一级与前一级开路,计算前一级的开路电压放大倍数和输出电阻,并将其作为信号源内阻加以考虑,共同作用到后一级的输入端,简称开路电压法。 现以图示两级放大电路为例加以说明。 例1:三极管的 1 = 2 ==100,V BE1=V BE2=0.7 V 。计算总电压放大 倍数。分别用输入电阻法和开路电压法计算。 解:一、求静态工作点: A 9.3=mA 0.0093=mA 7 .2101)20//51(7.038.3)+(1+)//('= e1b2b1BE1CC BQ1μβ?+-=-R R R V V I mA 93.0BQ1CQ1==I I β V 26.7V )1.593.012(c1CQ1cc B2C1=?-=-==R I V V V CEQ1cc CQ1c1CQ1BQ1e1cc CQ1c1e1=1209378 V 47 V ()() (..).V V I R I I R V I R R --+≈-+=-?=V 96.7V )7.026.7(BE2B2E2=+=+=V V V

V 47.4V )3.404.1(mA 04.1mA 9.3/04.4mA ]9.3/)96.712[(/)(c2CQ2C2e2E2CC CQ2EQ2=?====-=-=≈R I V R V V I I V 45.3V )96.747.4(E2C2CEQ2-=-=-=V V V 二、求电压增益: (1)用输入电阻法求电压增益 先计算三极管的输入电阻 Ω =Ω?+Ω=++Ω =Ω?+Ω=++k 8.2 04 .126 101 300mA)(mV)(26)1(=k 1.3 93 .026 101 300mA)(mV)(26) 1(=E2bb be2 E1bb be1I r r I r r ββ 电压增益 be2 i2be1 i2c113 .581.3) 8.2//1.5(100) //(=r R r R R A v =-=?- =- 式中β 6.1538 .23 .4100) //(=be2 L c22-=?- =- r R R A v β 8955 )6.153(3.5821=-?-==v v v A A A 如果求从V S 算起的电压增益,需计算输入电阻 Ω===k 55.220//51//1.3//// b2b1be1i1R R r R 9.41)3.58(55 .2155 .21i1S i1s1-=-?+=+= v v A R R R A 6436)6.153(9.412s1s =-?-==v v v A A A (2)用开路电压法求电压增益 第一级的开路电压增益

低噪声放大器介绍

低噪声放大器 低噪声放大器是一种具有优良噪声特性而增益较高的小信号放大器,一般位于接收机的前端,是决定整个接收系统噪声特性的关键部件。 目前常见的低噪声放大器有以下几种:低温制冷参量放大器、常温恒温参量放大器、微波场效应晶体管放大器和高电子迁移率晶体管放大器等。参量放大器采用变容电抗元件(变容二极管)对信号进行放大,可以获得满意的低噪声性能,进一步降低其工作的环境温度(例如环境温度达20K),会大幅度改善其噪声性能。然而随着金属半导体场效应晶体管性能的改善与提高,低噪声场效应放大器的噪声性能已接近于常温参量放大器的水平。同时,由于FET放大器具有性能稳定、结构紧凑、价格低廉等优点,它已逐步取代了参量放大器。目前,Ku频段以下的低噪声放大器普遍采用低噪声FET放大器。继低噪声MESFET之后,高电子迁移率晶体管(High Electron Mobiliey Transistor),简称HEMT器件,获得了迅速的发展。它在低噪声、高工作频率方面比FET更优越,已广泛投入使用。 目前广泛使用的是金属半导体场效应管低噪声放大器。它的核心部件是金属半导体场效应管(MESFET)。金属半导体场效应管是用本征砷化镓作为基片的衬底,用特殊工艺形成源极(S)、栅极(G)和漏极(D)三个电极;通过栅极电压来控制漏极电流,从而实现对小信号的放大功能。 微波场效应管的主要参数有:特征频率、单向功率增益和最大振

荡频率、最大输出功率和噪声特性。 微波场效应管低噪声放大器设计主要考虑的问题是计算输入、输出匹配网络和选择工作点。通常第一、二级按最小噪声系数设计,中间级按高增益设计,末级则保持良好的线性,满足系统互调特性的要求。 微波场效应管低噪声放大器的设计步骤: 1、 选择适当的电路形式 一般采用共源极电路形式,并尽可能选用f T 高的管子。 一般0)5~3(f f T =。 2、 确定工作点和偏置电路 小信号管做低噪声放大时,漏极电流很小,一般为10mA 左右。而作高增益放大时,漏极电流略大些,一般在10~30mA 。偏置电路的选择和低频电路类似,有恒流式偏置电路和分压式偏置电路两类。 3、 晶体管噪声参量和S 参数的获得 大多数情况下晶体管的生产厂家提供相应型号的器件的噪声参量和S 参数。晶体管的噪声参量和S 参数也可以通过在实际工作点下,测量所需频段的噪声参量和S 参数得到。实际的噪声系数表达式为:()()[] 22min /op s op s s n B B G G G R F F -+-+= ; 式中,n R 是网络的等效电阻; min F 是网络的最小噪声系数; op op op jB G Y +=是对应于最小噪声系数的最佳源导纳;

相关主题
文本预览
相关文档 最新文档