物理竞赛2静力学
- 格式:doc
- 大小:2.11 MB
- 文档页数:20
高中物理竞赛辅导(2)静力学力和运动共点力的平衡n个力同时作用在物体上,若各力的作用线相交于一点,则称为共点力,如图1所示。
作用在刚体上的力可沿作用线前、后滑移而不改变其力学效应。
当刚体受共点力作用时,可把这些力沿各自的作用线滑移,使都交于一点,于是刚体在共点力作用下处于平衡状态的条件是:合力为零。
(1)用分量式表示:(2)[例1]半径为R的刚性球固定在水平桌面上,有一质量为M的圆环状均匀弹性细绳圈,原长为,绳圈的弹性系数为k。
将圈从球的正上方轻放到球上,并用手扶着绳圈使其保持水平,最后停留在平衡位置。
考虑重力,不计摩擦。
①设平衡时绳圈长,求k值。
②若,求绳圈的平衡位置。
分析:设平衡时绳圈位于球面上相应于θ角的纬线上。
在绳圈上任取一小元段,长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。
元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为位于绳圈平面内,指向绳圈中心。
这三个力都在经线所在平面内,如图示(c)所示。
将它们沿经线的切向和法向分解,则切向力决定绳圈沿球面的运动。
解:(1)由力图(c)知:合张力沿经线切向分力为:重力沿径线切向分力为:(2-2)当绳圈在球面上平衡时,即切向合力为零。
(2-3)由以上三式得(2-4)式中由题设:。
把这些数据代入(2-4)式得。
于是。
(2)若时,C=2,而。
此时(2-4)式变成tgθ=2sinθ-1,即 sinθ+cosθ=sin2θ,平方后得。
在的范围内,上式无解,即此时在球面上不存在平衡位置。
这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。
[例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。
若碗的半径大于球的半径k倍时,则四球将互相分离。
试求k值。
分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。
第二讲 力平衡(一)精选例题【例1】 如图所示一个均匀的质量为1m 的球挂在天花板上,从同一点挂一个重物质量为2m 。
问所成角度。
O 【解析】相对于点的总力矩为0.)m g (l +R )sin =m 12g R -(l +R sin θθ⎡⎤⎣⎦∴()1212sin []+R m (m +)m R l θ-=该题如果用变力分析去解题,对悬挂2m 的绳对大球的支持力的方向比较困难,而用力矩去解题,显得尤为简单【例2】 如图,重为G 木块用绳子悬挂在两个轻杆支架的交点P ,现给木块一个水平方向的F F 12N 、N 、T 作用力,缓慢增大并且系统保持平衡,求作用力的变化趋势。
N 【解析】可以采用图解法,分别考虑木块以及P 点的受力平衡,将二者的受力三角形画在同一个图中,利用几何相似三角形的方法可以得到三个力的变化趋势。
最后可得,不变,2N 1和T 增加。
【例3】 如图,一个半径为R 非均匀质量光滑的圆球,其重心不在球心O 处,先将它置于A 30︒B A B 30︒C O 水平地面上,平衡时球面上的点和地面接触;再将它置于倾角为的粗糙斜面上,平衡时球面上的点与斜面接触,已知到的圆心角也为,试求球体的重心到球心的距离.【解析】B BC A OA 放在斜面上,球受重力支持力和摩擦力,三力共点必过点的重心在过B 于平面垂直的直线上。
即,又放在水平面上点落地,则此时球受重力和支持力,则球重心必在连线上,则重心位置在C 点.CO==【例6】有一长l重为W的均匀杆AB,A顶端竖直的粗糙墙壁上,杆端与墙间的摩擦系数μB CθμθP A P WPB PA x 为,端用一强度足够而不可伸长的绳悬挂,绳的另一端固定在墙壁点,木杆呈水平状态,绳与杆的夹角为(如图),求杆能保持平衡时与应满足的条件。
杆保持平衡时,杆上有一点存在,若与点间挂一重物,则足够大可以破坏平衡了,而在间任一点悬挂任意重物均不能破坏平衡。
求距离. 【解析】受力分析coT Nsθ=力平衡siT f W Wnθ+=+A力矩平衡:以为支点,θ=Wsin2lTl W+x∴f=W+W-N tan≤Nθμ2W xtanθ=+N W∴0002l2lW Wx xW+W Wtanlμθ-+()≤(+W)∴00()2l2W W)≤(+WtanlW Wx xμθ+-①0W=ntaμθ≥当不挂生物,此即为不挂重物平衡的条件,可得②W0(1)2tan(+1)-W Wμxμθl tanθ-+≤W取穷大,则上式仍成立.∴μθl tan(1)+-1tanxl tanθθμ+≥0⇒x≥wr G【例7】有一个半径为a,高为4a,重为的两端开口的薄壁圆筒,现将筒竖放在光滑的水平面上,之后将半径为,重为的两个完全相同的光滑圆球放入筒内而呈叠放状态,如图,当<r 2<a 2a 时,试求使圆筒不翻倒的条件.【解析】方法一:先看一个直角三角形O 对进行受力分析∴cos sin T =G cot θθ=N T θ=N G ⇒22212-a r ar -a r N =G ar -a sin θG =G =再对筒受力分析A N A 考虑以为支点,考虑翻倒则地面给筒的支持力的作用点移到点.则不翻倒条件。
第一部分静力学【竞赛知识要点】重心共点力作用下物体的平衡物体平衡的种类力矩刚体的平衡流体静力学(静止流体中的压强)【内容讲解】一.物体的重心1.常见物体的重心:质量均匀分布的三角板的重心在其三条中线的交点;质量均匀分布的半径R的半球体的重心在其对称轴上距球心3R/8处;质量均匀分布的高为h的圆锥体的重心在其对称轴上距顶点为3h/4处。
2.重心:在xyz 三维坐标系中,将质量为m的物体划分为质点m1、m2、m3……m n.设重心坐标为(x0,y0,z0),各质点坐标为(x1,y1,z1),(x2,y2,z2)……(x n,y n,z n).那么:mx0=∑m i x i my0=∑m i y i mz0=∑m i z i【例题】1、(1)有一质量均匀分布、厚度均匀的直角三角板ABC,∠A=30°∠B=90°,该三角板水平放置,被A、B、C三点下方的三个支点支撑着,三角板静止时,A、B、C三点受的支持力各是N A、N B、N C,则三力的大小关系是.(2)半径为R的均匀球体,球心为O点,今在此球内挖去一半径为0.5R的小球,且小球恰与大球面内切,则挖去小球后的剩余部分的重心距O点距离为.2、如图所示,质量分布均匀、厚度均匀的梯形板ABCD,CD=2AB,求该梯形的重心位置。
3、在质量分布均匀、厚度均匀的等腰直角三角形ABC(角C为直角)上,切去一等腰三角形APB,如图所示。
如果剩余部分的重心恰在P点,试证明:△APB的腰长与底边长的比为5:4.4、(1)质量分别为m,2m,3m……nm的一系列小球(可视为质点),用长均为L的细绳相连,并用长也是L的细绳悬于天花板上,如图所示。
求总重心的位置5、如图所示,质量均匀分布的三根细杆围成三角形ABC,试用作图法作出其重心的位置。
6、如图所示,半径为R圆心角为θ的一段质量均匀分布的圆弧,求其重心位置。
7、论证质量均匀分布的三角形板的重心在三条中线的交点上8、求半径为R 的厚薄均匀的半圆形薄板的重心9、均匀半球体的重心问题10、均匀圆锥体的重心11、如图所示,有一固定的半径为R 的光滑半球体,将一长度恰好等于R 21、质量为m 的均匀链条搭在球体上,其一端恰在球体的顶点上,并用水平拉力拉住链条使之静止,求拉力的大小。
高一物理竞赛《静力学》专练(精华版)静力学1.直径为d 和D 的两个圆柱,置于同一水平的粗糙平面上,如图所示,在大圆柱上绕以绳子,作用在绳端的水平拉力为F ,设所有接触处的摩擦系数为μ,试求大圆柱能翻过小圆柱时,μ值必须满足的条件。
2.如图所示,四个半径为r 、质量相等的光滑小球放在一个表面光滑的半球形碗底内,四小球球心在同一水平面内.今用另一个完全相同的小球置于四个小球之上,为使下面四小球相互接触不分离,碗半径应满足什么条件.3.如图所示,有一固定的、半径为a 、内壁光滑的半球形碗(碗口处于水平位置),O 为球心。
碗内搁置一质量为m 、边长为a 的等边三角形均匀薄板ABC 。
板的顶点A 位于碗内最低点,碗的最低点处对A 有某种约束使顶点A 不能滑动(板只能绕A 点转动)。
(1).当三角形薄板达到平衡时,求出碗对顶点A 、B 、C 的作用力的大小各为多少。
(2).当板处于上述平衡状态时,若解除对A 点的约束,让它能在碗的内表面上从静止开始自由滑动,求此后薄板具有的最大动能。
4.一质量为m 的小球被固定在质量为M 的大圆环上.把此圆环挂在一不光滑的钉子上,如图所示.若要使环上的任何一点(除小球所在位置外)挂在钉子上,都能使环保持平衡,则环与钉子之间的摩擦系数μ至少多大?5.如图所示,将一支正六棱柱形铅笔放在斜面上,斜面倾角a=40°,铅笔与水平方面成θ角,铅笔静止,试问:(1)铅笔与斜面之间的静磨擦因数至少为多大?(2)θ角至少多大?6、一根细棒AB ,A 端用铰链与天花板相连,B 端用铰链与另一细棒BC 相连。
二棒长度相等,限于在图示的竖直面内运动,且不计较铰链处的磨擦。
当在C 端加一个适当的外力(与AB 、BC 在一个平面内)可使二棒静止在如图所示的位置,即二棒相互垂直,且C 端在A 端的正下方。
(1)不论二棒的质量如何,此外力只可能在哪个方向范围内?试说明理由。
(2)如果AB 棒质量为m 1,BC 棒质量为m 2,求此外力的大小和方向。
第一讲:力、物体的平衡补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。
一、力学中常见的三种力1.重力、重心 重心的定义:ΛΛΛΛ++++=g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。
问题:半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内切圆板,如图a 所示,求剩下部分的重心。
2.弹力、弹簧的弹力(F =kx ,或F =-kx )(1)两弹簧串联总伸长x ,F =?由x 1+x 2=x ,k 1x 1=k 2x 2,得2112k k x k x +=,所以kx k k x k k x k F =+===212122. (2)并联时F =(k 1+k 2)x .(3)把劲度系数为k 的弹簧均分为10段,每段劲度系数k '=?(10k )1. 一个重为G 的小环,套在竖直放置的半径为R 的光滑大圆上。
一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,其上端固定在大圆环最高点,下端与小环相接,不考虑一切摩擦,小环静止时弹簧与竖直方向的夹角为:. (答案:GkR kL 22cos 1--) 3.摩擦力(1)摩擦力的方向:①静摩擦力的方向:跟运动状态与外力有关。
②滑动摩擦力的方向:跟相对运动方向相反。
2. 如图所示,在倾角θ=300的粗糙斜面上放一物体,物体的重力为G ,现用与斜面底边平行的水平作用力F (F =G /2)推物体,物体恰好在斜面上作匀速直线运动,则物体与斜面的动摩擦因数为 . (答案:36)(2)摩擦角:f 和N 的合力叫全反力,全反力的方向跟弹力的方向的最大夹角(f 达到最大)叫摩擦角,摩擦角ϕ=tan -1f /N =tan -1μ。
摩擦角与摩擦力无关,对一定的接触面,ϕ是一定的。
水平地面上有一质量为m 的物体,受斜向上的拉力F 作用而匀速移动,物体与地面间的动摩擦因数为μ,则为使拉力F 最小,F 与水平地面间的夹角多大?F 的最小值为多少?二、物体的平衡1.三力平衡特点 (1)任意两个的合力与第三个力是一对平衡力(2)三力汇交原理:互不平行的三个力处于平衡,这三个力的作用线必交于一点。
第二部分:静力学一、复习基础知识点一、 考点内容1.力是物体间的相互作用,是物体发生形变和物体运动状态变化的原因。
2.重力是物体在地球表面附近所受到的地球对它的引力,重心。
3.形变与弹力,胡克定律。
4.静摩擦,最大静摩擦力。
5.滑动摩擦,滑动摩擦定律。
6.力是矢量,力的合成与分解。
7.平衡,共点力作用下物体的平衡。
二、 知识结构⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎩⎨⎧→→→⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛-→的灵活使用方法:整体法和隔离法产生条件、摩擦力、弹力、重力顺序原则受力分析实效原则图解法(几何法)力的分解式法图解法(几何法)、公力的合成力的等效性使物体产生形变物体产生加速度)改变物体运动状态(使力的效果效果各异作用力与反作用力效果相同平衡力支持力等回复力、浮力、压力、动力、阻力:向心力、效果子力、电场力、磁场力不接触的力:重力、分产生条件、大小、方向力接触的力:弹力、摩擦性质力的种类物体受力物体同时定是施力物体施力物体同时定是受力相互性受力物体施力物体物体间作用物质性力的属性—物体间的相互作用—力的定义力.......321 三、 复习思路在复习力的概念时,同学们应注重回顾学过的各种具体的力,包括电磁学中的各种力,也可以联系牛顿第三定律展开研究力的相互性。
对于重力,在复习时可以联系万有引力定律,分清为什么“重力是由于地球的吸引而产生的力”。
且通过分析物体随地球自转需向心力,最终认识重力与万有引力之间的差异很小,一般可认为2地R GMmmg =。
摩擦力是本单元的重点,也是难点,要结合具体的例子,对摩擦力的大小和方向,摩擦力的有无的讨论以及物体在水平面、斜面上、竖直墙上等的滑动摩擦力与弹力的关系等,要分门别类地进行讨论、研究。
四、 基础知识(一)力的处理1、矢量的运算(1)加法 表达:a + b = c 。
名词:c 为“和矢量”。
法则:平行四边形法则。
如图1所示。
和矢量大小:c = α++cos ab 2b a 22 ,其中α为a 和b 的夹角。
和矢量方向:c 在a 、b 之间,和a 夹角sin β= ααcos 2sin 22ab b a b ++ (2)减法:表达:a = c -b 。
名词:c 为“被减数矢量”,b 为“减数矢量”,a 为“差矢量”。
法则:三角形法则。
如图2所示。
将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。
差矢量大小:a =θ-+cos bc 2c b 22 ,其中θ为c 和b 的夹角。
差矢量的方向可以用正弦定理求得。
一条直线上的矢量运算是平行四边形和三角形法则的特例。
(二)、共点力的合成1、平行四边形法则与矢量表达式2、一般平行四边形的合力与分力的求法:余弦定理(或分割成RtΔ)解合力的大小;正弦定理解方向(三)、力的分解1、按效果分解2、按需要——正交分解二、物体的平衡(一)共点力平衡1、特征:质心无加速度。
2、条件:ΣF = 0 ,或 x F ∑ = 0 ,y F ∑ = 0例题:如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。
解说:直接用三力共点的知识解题,几何关系比较简单。
答案:距棒的左端L/4处。
(学生活动)思考:放在斜面上的均质长方体,按实际情况分析受力,斜面的支持力会通过长方体的重心吗?解:将各处的支持力归纳成一个N ,则长方体受三个力(G 、f 、N )必共点,由此推知,N 不可能通过长方体的重心。
正确受力情形如图6所示(通常的受力图是将受力物体看成一个点,这时,N 就过重心了)。
答:不会。
(二)转动平衡 1、特征:物体无转动加速度。
2、条件:ΣM = 0 ,或ΣM + =ΣM -如果物体静止,肯定会同时满足两种平衡,因此用两种思路均可解题。
3、非共点力的合成大小和方向:遵从一条直线矢量合成法则。
作用点:先假定一个等效作用点,然后让所有的平行力对这个作用点的和力矩为零。
五、 基础习题回顾1.(2003年高考理综(新课程卷))如右上图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的。
一根细线跨在碗口上,线的两端分别系有质量为1m 和2m 的小球,当它们处于平衡状态时,质量为1m 的小球与O 点的连线与水平线的夹角为a =600。
两小球的质量之比12m m 为: A 、33 B 、32 C 、23 D 、22 2.(2005年广州二摸大综合)一块砖放在水平地面的木板上,现缓慢抬起木板的一端,使木板绕另一端缓缓转动,在砖与木板间发生相对滑动前,关于砖受到的摩擦力F ,以下叙述中正确的是:A .F 随木板倾角的增大而减小B .F 随木板倾角的增大而增大C .F 的大小不随木板倾角的增大而改变D .无法判断F 大小的变化3.如图所示,质量为m 的物体用一通过定滑轮的轻绳栓住,在大小为F 的拉力作用下匀速运动,物体与竖直墙接触且轻绳平行..于墙壁,则物体与墙壁之间的摩擦力为: A 、大小为mg ,方向向上 B 、大小为F-mg ,方向向上C 、大小为∣F-mg ∣,方向向上D 、零4.如图,将质量为m 的物体置于固定的光滑斜面上,斜面倾角为θ,水平力F 作用在m 上,物体m 处于静止状态,关于m 对斜面的压力大小表示有以下四式:①θcos /mg ;②θs i n /F ;③22)(F mg +;④θθsin cos F mg +。
则以下判断正确的是:A 、只有④正确B 、只有③和④正确C 、只有①与②正确D 、①②③④正确5.在研究弹簧的形变与外力的关系的实验中,将弹簧水平放置测出其自然长度,然后竖直悬挂让其自然下垂,在其下端竖直向下施加外力F ,实验过程是在弹簧的弹性限度内进行的。
用记录的外力F 与弹簧的形变量x 作出的F —x 图线如图所示,由图可知弹簧的劲度系数为 。
图线不过坐标原点的原因是由于 。
6.机械设计中常用到下面的力学原理,如右图,只要使连杆AB 与滑块m 在平面间的夹角θ大于某个值,那么,无论连杆AB对滑块施加多大的作用力,都不可能使之滑动,并且连杆AB 对滑块施加的作用力越大,滑块就越稳定,工程力学上称这为“自锁”现象。
为使滑块能“自锁” θ应满足什么条件?(设滑块与所在平面间的动摩擦因数为μ)7.(2004年全国春招)图中a 、b 是两个位于固定斜面上的正方形物块,它们的质量相等。
F 是沿水平方向作用于a 上的外力。
已知a 、b 的接触面,a 、b 与斜面的接触面都是光滑的。
正确的说法是:A .a 、b 一定沿斜面向上运动B .a 对b 的作用力沿水平方向C .a 、b 对斜面的正压力相等D .a 受到的合力沿水平方向的分力等于b 受到的合力沿水平方向的分力8.如图所示,某人在岸边用绳牵引小船匀速靠岸的过程,若水对船的阻力不变,则下列说法正确的是:A 、绳子拉力不断减小B 、绳子拉力始终不变C 、船受到的浮力不断减小D 、船受到的合力不断减小9.如下图所示,OC 为一遵循胡克定律的轻绳,其一端固定于天花板上的O 点,另一端与静止在动摩擦因数恒定的水平地面上的滑块A 相连,当绳处于竖直位置时滑块A 对地面有压力作用,B 为紧挨绳的一光滑水平小钉,它到天花板的距离BO 等于弹性绳的自然长度,现用一水平力F 作用于A ,使之向右做直线运动,在运动过程中,作用于滑块A 的滑动摩擦力(绳一直处于弹性限度以内)将:A 、逐渐增大B 、逐渐减小C 、保持不变D 、条件不足,无法判断10.如图所示,一质量为M 的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β;a 、b 为两个位于斜面上质量均为m 的小木块。
已知所有接触面都是光滑的。
现发现a 、b 沿斜面下滑,而楔形木块静止不动,这时楔形木块对水平桌面的压力等于:A .Mg+mgB .Mg+2mgC .Mg+mg(xin α+xin β)D .Mg+mg(cox α+cox β) 11.跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落,已知运动员和他身上装备的总重量为G 1,圆顶形降落伞伞面的重量为G 2,有12条相同的拉线(拉线重量不计),均匀分布在伞面边缘上,每根拉线和竖直方向都成30°角。
则每根拉线上的张力大小为:A 、1831GB 、18)(321G G + C 、1221G G + D 、61G 12.设在某次人工降雨中,有一质量恒为m 的雨滴从高空由静止开始竖直下落,雨滴下落过程中受到的空气阻力大小与下落速度大小成正比,即F =kv ,其中是为比例系数,则雨滴在刚开始下落的一小段时间内做加速度______、速度_______的直线运动(以上两空选填“增大”、“减小”或“不变”)。
雨滴最终做匀速直线运动的速度表达式为m v =M αβba二、从高考到初赛知识要点分析一、力的效应1.内、外效应:力的作用效果有两种:一是受力物发生形变;二是使受力物的运动状态发生变化。
前者表现为受力物各部分的相对位置发生变化,故称为力的内效应;后者表现为受力物的运动方向或快慢发生变化,故称为力的外效应。
众所周知,当物体同时受到两个或多个力作用时,它的运动状态也可能保持不变,这说明力对同一物体的外效应可能相互抵消。
2.合力与分力合力与它的那组分力之间,在力学效果上必须具有“等效代换”的关系。
二、力的作用方式力是物体间的一种相互作用,又是一并具有大小、方向和作用点的一种矢量。
根据研究和解决实际问题的需要,可以从不同的角度对力进行区分。
1.体力、面力和点力按照力的作用点在受力物上的分布情况,可将力可将力分为体力、面力和点力三种。
外力的作用点连续分布在物体表面和内部的一定(或全部)区域,这种力就是体力。
重力就是一种广泛存在的体力。
作用点连续分布在物体某一面(或全部表面)上,这种力就是面力。
压力和摩擦力就是一种广泛存在的面力。
当面力和体力作用的区域远比受力物小,或可以不考虑作用点的分布情况时,就可以把相应的体力或面力当成是集中在物体的某一点上作用的,这种情况下的体力和面力就叫做点力。
例如,在通常情况下,我们就是把重力、摩擦力和压力当成点力看待。
具体而言,常用物体各部分所受重力的合力来代替该物体受到的总重力;用摩擦面上各部分所受摩擦力之合力来代替这个面上的总摩擦力;对压力也是按照这种方式处理的。
当不涉及转动的时候,我们甚至把面力的合力作用点标出在物体的重心上,这就使问题的解决更加便当。