新课标全国卷分类汇编(文)解析几何
- 格式:doc
- 大小:255.00 KB
- 文档页数:3
新课标全国卷Ⅰ文科数学分类汇编9.解析几何一、选择题22yx,0)(2CC1??2018,4 的一个焦点为,则】已知椭圆的离心率为(【):24a11222 C D A B ....23322y2x C?xC:?1FPFAP是双曲线的坐标【的右焦点,2017是,上一点,且5与】已知轴垂直,点3(1,3)APF?)是,则的面积为(3211. D B.A.C.233222yx1??=120°BCmCMAMBA201712满足∠是椭圆长轴的两个端点,若:【,则,】设上存在点、m3)( 的取值范围是)[4,(0,1][9,??)??(0,1])3][4,??(0,)3][9,??(0, A D BC....1ll,则该椭圆的经过椭圆的一个顶点和一个焦点,若椭圆中心到5】直线的距离为其短轴长的【2016,4)离心率为(3121 D .B.C.A.423312,的焦点重合,yxE的中心为坐标原点,离心率为=8,E的右焦点与抛物线C:【2015,5】已知椭圆2 ) 的准线与是CE的两个交点,则|AB|=( A,B D.12 C.9 6 A.3 B.52x)A ,则x=( x,y)是C上一点,|AF|=C【2014,10】10.已知抛物线:yA=x的焦点为F,(000048D..A1 B.2 C.422yx?)a?0?1(.已知双曲线】4 ) D 【2014,4 的离心率为2,则a=( 23a56. C D.1 A.2 B.2222yx5=1?的离心率为,则C的渐近线方程为(0)b0a:(】已知双曲线,【20134C>,>).22ba2.111?x??xx=y AB.y==±x.C.y=D.y3242x4224POF的焦点,P为C上一点,若y【2013,8】O为坐标原点,F为抛物线C:|PF=|,则△=的面积为().2223 D CA.2 B...422yx3a a?b?0?FFx?上一点,是椭圆E:为直线()的左、右焦点,【2012,4】4.设P、2122ab2?FPF是底角为30°的等腰三角形,则E的离心率为()121234 D..C.A.B54232xy?16x的准线交于A的中心在原点,焦点在,轴上,C与抛物线B两.等轴双曲线【2012,10】10C|AB|?43,则C的实轴长为()点,222C.4 B .DA..822yx??1的离心率为()【2011,4】椭圆1682311.D . B .A.C3232CCll AB?12PBA为交于两点,的对称轴垂直,,与,【20119】已知直线,过抛物线的焦点,且与C△ABP的面积为(的准线上一点,则).18364824. DC.A.B.二、填空题AB?B,A1?y?x220?3x??y2?y________2018,15 .两点,则与圆【交于】直线22a2y?x?B,A 0x:?y?2ay?2?C32AB?C,则圆两点,若相交于,【201615】设直线与圆.的面积为2y2?x?16)A(0,6:C是双曲线2015,C的右焦点,P是16左支上一点,】已知FAPF,当Δ周长最【8小时,该三角形的面积为.三、解答题????0,?2,0B2A2x?:Cy2 2018,20NCl两点.与,【】设抛物线交于,,过点,点的直线AM x 1l 的方程;(轴垂直时,求直线)当与BM2 ABN?∠ABM∠.)证明:(.2x.的横坐标之和为4上两点,A与B:【2017,20】设A,B为曲线C?y 4 AB)求直线的斜率;(1BMAM?AB的方程.,求直线上一点,C在M处的切线与直线AB平行,且C(2)设M为曲线2y0)?y?t(tl:xOy M0)?2px(pC:y?于,中,直线轴于点交抛物线交202016【,】在直角坐标系PMP H CNON,连结.的对称点为点并延长交,关于点于点OH MHH C是否有其他公共点?请说明理由.以外,直线(1与)求(;2)除ON22=1交于M,-3)N两点与圆C:(x-2).+(yl,【201520】已知过点A(0, 1)且斜率为k的直线OM?ON=12,其中O为坐标原点,求(Ⅱ|)MN|.的取值范围;(Ⅰ)求k22,过点的动直线与圆】已知点,圆交于两点,线段的中【2014,200:Cx??yy?8B,A(2,2)PClABP点为,为坐标原点. OM(1)求的轨迹方程;M(2)当时,求的方程及的面积|OM?|OP||POMl? 2222内切,圆NM外切并且与圆=9,动圆P,圆N:(x-1)+yx【2013,21】已知圆M:(+1)与圆+y1=.CP的轨迹为曲线心的方程;求C(1)|. |ABB两点,当圆P的半径最长时,求C,圆M都相切的一条直线,l与曲线交于A,l(2)是与圆P2l py?2x0p?为圆心,上一点,已知以】设抛物线C:F,准线为,(A为C)的焦点为F20【2012,l两点。
全国新课标一卷2023 解析几何一、引言全国新课标一卷2023是教育部制定的全国性统一教育考试,它涵盖了全国各地高中生的学习内容和能力要求。
解析几何是其中的重要部分,它是数学中的一个重要分支,对学生的逻辑思维能力和数学解决问题的能力有着重要的促进作用。
本文将从深度和广度上对全国新课标一卷2023中的解析几何部分进行全面评估,并撰写一篇有价值的文章,以帮助读者更全面、深刻和灵活地理解这一主题。
二、解析几何概述解析几何是几何学和代数学相结合的一门学科,它是用代数方法研究几何问题的一门数学分支。
解析几何的发展对数学的发展产生了深远的影响,它在几何学的发展史上占据着重要地位。
在全国新课标一卷2023中,解析几何的内容主要包括解析几何的基本概念、平面解析几何、空间解析几何、向量和解析几何、解析几何在几何证明中的应用等方面。
三、解析几何的基本概念在解析几何的学习过程中,学生首先需要掌握解析几何的基本概念。
学生需要了解坐标系、平面直角坐标系、向量、点、直线、平面、圆等基本概念,并且需要能够运用这些基本概念进行几何推理和计算。
解析几何的基本概念是学习解析几何的基础,只有掌握了基本概念,学生才能更深入地学习解析几何的相关内容。
四、平面解析几何全国新课标一卷2023中的平面解析几何部分主要包括平面直角坐标系中点、斜率和距离的计算、平面上的直线方程、平面上的圆方程等内容。
在学习这些内容时,学生需要掌握平面解析几何的基本方法和技巧,学生需要了解如何根据两点的坐标计算其斜率和距离,如何根据直线的方程进行直线的性质和相关问题的计算,以及如何根据圆的方程进行圆的性质和相关问题的计算。
平面解析几何是解析几何的重要内容之一,它在培养学生的数学思维和解决实际问题能力方面有着重要的作用。
五、空间解析几何除了平面解析几何外,全国新课标一卷2023中还涉及空间解析几何的内容。
空间解析几何是解析几何的拓展和延伸,它主要包括空间直角坐标系中点、距离、向量的计算以及空间中直线和平面的方程等内容。
2010-2017新课标全国卷分类汇编(解读几何)1.(2017课标全国Ⅰ,理10)已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .10【答案】A【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴同理1cos PAF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ21616sin 2θ=≥,当π4θ=取等号,即AB DE +最小值为16,故选A2.(2017课标全国Ⅰ,理15)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b aθ=b a =,解得223a b =∴e ==3.(2017课标全国Ⅰ,理20)(12分)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P 又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--当2x =时,1y =-,所以l 过定点()21-,.4.(2017课标全国Ⅱ,理9)若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .332 【答案】A【解读】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d =,则点()2,0到直线0b x a y +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.(2017课标全国Ⅱ,理16)已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则=FN . 【答案】6 【解读】试卷分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解读式可得准线方程为2x =-,则2,4A N F F '==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.【考点】抛物线的定义、梯形中位线在解读几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.6.(2017课标全国Ⅱ,理20)(12分)设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M 作x 轴的垂线,垂足为N ,点P 满足= (1)求点P 的轨迹方程; (2)设点Q 在直线3-=x 上,且1=⋅. 证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设)(y x P ,,则)22(y x M ,,将点M 代入C 中得12222=+y x ,所以点P 的轨迹方程为222=+y x .(2)由题可知)01(,-F ,设)()3(n m P t Q ,,,-,则)1( )3(n m t ---=-=,,,, )3( )(n t m n m ---==,,,.由1=⋅得1322=-+--n tn m m ,由(1)有222=+n m ,则有033=-+tn m ,所以033 =-+=⋅tn m ,即过点P 且垂直于OQ 的直线l 过C 的左焦点F .7.(2017课标全国Ⅲ,理1)已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A ⋂B 中元素的个数为A .3B .2C .1D .0【答案】B【解读】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故AB 表示两直线与圆的交点,由图可知交点的个数为2,即AB 元素的个数为2,故选B.8.(2017课标全国Ⅲ,理5)已知双曲线C 22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A. 221810x y -=B. 22145x y -=C. 22154x y -=D. 22143x y -=【答案】B【解读】∵双曲线的一条渐近线方程为y,则b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b =C 的方程为22145x y -=,故选B. 9.(2017课标全国Ⅲ,理10)已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为D.13【答案】A【解读】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a ==又∵0,0a b >>,则上式可化简为223a b = ∵222b ac =-,可得()2223a a c=-,即2223c a =∴c e a == A10.(2017课标全国Ⅲ,理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为() A .3B.D .2【答案】A【解读】由题意,画出右图.设BD 与C 切于点E ,连接CE . 以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.()A O Dxy BP gCE12||||22||||||BCDBC CDSECBD BD⋅⋅⋅====△即C.∵P在C上.∴P点的轨迹方程为224(2)(1)5x y-+-=.设P点坐标00(,)x y,可以设出P点坐标满足的参数方程如下:21xyθθ⎧=⎪⎪⎨⎪=⎪⎩而00(,)AP x y=,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB ADλμλμμλ=+=+=∴112xμθ==+,1yλθ==+.两式相加得:112)2sin()3λμθθθϕθϕ+=+++=++=++≤(其中sinϕcosϕ=)当且仅当π2π2kθϕ=+-,k∈Z时,λμ+取得最大值3.11.(2017课标全国Ⅲ,理20)(12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B 两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解:(1)设()()11222A x,y,B x,y,l:x my=+由222x myy x=+⎧⎨=⎩可得212240则4y my,y y--==-又()22212121212==故=224y yy yx,x,x x=4因此OA 的斜率与OB 的斜率之积为1212-4==-14y y x x 所以OA ⊥OB故坐标原点O 在圆M 上.(2)由(1)可得()2121212+=2+=++4=24y y m,x x m y y m + 故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点P (4,-2),因此0AP BP =,故()()()()121244220x x y y --+++= 即()()121212124+2200x x x x y y y y -++++= 由(1)可得1212=-4,=4y y x x ,所以2210m m --=,解得11或2m m ==-.当m=1时,直线l 的方程为x-y-2=0,圆心M 的坐标为(3,1),圆M ,圆M 的方程为()()223110x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91,-42⎛⎫ ⎪⎝⎭,圆M 的半径为4,圆M 的方程为229185++4216x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭12.(2016课标全国Ⅰ,理5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0(【解读】:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m =∴13n -<<,故选A .13.(2016课标全国Ⅰ,理10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于ED ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为|||M N MN y y =- (A )2 (B )4 (C )6 (D )8【解读】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0A x ,2pD ⎛- ⎝,点(0A x 在抛物线22y px =上,∴082px =……①;点2pD ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =, 焦点到准线的距离为4p =.故选B .14.(2016课标全国Ⅰ,理20)(本小题满分12分)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线两点,求四边形MPNQ【解读】:⑴圆A 整理为(x BE AC Q ∥,则C =∠EBD D ∴=∠∠,则EB ⑵221:143x yC +=;设:l x 联立1l C 与椭圆:24x x =⎧⎪⎨⎪⎩圆心A 到PQ 距离d ==F所以||PQ==,()2212111||||2234MPNQmS MN PQm+⎡∴=⋅=⋅==⎣+15.(2016课标全国Ⅱ,理4)圆2228130x y x y+--+=的圆心到直线10ax y+-=的距离为1,则a=()(A)43-(B)34-(C(D)216.(2016课标全国Ⅱ,理11)已知12,F F是双曲线2222:1x yEa b-=的左,右焦点,点M在E上,1MF与x轴垂直,211sin3MF F∠=,则E的离心率为()(A(B)32(C(D)217.(2016课标全国Ⅱ,理20)(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ);(Ⅱ).【解读】试卷分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试卷解读:(I )设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为. 将代入得.解得或,所以.因此的面积.(II )由题意,,.将直线的方程代入得. 由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系.18.(2016课标全国Ⅲ,理11)已知O为坐标原点,F是椭圆C:22221(0)x ya ba b+=>>的左焦点,,A B分别为C的左,右顶点.P为C上一点,且PF x⊥轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A)13(B)12(C)23(D)34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .19.(2016课标全国Ⅲ,理16)已知直线l :30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =||CD =__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解读几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.20.(2016课标全国Ⅲ,理20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解读;(Ⅱ)21y x =-.试卷解读:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解读几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.21.(2015课标全国Ⅰ,理5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是(A)((B)( (C)((D)( 答案:A解读:由条件知F1(-,0),F2(,0),=(--x0,-y0),=(-x0,-y0),-3<0.①又=1,=2+2.代入①得,∴-<y0<22.(2015课标全国Ⅰ,理14)一个圆经过椭圆221164x y+=的三个顶点,且圆心在x轴的正半轴上,则该圆的规范方程为答案:+y2=解读:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以=4-a,解得a=,故圆心为,此时半径r=4-,因此该圆的规范方程是+y2=23.(2015课标全国Ⅰ,理20)在直角坐标系xOy中,曲线2:4xC y=与直线:(0)l y kx a a=+>交于,M N两点。
专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
2010-2018全国卷分类汇编(解析几何)1卷索引版2010-2018新课标全国卷分类汇编新课标全国(1)(解析几何)(目录索引:可按ctrl +题号直接找到该题)1. (2010课标全国,理12) 已知双曲线E 的中心为原点,(3,0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -= 解析:1122(,),(,)A x y B x y ,双曲线方程为22221x y a b-=,∵AB 过F ,N ,∴斜率1AB k =∵2222112222221,1x y x y a b a b -=-=,∴两式差有1212121222()()()()0x x x x y y y y a b-+-+-=,∴2245b a =,又∵229a b +=,∴224,5a b ==,故选B2. (2010课标全国,理15) 过点A(4,1)的圆C 与直线x-y-1=0相切于点B (2,1),则圆C 的方程为22(3)2x y -+=解析: 设圆心(,)O a b ,借助图形可知3a =,又11032b OB b -∴=-=-与切线垂直,即22C (3)2r OB x y ==∴-+=圆的方程为3.(2010课标全国,理20) 设12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过1F 斜率为1的直线i 与E 相交于,A B 两点,且22,,AF AB BF 成等差数列。
(1)求E 的离心率;(2) 设点(0,1)p -满足PA PB =,求E 的方程 解:(I )由椭圆定义知224AF BF AB a ++=,又222AB AF BF =+,得43AB a =l 的方程为y x c =+,其中c =设()11,A x y ,()22,B x y ,则A 、B 两点坐标满足方程组22221y x c x y a b=+⎧⎪⎨+=⎪⎩,化简得()()222222220a b x a cx a c b +++-= 则()2222121222222,a c b a cx x x x a b a b--+==++ 因为直线AB 斜率为1,所以AB=21x -=得22244,3ab a a b =+故222a b = 所以E的离心率c e a===(II )设AB 的中点为()00,N x y ,由(I )知212022223x x a c x c a b +-===-+,003cy x c =+=。
专题四解析几何小题增分专项1直线与圆命|题|分|析全国卷3年高考年份全国Ⅰ卷全国Ⅱ卷全国Ⅲ卷2020直线与圆的相交弦·T6圆的方程·T8点到直线的距离·T8曲线的轨迹·T6 2019未考查未考查未考查2018直线与圆的弦长问题·T15未考查直线方程、圆的方程、点到直线的距离·T8命题规律1.圆的方程近两年为高考命题的热点,需重点关注。
此类试题难度中等偏下,多以选择题或填空题形式呈现。
2.直线与圆的方程偶尔单独命题,单独命题时有一定的深度,对直线与圆的方程(特别是直线)的考查主要体现在圆锥曲线的综合问题上。
一、直线方程的相关概念1.直线的倾斜角与斜率(1)直线的倾斜角为α,范围:0°≤α<180°。
(2)直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2)(x1≠x2),则k=y2-y1x2-x1。
2.直线方程的形式(1)点斜式:y -y 0=k ·(x -x 0)。
(2)斜截式:y =kx +b 。
(3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1。
(4)截距式:x a +yb =1。
(5)一般式:Ax +By +C =0(A 2+B 2≠0)。
(6)参数式:⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)。
3.两条直线的位置关系续表1.圆的方程(1)圆的标准方程与一般方程。
11221-x 2)+(y -y 1)(y -y 2)=0。
2.直线与圆的位置关系(1)设圆的半径为r ,圆心到直线的距离为d ,则当d <r 时,直线与圆相交;当d =r 时,直线与圆相切;当d >r 时,直线与圆相离。
(2)弦心距公式:直线截圆所得的弦长为2a ,圆的半径为r ,弦心距为d ,则弦心距公式为d =r 2-a 2。
(3)弦长公式:l =2a =2r 2-d 2。
2011年—2018年新课标全国卷文科数学分类汇编11.解析几何一、选择题(2018·新课标Ⅰ,文4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为()A .13B .12C .22D .223(2018·新课标Ⅱ,文6)双曲线22221(0,0)x y a b a b-=>>的离心率为)A .y =B .y =C .y x =D .y =(2018·新课标Ⅱ,文11)已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为()A .312-B .2C .312D 1-(2018·新课标Ⅲ,文8)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是()A .[]26,B .[]48,C .D .⎡⎣(2018·新课标Ⅲ,文10)已知双曲线22221x y C a b-=:(00a b >>,,则点()40,到C 的渐近线的距离为()A B .2C .322D .(2017·新课标Ⅰ,文5)已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ∆的面积为()A .13B .12C .23D .32(2017·新课标Ⅰ,文12)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是()A .(0,1][9,)+∞ B .[9,)+∞ C .(0,1][4,)+∞ D .[4,)+∞ (2017·新课标Ⅱ,文5)若a >1,则双曲线2221-=x y a的离心率的取值范围是()A.+∞)B.2)C. D.12(,)(2017·新课标Ⅱ,文12)过抛物线C :y 2=4x 的焦点F ,C 于点M (M 在x 轴上方),l 为N 在MN ⊥l,则M NF )A. B. C. D.(2017·新课标Ⅲ,文11)已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A .3B .3C .3D .13(2016·新课标Ⅰ,文5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为()A .13B .12C .23D .34(2016·新课标Ⅱ,文5)设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =A .12B .1C .32D .2(2016·新课标Ⅱ,文6)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =()A .43-B .34-C D .2(2016·新课标Ⅲ,文12)已知O 为坐标原点,F 是椭圆2222:1(0)x y C a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为().A .13B .12C .23D .34(2015·新课标Ⅰ,文5)已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x ,的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=()A .3B .6C .9D .12(2015·新课标Ⅱ,文7)已知三点)0,1(A ,)3,0(B ,)3,2(C ,则ABC ∆外接圆的圆心到原点的距离为A.53B.C.D.43(2014·新课标Ⅰ,文10)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=054x ,则x 0=()A .1B .2C .4D .8(2014·新课标Ⅰ,文4)已知双曲线)0(13222>=-a y a x 的离心率为2,则a=()A .2B .26C .25D .1(2014·新课标Ⅱ,文10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交于C 于A 、B 两点,则|AB |=()A B .6C .12D .(2014·新课标Ⅱ,文12)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是()A .[1,1]-B .11[]22-,C .[D .[(2013·新课标Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为()A .y =14x ±B .y =13x ±C .y =12x ±D .y =±x(2013·新课标Ⅰ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=则△POF 的面积为()A .2B .C .D .4(2013·新课标Ⅱ,文5)设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为()A .6B .13C .12D .3(2013·新课标Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为()A .1y x =-或1yx =-+B .(1)3y x =-或(1)3y x =--C .1)y x =-或1)y x =-D .(1)2y x =-或(1)2y x =--(2012·新课标Ⅰ,文4)设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为()A .12B .23C .34D .45(2012·新课标Ⅰ,文10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为()A B .C .4D .8(2011·新课标Ⅰ,文4)椭圆221168x y +=的离心率为()A .13B .12C .3D .2(2011·新课标Ⅰ,文9)已知直线l 过抛物线的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,12AB =,P 为C 的准线上一点,则ABP △的面积为().A .18B .24C .36D .48二、填空题(2018·新课标Ⅰ,文15)直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB =.(2016·新课标Ⅰ,文15)设直线2y x a =+与圆22:220C x y ay +--=相交于,A B 两点,若AB =,则圆C 的面积为.(2016·新课标Ⅲ,文15)已知直线:60l x -+=与圆2212x y +=交于A 、B 两点,过A 、B 分别作l的垂线与x 轴交于C 、D 两点,则CD =_________.(2015·新课标Ⅰ,文16)已知F 是双曲线C :2218y x -=的右焦点,P 是C 左支上一点,A ,当ΔAPF 周长最小时,该三角形的面积为.(2015·新课标Ⅱ,文15)已知双曲线过点,且渐近线方程为12y x =±,则该双曲线的标准方程为.三、解答题(2018·新课标Ⅰ,文20)设抛物线2:2C y x =,点()2,0A ,()2,0B -,过点A 的直线l 与C 交于M ,N两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:ABM ABN ∠=∠.(2018·新课标Ⅱ,文20)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.(2018·新课标Ⅲ,文20)已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为()()10M m m >,.(1)明:12k <-;⑵设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++= .证明:2FP FA FB =+ .(2017·新课标Ⅰ,文20)设A ,B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且BM AM ⊥,求直线AB 的方程.(2017·新课标Ⅱ,文20)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F.(2017·新课标Ⅲ,文20)在直角坐标系xOy 中,曲线2–2y x mx =+与x 轴交于A ,B 两点,点C 的坐标为()01,.当m 变化时,解答下列问题:(1)能否出现AC BC ⊥的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.(2016·新课标Ⅰ,文20)在直角坐标系xOy 中,直线:(0)l y t t =≠交y 轴于点M ,交抛物线2:2(0)C y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H .(1)求OHON;(2)除H 以外,直线MH 与C 是否有其他公共点?请说明理由.(2016·新课标Ⅱ,文21)已知A 是椭圆E :22143x y +=的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(Ⅰ)当|AM|=|AN|时,求△AMN 的面积;(Ⅱ)当|AM|=|AN|2k <<.(2016·新课标Ⅲ,文20)已知抛物线2:2C y x =的焦点为F ,平行于x 轴的两条直线1l ,2l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明//AR FQ ;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.(2015·新课标Ⅰ,文20)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(Ⅰ)求k 的取值范围;(Ⅱ)OM ON ⋅=12,其中O 为坐标原点,求|MN |.(2015·新课标Ⅱ,文20)已知椭圆C :22221x y a b +=(a >b >0)的离心率为2,点(2)在C 上.(Ⅰ)求C 的方程;(Ⅱ)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A 、B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.(2014·新课标Ⅰ,文20)已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积.(2014·新课标Ⅱ,文20)设F 1,F 2分别是椭圆C :12222=+by a x (a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为43,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(2013·新课标Ⅰ,文21)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.(2013·新课标Ⅱ,文20)在平面直角坐标系xoy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线段长为(Ⅰ)求圆心P 的轨迹方程;(Ⅱ)若P 点到直线y x =的距离为22,求圆P 的方程.(2012·新课标Ⅰ,文20)设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
2013—2018年全国课标卷分类汇总专题二:解析几何一、客观题[2013年全国课表Ⅰ卷·文理数]4、已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为 ( )A 、y =±14x (B)y =±13x (C)y =±12x (D)y =±x[2013年全国课表Ⅰ卷·理数]10、已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F的直线交椭圆于A 、B 两点。
若AB 的中点坐标为(1,-1),则E 的方程为 ()A 、x 245+y 236=1B 、x 236+y 227=1C 、x 227+y 218=1D 、x 218+y 29=1[2013年全国课表Ⅰ卷·文数] (8)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C上一点,若|PF |=42,则△POF 的面积为( )(A)2 (B)22 (C)23 (D)4[2013年全国课表Ⅱ卷·理数] (11)设抛物线y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )(A)y 2=4x 或y 2=8x (B) y 2=2x 或y 2=8x (C) y 2=4x 或y 2=16x (D) y 2=2x 或y 2=16x [2013年全国课表Ⅱ卷·文数] 5. 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( )(A)36 (B)13 (C)12 (D) 33[2013年全国课表Ⅱ卷·文数]10. 设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )(A)y =x -1或y =-x +1 (B)y =33(x -1)或y =-33(x -1) (C)y =3(x -1)或y =-3(x -1) (D)y =22(x -1)或y =-22(x -1) [2014年全国Ⅰ卷·理数]4.已知F 为双曲线C :x 2-my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( )A. 3B. 3C. 3mD. 3m[2014年全国Ⅰ卷·理数]10.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 得一个焦点,若PF →=4FQ →,则|QF |= ( )A. 72B.3C.52D.2[2014年全国Ⅰ卷·文数]4.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a = ( )A. 2B.62 C. 52D. 1 [2014年全国Ⅰ卷·文数]10.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0= ( ) A. 1 B. 2 C. 4 D. 8[2014年全国Ⅱ卷·理数]10. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334 B. 938 C.6332 D. 94[2014年全国Ⅱ卷·理数]16.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是________.[2014年全国Ⅱ卷·文数]10.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |= ( )(A)303(B)6 (C)12 (D)73 [2014年全国Ⅱ卷·文数]12.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )(A)[-1,1] (B)⎣⎡⎦⎤-12,12 (C) [-2,2] (D) ⎣⎡⎦⎤-22,22 [2015年全国Ⅰ卷·理数] (5)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1、F 2是C上的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( )(A)⎝⎛⎭⎫-33,33 (B)⎝⎛⎭⎫-36,36 (C) ⎝⎛⎭⎫-223,223 (D) ⎝⎛⎭⎫-233,233 [2015年全国Ⅰ卷·理数] (14)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴正半轴上,则该圆的标准方程为 .[2015年全国Ⅰ卷·文数]5、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )(A)3 (B)6 (C)9 (D)12 [2015年全国Ⅰ卷·文数]16、已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为 .[2015年全国Ⅱ卷·理数]7.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则|MN |= ( )A .2 6B .8C .4 6D .10[2015年全国Ⅱ卷·理数]11.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )A . 5B .2C . 3D .2[2015年全国Ⅱ卷·理数]15.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为 .[2016年全国Ⅰ卷·理数] (5)已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A)(-1,3) (B) (-1,3) (C) (0,3) (D) (0,3)[2016年全国Ⅰ卷·理数] (10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为( )(A)2 (B)4 (C)6 (D)8[2016年全国Ⅰ卷·文数] (5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为(A)13 (B)12 (C)23 (D)34[2016年全国Ⅰ卷·文数] (15)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为 .[2016年全国Ⅱ卷·理数] (4)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )(A) -43 (B) -34(C)3 (D)2[2016年全国Ⅱ卷·理数] (11)已知F 1、F 2是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )(A) 2 (B)32(C) 3 (D)2[2016年全国Ⅱ卷·文数] (5) 设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A)12(B)1 (C)32(D)2[2016年全国Ⅱ卷·文数] (6) 圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )(A) -43 (B) -34(C)3 (D)2[2016年全国Ⅲ卷·文理数] (11)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A)13(B)12(C)23(D)34[2016年全国Ⅲ卷·理数] (16)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________________. [2016年全国Ⅲ卷·文数] (15)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.则|CD |=________.[2017年全国Ⅰ卷·理数]10.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10[2017年全国Ⅰ卷·理数]15.已知双曲线C :x 2a 2-y2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为 .[2017年全国Ⅰ卷·文数]5.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A .13B .12C .23D .32[2017年全国Ⅰ卷·文数]12.设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)[2017年全国Ⅱ卷·理数]9.若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为A .2B .3C .2D .233[2017年全国Ⅱ卷·理数]16.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=____________. [2017年全国Ⅱ卷·文数]5.若a >1,则双曲线x 2a 2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2)[2017年全国Ⅱ卷·文数]12.过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 的轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A . 5B .2 2C .2 3D .3 3[2017年全国Ⅲ卷·理数]5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y=52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为 A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=1[2017年全国Ⅲ卷·文理数]10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为A .63B .33C .23D .13[2017年全国Ⅲ卷·文数]14.双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a= .[2018年全国Ⅰ卷·理数]8.设抛物线C :y 2=4x 的焦点为F ,过点(-2,0)且斜率为23的直线与C 交于M ,N 两点,则FM →·FN →=A .5B .6C .7D .8[2018年全国Ⅰ卷·理数]11.已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若△OMN 为直角三角形,则|MN |=A .32B .3C .23D .4[2018年全国Ⅰ卷·文数]4.已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .223[2018年全国Ⅰ卷·文数]15.直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.[2018年全国Ⅱ卷·文理数]5.双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为A .y =±2xB .y =±3xC .y =±22xD .y =±32x[2018年全国Ⅱ卷·理数]12.已知F 1、F 2是椭圆C :x 2a 2+y2b2=1(a >b >0)的左、右焦点,A是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为A.23 B .12 C .13 D .14[2018年全国Ⅱ卷·文数]11.已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为A .1-32 B .2-3 C .3-12D .3-1[2018年全国Ⅲ卷·理数]11.设F 1、F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为A .5B .2C .3D .2[2018年全国Ⅲ卷·理数]16.已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________.[2018年全国Ⅲ卷·文数]8.直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是A .[2,6]B .[4,8]C .[2,32]D .[22,32][2018年全国Ⅲ卷·文数]10.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为A .2B .2C .322D .22二、主观题[2013年全国课表Ⅰ卷·文理数] (20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C。
全国卷高考题〔解析几何〕20211128学号 姓名 2021新课标1卷〔5〕方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,那么n 的取值范围是〔A 〕(–1,3) 〔B 〕(–1,3) 〔C 〕(0,3) 〔D 〕(0,3) (10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.|AB |=|DE|=C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8 20. 〔本小题总分值12分〕设圆222150x y x ++-=的圆心为A ,直线l 过点B 〔1,0〕且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . 〔I 〕证明EA EB +为定值,并写出点E 的轨迹方程;〔II 〕设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2021新课标2卷〔4〕圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,那么a=〔A 〕43- 〔B 〕34- 〔C 〕3 〔D 〕2〔11〕1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,那么E 的离心率为 〔A 〕2 〔B 〕32〔C 〕3 〔D 〕2〔20〕〔本小题总分值12分〕 椭圆E :2213x y t +=的焦点在x 轴上,A是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA. 〔I 〕当4t =,AM AN=时,求△AMN 的面积;〔II 〕当2AMAN=时,求k 的取值范围.2021 新课标1卷(5)M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,假设12MF MF ⋅<0,那么y 0的取值范围是(A )(-33,33) (B )(-36,36) (C )(223-,223) (D )(233-,233)(14)一个圆经过椭圆的三个顶点,且圆心在x 轴上,那么该圆的标准方程为 . (20)(本小题总分值12分) 在直角坐标系xoy中,曲线C :y =24x 与直线l:y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 与N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.2021 新课标2卷7.过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,那么||MN =( )A .26B .8C .46D .1011.A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,那么E 的离心率为〔 〕 A B .2 C D 20.〔此题总分值12分〕椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;〔Ⅱ〕假设l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?假设能,求此时l 的斜率,假设不能,说明理由. 2021新课标1卷F 是双曲线C :223(0)x my m m -=>的一个焦点,那么点F 到C 的一条渐近线的距离为A .B .3C .D .3mC :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个焦点,假设4FP FQ =,那么||QF =A .72 B .52C .3D .220. (本小题总分值12分) 点A 〔0,-2〕,椭圆E :22221(0)x y a b a b+=>>F 是椭圆的右焦点,直线AF ,O 为坐标原点.〔I 〕求E 的方程;〔Ⅱ〕设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.2021新课标2卷10.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,那么△OAB 的面积为〔 〕A. B. C. 6332 D. 9416.设点M 〔0x ,1〕,假设在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,那么0x 的取值范围是________. 20. 〔本小题总分值12分〕设1F ,2F 分别是椭圆C:()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. 〔Ⅰ〕假设直线MN 的斜率为34,求C 的离心率;〔Ⅱ〕假设直线MN 在y 轴上的截距为2,且15MN F N =,求a,b . 2021新课标1卷4.(2021课标全国Ⅰ,理4)双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,那么C 的渐近线方程为( ). A .y =14x ± B .y =13x ±C .y =12x ± D .y =±x10.(2021课标全国Ⅰ,理10)椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.假设AB 的中点坐标为(1,-1),那么E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y +D .22=1189x y +20.(2021课标全国Ⅰ,理20)(本小题总分值12分)圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 2021新课标2卷11.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.1122⎛⎫- ⎪ ⎪⎝⎭ C.1123⎛⎤- ⎥ ⎝⎦D .20.(2021课标全国Ⅱ,理20)(本小题总分值12分)平面直角坐标系xOy 中,过椭圆M :2222=1x y a b+(a >b >0)右焦点的直线0x y +=交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,假设四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 解答题参考答案 2021年1卷20.〔本小题总分值12分〕解:〔Ⅰ〕因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:〔Ⅱ〕当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 那么3482221+=+k k x x ,341242221+-=k k x x .所以34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x ky ,A 到m 的距离为122+k ,所以1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[. 当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[. 2021年2卷【解析】 ⑴当4t =时,椭圆E的方程为22143x y +=,A 点坐标为()20-,,那么直线AM 的方程为()2y k x =+.联立()221432x y y k x ⎧+=⎪⎨⎪=+⎩并整理得,()2222341616120k x k x k +++-= 解得2x =-或228634k x k -=-+,那么222861223434k AM k k -=+=++ 因为AM AN ⊥,所以21212413341AN k kk ==⎛⎫++⋅- ⎪⎝⎭因为AM AN=,0k >,212124343k k k=++,整理得()()21440k k k --+=,2440k k -+=无实根,所以1k =. 所以AMN △的面积为221112144223449AM⎫==⎪+⎭.⑵直线AM的方程为(y k x =,联立(2213x y t y k x ⎧+=⎪⎨⎪=⎩并整理得,()222223230tk x x t k t +++-=解得x =x =,所以AM =所以3AN k k=+因为2AM AN =所以23k k=+,整理得,23632k kt k -=-.因为椭圆E 的焦点在x轴,所以3t >,即236332k kk ->-,整理得()()231202kk k +-<-2k <<.2021 年1卷 〔20〕解:〔I 〕有题设可得),(),M a N a M-或().又2=y 24x x y x '==,故在处的导数值为,C在点)a出的切线方程为a 0y x y a -=---=24x y x ==-在0y a -+=.00y a y a --=++=(I ) 存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x,y),N(x,y)直线PM ,PN 的斜率分别为12,k k故12124,4.x x k x x a +==-从而2440.kx a C kx a +--=代入的方程得x 当b=-a 时,有 2021 年2卷20. 试题解析:(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kbx k +==-+, 299M M by kx b k =+=+.于是直线OM 的斜率9M OMM y k x k ==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值.〔Ⅱ〕四边形OAPB 能为平行四边形.因为直线l 过点(,)3m m ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.由(Ⅰ)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m x k =+,即P x =.将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x ==2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l 的斜率为47-或47+时,四边形OAPB 为平行四边形.2021年1卷20.【解析】(Ⅰ) 设(),0F c ,由条件知2233c =,得3c =又32c a=, 所以a=2,2221b a c =-= ,故E 的方程2214x y +=. (6)分〔Ⅱ〕依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=,当216(43)0k ∆=->,即234k >时,21,22824314k k x k ±-=+ 从而2221224143114k k PQ k x x k +-=+-=+又点O 到直线PQ 的距离221d k =+,所以∆OPQ 的面积221443214OPQk S d PQ k ∆-==+ , 243k t -=,那么0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,72k =0∆>,所以当∆OPQ 的面积最大时,l 的方程为:722y x =- 或2y x =-. …………………………12分 2021年2卷 〔20〕解:〔I〕根据c =22(,),23b M c b ac a=将222b a c =-代入223b ac =,解得1,22c c a a==-〔舍去〕 故C 的离心率为12.〔Ⅱ〕由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即由15MN F N =得112DF F N =。
-高考数学全国卷分类汇编(解析几何)————————————————————————————————作者:————————————————————————————————日期:2010-2017新课标全国卷分类汇编(解析几何)1.(2017课标全国Ⅰ,理10)已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14 C.12ﻩD.10【答案】A 【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴ﻫ易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)ﻫcos AF P AF θ⋅+=∴ 同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =.ﻫ∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θﻫ21616sin 2θ=≥,当π4θ=取等号,即AB DE +最小值为16,故选A2.(2017课标全国Ⅰ,理15)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【答案】233【解析】如图,OA a =,AN AM b ==ﻫ∵60MAN ∠=︒,∴32AP b =,222234OP OA PA a b =-=-∴2232tan 34b AP OP a b θ==-又∵tan b aθ=,∴223234bb a a b =-,解得223a b = ∴221231133b e a =+=+=3.(2017课标全国Ⅰ,理20)(12分)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,3312P ⎛⎫- ⎪ ⎪⎝⎭,,4312P ⎛⎫⎪ ⎪⎝⎭,中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P 又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点ﻫ将()2330112P P ⎛⎫- ⎪ ⎪⎝⎭,,,代入椭圆方程得 222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b =ﻫ∴椭圆C 的方程为:2214x y +=.ﻫ(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,ﻫ联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=ﻫ122814kb x x k -+=+,21224414b x x k -⋅=+,ﻫ则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+ﻫ()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--当2x =时,1y =-,所以l 过定点()21-,.4.(2017课标全国Ⅱ,理9)若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为 A.2 B.3 C.2D.332【答案】A【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为22213d =-=,则点()2,0到直线0bx ay +=的距离为222023b a bd ca b +⨯===+, 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2242c e a ===.故选A. 【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.(2017课标全国Ⅱ,理16)已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则=FN .【答案】6 【解析】试题分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4AN FF'==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.【考点】抛物线的定义、梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.6.(2017课标全国Ⅱ,理20)(12分)设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M作x 轴的垂线,垂足为N ,点P 满足NM NP 2=.(1)求点P 的轨迹方程;(2)设点Q 在直线3-=x 上,且1=⋅PQ OP . 证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设)(y x P ,,则)22(y x M ,,将点M 代入C 中得12222=+y x ,所以点P 的轨迹方程为222=+y x .(2)由题可知)01(,-F ,设)()3(n m P t Q ,,,-,则)1( )3(n m PF t OQ ---=-=,,,, )3( )(n t m PQ n m OP ---==,,,.由1=⋅OQ OP 得1322=-+--n tn m m ,由(1)有222=+n m ,则有033=-+tn m ,所以033 =-+=⋅tn m PF OQ ,即过点P 且垂直于OQ 的直线l 过C 的左焦点F .7.(2017课标全国Ⅲ,理1)已知集合A={}22(,)1x y x y +=│ ,B ={}(,)x y y x =│,则A ⋂B 中元素的个数为A.3B.2 C.1 D .0【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故AB 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B.8.(2017课标全国Ⅲ,理5)已知双曲线C 22221x y a b -= (a >0,b>0)的一条渐近线方程为52y x =,且与椭圆221123x y += 有公共焦点,则C的方程为A. 221810x y -= B. 22145x y -= C. 22154x y -= D. 22143x y -=【答案】B【解析】∵双曲线的一条渐近线方程为52y x =,则52b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B. 9.(2017课标全国Ⅲ,理10)已知椭圆C :22221x y a b+=,(a>b >0)的左、右顶点分别为A 1,A2,且以线段A1A2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 A.63 B.33 C.23D.13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴222abd a a b==+又∵0,0a b >>,则上式可化简为223a b = ∵222b ac =-,可得()2223a a c=-,即2223c a =∴63c e a ==,故选A10.(2017课标全国Ⅲ,理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为() A .3ﻩﻩB.22ﻩC.5ﻩ ﻩD .2【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE .以A 为原点,AD 为x 轴正半轴,AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =. ∴22125BD =+=. ∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||2222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△即C 的半径为255. ∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=. 设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:00225cos 5215sin 5x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而00(,)AP x y =,(0,1)AB =,(2,0)AD =. ∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+= ∴0151cos 25x μθ==+,0215sin 5y λθ==+. 两式相加得:222515sin 1cos 552552()()sin()552sin()3λμθθθϕθϕ+=+++=+++=++≤ (其中5sin 5ϕ=,25cos 5ϕ=) 当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.11.(2017课标全国Ⅲ,理20)(12分)已知抛物线C :y2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M是以线段AB为直径的圆.()A O DxyB PCE(1)证明:坐标原点O在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M的方程. 解:(1)设()()11222A x ,y ,B x ,y ,l :x my =+由222x my y x =+⎧⎨=⎩可得212240则4y my ,y y --==- 又()22212121212==故=224y y y y x ,x ,x x =4因此OA 的斜率与OB 的斜率之积为1212-4==-14y y x x 所以OA ⊥O B故坐标原点O在圆M 上.(2)由(1)可得()2121212+=2+=++4=24y y m,x x m y y m + 故圆心M 的坐标为()2+2,m m ,圆M的半径()2222r m m =++由于圆M过点P (4,-2),因此0AP BP =,故()()()()121244220x x y y --+++= 即()()121212124+2200x x x x y y y y -++++= 由(1)可得1212=-4,=4y y x x ,所以2210m m --=,解得11或2m m ==-.当m=1时,直线l 的方程为x-y-2=0,圆心M 的坐标为(3,1),圆M的半径为10,圆M的方程为()()223110x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91,-42⎛⎫⎪⎝⎭,圆M 的半径为854,圆M 的方程为229185++4216x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭12.(2016课标全国Ⅰ,理5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A ))3,1(-ﻩﻩ(B ))3,1(-(C ))3,0( ﻩ(D))3,0(432112344224xEDABC【解析】:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m =∴13n -<<,故选A.13.(2016课标全国Ⅰ,理10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为(A )2 ﻩ(B )4 ﻩ(C)6ﻩﻩ (D)8【解析】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设()0,22A x ,,52pD ⎛⎫- ⎪⎝⎭,点()0,22A x 在抛物线22y px =上,∴082px =……①;点,52pD ⎛⎫- ⎪⎝⎭在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点()0,22A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =, 焦点到准线的距离为4p =.故选B.14.(2016课标全国Ⅰ,理20)(本小题满分12分)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程; ﻩ(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.【解析】:⑴圆A 整理为()22116x y ++=,A 坐标()1,0-,如图,BE AC ∥,则C EBD =∠∠,由,AC AD D C ==则∠∠, EBD D ∴=∠∠,则EB ED=,4||AE EB AE ED AD AB ∴+=+==>根据椭圆定义为一个椭圆,方程为22143x y +=,(0y ≠);F4 32112344224xQPNMAB()()2222222363634121||1||13434M Nm m mMN m y y mm m+++=+-=+=++⑵221:143x yC+=ﻩ;设:1l x my=+,因为PQ l⊥,设():1PQ y m x=--,联立1l C与椭圆:221143x myx y=+⎧⎪⎨+=⎪⎩()2234690m y my++-=,则圆心A到PQ距离()22|11||2|11m mdm m---==++,所以2222224434||2||21611m mPQ AQ dm m+=-=-=++,())2222222121114342411||||2412,831223413431MPNQm m mS MN PQm m mm+++⎡∴=⋅=⋅⋅==∈⎣+++++15.(2016课标全国Ⅱ,理4)圆2228130x y x y+--+=的圆心到直线10ax y+-=的距离为1,则a=()(A)43-(B)34-(C)3(D)216.(2016课标全国Ⅱ,理11)已知12,F F是双曲线2222:1x yEa b-=的左,右焦点,点M在E上,1MF与x轴垂直,211sin3MF F∠=,则E的离心率为( )(A)2(B)32(C)3(D)217.(2016课标全国Ⅱ,理20)(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试题解析:(I)设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.将代入得.解得或,所以.因此的面积.(II)由题意,,.将直线的方程代入得.由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系.18.(2016课标全国Ⅲ,理11)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13 ﻩﻩ(B )12 ﻩ(C )23 ﻩ(D)34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .19.(2016课标全国Ⅲ,理16)已知直线l :330mx y m ++-=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若23AB =,则||CD =__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.20.(2016课标全国Ⅲ,理20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分 (Ⅰ)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a ab a ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分 考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.21.(2015课标全国Ⅰ,理5) 已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是(A)33(,)33-(B) 33(,)66- (C) 2222(,)33- (D)2323(,)33-答案:A解析:由条件知F1(-,0),F2(,0),=(--x0,-y0),=(-x0,-y0),-3<0.ﻩ①又=1,=2+2.代入①得,∴-<y0<22.(2015课标全国Ⅰ,理14)一个圆经过椭圆221164x y+=的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为答案:+y2=解析:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以=4-a,解得a=,故圆心为,此时半径r=4-,因此该圆的标准方程是+y2=23.(2015课标全国Ⅰ,理20)在直角坐标系xOy中,曲线2:4xC y=与直线:(0)l y kx a a=+>交于,M N两点。
解析几何
(2007)7.已知抛物线22(0)y px p =>的焦点为F ,点11
1222()()P x y P x y ,,,,33
3()P x y ,在抛物线上,且2132x x x =+,则有( ) A.123FP FP FP += B.22212
3FP FP FP += C.2132FP FP FP =+ D.221
3FP FP FP =· (2007)13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .
(2007)21.(本小题满分12分)
在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(02)P ,
且斜率为k 的直线与圆Q 相交于不同的两点A B ,.
(Ⅰ)求k 的取值范围;
(Ⅱ)是否存在常数k ,使得向量OA OB + 与PQ 共线?如果存在,求k 值;如果不存
在,请说明理由.
(2008)2、双曲线22
1102
x y -=的焦距为( )
(2008)10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( )
A. [0,5]
B. [0,10]
C. [5,10]
D. [5,15]
(2008)15、过椭圆22
154
x y +=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为______________
(2008)20、(本小题满分12分)已知m ∈R ,直线l :2
(1)4mx m y m -+=和圆C : 2284160x y x y +-++=。
(1)求直线l 斜率的取值范围;
(2)直线l 能否将圆C 分割成弧长的比值为12
的两段圆弧?为什么? (2009)5.已知圆1C :2(1)x ++2
(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,
则圆2C 的方程为
A .2(2)x ++2(2)y -=1
B .2(2)x -+2(2)y +=1
C .2(2)x ++2(2)y +=1
D .2(2)x -+2(2)y -=1
(2009)14.已知抛物线C 的顶点坐标为原点,焦点在x 轴上,直线y=x 与抛物线C 交于A ,B 两点,若(2,2)P 为AB 的中点,则抛物线C 的方程为________________. (2009)20.(本小题满分12分)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个项点到两个焦点的距离分别是7和1. (Ⅰ)求椭圆C 的方程;
(Ⅱ)若P 为椭圆C 的动点,M 为过P 且垂直于x 轴的直线上的点,OP e OM
=,(e 为椭圆C 的离心率),求点M 的轨迹方程,并说明轨迹是什么曲线.
(2010)(5)中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的
离心率为
(A (B (C )2 (D )2
(2010)(13)圆心在原点且与直线20x y +-=相切的圆的方程为 。
(2010)(20)(本小题满分12分)
设1F ,2F 分别是椭圆E :2
x +2
2y b =1(0b<1<)的左、右焦点,过1F 的直线l 与E 相交于A 、B 两点,且2AF ,AB ,2BF 成等差数列。
(Ⅰ)求AB
(Ⅱ)若直线l 的斜率为1,求b 的值。
(2011)4.椭圆22
1168
x y +=的离心率为
A .13
B .12
C .3
D .2
(2011)9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两
点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为
A .18
B .24
C . 36
D . 48 (2011)20.(本小题满分12分)
在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上.
(I )求圆C 的方程; (II )若圆C 与直线0x y a -+=交于A ,B 两点,且,OA OB ⊥求a 的值.
(2012)(4)设1F ,2F 是椭圆E :22
22
x y a b +=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则
E 的离心率为 A .12 B .23 C .34 D .45
(2012)(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准
线交于A 、B 两点,||AB =C 的实轴长为
A B . C .4 D .8
(2012)(20)(本小题满分12分)设抛物线C :22x py =(p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.
(Ⅰ)若090BFD ∠=,ABD ∆的面积为p 的值及圆F 的方程;
(Ⅱ)若A ,B ,F 三点在同一条直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.。