高中物理竞赛 动力学
- 格式:doc
- 大小:763.00 KB
- 文档页数:7
第3讲动力学一般问题与特殊问题一、知识点击1.惯性系与牛顿运动定律⑴惯性系:牛顿运动定律成立的参考系称为惯性参考系.地球参考系可以很好地近似视为惯性参考系一切相对地面静止或匀速直线运动的参考系均可视为惯性参考系.⑵牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.牛顿第一定律也称为惯性定律.牛顿第二定律:物体的加速度与其所受外力的合力成正比,与物体的质量成反比,其方.常作正交分解成:向与合外力的方向相同.即F maF x=ma x F y=ma y F z=ma z牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.2.联结体所谓“联结体”就是一个系统内有若干个物体,它们的运动情况和受力情况都一种关系联系起来.若联结体内(即系统内)各物体只有相同的加速度时应先把这联结体当成一个整体(看成一个质点).分析这类问题的一般方法是:(l)将系统中的每个物体隔离开来分别进行受力分析;(2)对每个物体用牛顿第二、三定律列方程,有的物体可以列互为正交方向上的两个方程;(3)根据具体情况确定各物体的运动特征量般(如速度、加速度)之间的关系.在解决联结体问题时确定齐物体加速度之间的关系是}分币要的.3.非惯性系牛顿第一、二定律只适用十某一类参考系、这类参考系叫惯性系.比如地面就是一个相当好的惯性系,太阳是一个非常好的惯性系,一般我们认为,相对地面没有加速度的参考系,都可视为惯性系,相对地而有加速度的参考系,都可视为非惯性系.在非惯性系中,为了使牛顿第一、二定律在形式上仍然成立,我们可以给每个物体加上一个惯性力F 0.F 0的大小为ma 0(m 为研究的物体,a 0为所选参考系相对地而的加速度), F 0的方向和a 0的方向相反.如果取一个转动的参考系,则要加上惯性离心力F 0=m ω2 R 。
惯性力是一个假想的力,完全是为了使牛顿第一、二定律在非惯性系中也能成立而人为地想象出来的,实际上并不存在.惯性力不存在施力物体,也没有反作用力.惯性力从其性质上来说,也是一个保守力,所以在有些场合也会讨论惯性力的势能.3.质心运动问题质心是物体质量中心,由几个质点组成的质点系,若这几个质点所在的位置分别是(x 1,y 1,z 1)、(x 2,y 2,z 2)……则系统的质心位置为i i i i m xx m =∑∑ i i i i m y y m =∑∑ i i i i m z z m =∑∑二、方法演练类型一、牛顿第二定律是动力学的核心,特别是质点系的牛顿第二定律解题时应用起来特别灵活多变,是解决复杂的动力学问题的主要手段。
高中物理竞赛:动力学一、复习基础知识点一、 考点内容1.牛顿第一定律,惯性。
2.牛顿第二定律,质量。
3.牛顿第三定律,牛顿运动定律的应用。
4.超重和失重。
二、知识结构三、复习思路牛顿运动定律是力学的核心,也是研究电磁学的重要武器。
在新高考中,涉及本单元的题目每年必出,考查重点为牛顿第二定律,而牛顿第一定律、第三定律在第二定律的应用中得到完美体现。
在复习中,应注重对概念的全方位理解、对规律建立过程的分析,通过适当定量计算,掌握利用牛顿运动定律解题的技巧规律,强化联系实际和跨学科综合题目的训练,培养提取物理模型,迁移物理规律的解题能力。
基础习题回顾1.一个人站在医用体重计的测盘上,在人下蹲的全过程中,指针示数变化应是:A 、先减小,后还原B 、先增加,后还原C 、始终不变D 、先减小,后增加,再还原2.如图所示,ad 、bd 、cd 是竖直面内三根固定的光滑细杆, ⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⇔⇔⎩⎨⎧===⎪⎩⎪⎨⎧;同时性;同性质牛顿第三定律:相互性运动情况;超重和失重受力情况本问题:应用:动力学的两类基或表达式牛顿第二定律量度性,质量是惯性大小的惯性是物体的固有属物体运动状态的原因,的原因,而不是维持力是改变物体运动状态牛顿第一定律牛顿运动定律合a m a F m a F m a F y y xx aca 、b 、c 、d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点。
每根杆上都套着一个小滑环(图中未画出),三个滑环分别从a 、b 、c 处释放(初速度为零),用t 1、t 2、t 3依次表示滑环到达d 所用的时间,则:A 、t 1 < t 2 < t 3B 、t 1 > t 2 > t 3C 、t 3 > t 1 > t 2D 、t 1 = t 2 = t 33.有一箱装得很满的土豆(如图),以一定的初速度在动摩擦因数为μ的水平面上向左做匀减速运动(不计其它外力和空气阻力),其中有一质量为m 的土豆,则其它土豆对它的总作用力大小是:A 、mgB 、mg μC 、21μ+mgD 、21μ-mg4.在一次火灾事故中,因情况特殊别无选择,某人只能利用一根绳子从高处逃生,他估计这根绳子所能承受的最大拉力小于他的重量,于是,他将绳子的一端固定,然后沿着这根绳子从高处竖直下滑。
第四讲 动力学综合专题本讲简介掌握恒力下过程分析的分析过程,通过一定练习提高能力。
对非恒力问题通过微元法列示相求解。
内容精讲恒力作用下匀变速运动动力学分析思路应用牛顿运动定律解决的问题主要可分为两类: (1)已知受力情况求运动情况 ; (2)已知运动情况求受力情况.分析解决这两类问题的关键是抓住受力情况和运动情况之间联系的桥梁——加速度.基本思路流程图:动力学第一类基本问题物体的受 力情况动力学第二类基本问题基本公式流程图为:FF 合 = mav 0 ,t ,v t , xv t = v 0 + at x = v 0 t + at 2 v t 2 - v 02 = 2ax x v 0 + v tt 2 2动力学问题的处理方法: (1) 正确的受力分析物体进行受力分析,是求解力学问题的关键,也是学好力学的基础. (2) 受力分析的依据① 力的产生条件是否存在,是受力分析的重要依据之一.② 力的作用效果与物体的运动状态之间有相互制约的关系,结合物体的运动状态分析 受力情况是不可忽视的.运动学公式牛顿第二 定律物体的运 动情况物体的加 速度 av = = = v ta③由牛顿第三定律(力的相互性)出发,分析物体的受力情况,可以化难为易.解题思路(1)由物体的受力情况求解物体的运动情况的一般方法和步骤.① 确定研究对象,对研究对象进行受力分析,并画出物体的受力图.② 根据力的合成与分解的方法,求出物体所受合外力(包括大小和方向).③ 根据牛顿第二定律列方程,求出物体的加速度.④ 结合给定的物体运动的初始条件,选择运动学公式,求出所需的运动参量.(2)由物体的运动情况求解物体的受力情况.解决这类问题的基本思路是解决第一类问题的逆过程,具体步骤跟上面所讲的相似,但需特别注意:①由运动学规律求加速度,要特别注意加速度的方向,从而确定合力的方向,不能将速度的方向与加速度的方向混淆. ②题目中求的力可能是合力,也可能是某一特定的作用力.即使是后一种情况,也必须先求出合力的大小和方向,再根据力的合成与分解知识求分力.精选例题【例1】如图所示为一空间探测器的示意图,P1 、P2 、P3 、P4 是四个喷气发动机,P1 、P3 的连线与空间一固定坐标系的x 轴平行,P2 、P4 的连线与y 轴平行,每台发动机开动时,都能向探测器提供推力,但不会使探测器转动。
高一物理竞赛题知识点高一是物理学习的关键时期,正是在这一年,同学们开始接触到一些竞赛性质的物理题目。
这些题目既提高了学生的思维能力和解题能力,也要求同学们对一些物理知识点有深入的了解和掌握。
本文将介绍一些高一物理竞赛题常涉及的知识点,帮助同学们更好地备战竞赛。
1. 动力学动力学是物理学的重要分支,是竞赛题中常涉及的知识点。
其中,牛顿第一、第二、第三定律是掌握动力学的基础。
同学们需要了解各种物体所受的力及其相应的加速度、速度和位移之间的关系。
在解题过程中,常常需要利用力的合成和分解、受力分析等方法解决问题。
2. 力学力学是物理学的基础,也是高一物理竞赛题目的重点内容。
同学们需要掌握不同物体之间相互作用力的性质和计算方法,如万有引力定律、胡克定律等。
此外,同学们还需要了解机械运动的规律,如匀速直线运动、匀加速直线运动等。
在解题时,需要运用公式和图像进行计算和分析。
3. 光学光学是物理学中的重要分支,也是高一物理竞赛题目中常见的知识点。
同学们需要了解光的传播规律、反射和折射定律、光的成像原理等。
此外,同学们还需要理解镜子和透镜的特性、光的色散现象等。
在解题时,需要运用光的性质进行分析和计算。
4. 电学电学也是高一物理竞赛题目中不可忽视的知识点。
同学们需要了解电流、电压和电阻的概念,了解欧姆定律、基尔霍夫定律等重要原理。
此外,同学们还需要学习电路中串联和并联的规律,掌握电功率和电能的计算方法。
在解题时,需要理解电路的结构和性质,进行电路分析和计算。
5. 热学热学是研究热量和热能转化的物理学分支,也是高一物理竞赛题目中常见的知识点。
同学们需要了解热传导、热辐射和热对流等热传递方式的原理。
此外,同学们还需要理解温度、热容和比热容的概念,掌握热力学定律和热能转化的计算方法。
在解题时,需要运用热学的原理和公式进行分析和计算。
除了以上几个主要的知识点外,在高一物理竞赛题目中,还常常涉及到波动、原子物理、核物理等其他知识点。
动力学考试1、长为2L 的轻杆竖直地立在光滑地面上,杆上固定着两个质量均为m 的小球A 和B ,A 与B 、B 与地面的距离均为L 。
现给它们一个轻微的扰动,使杆沿顺时针方向倒下。
不计一切阻力,并设杆与地面始终保持接触,试求A 球运动的轨迹方程。
2、一辆邮车以u = 10m/s 的速度沿平直公路匀速行驶,在离公路d = 5.0m 处有一邮递员,当他与邮车的连线和公路的夹角α= arctg 41时沿直线匀速奔跑。
试问:(1)如果他的速度大小v = 5.0m/s ,他应朝什么方向跑,才能与邮车相遇?(2)如果速度v 大小不限定,他可以选择的v 的最小值是多少?3、在竖直平面内建立图示直角坐标,在坐标系中有光滑的抛物线轨道,轨道对应方程y = Ax 2 。
轨道的顶点O 处有一小球,受轻微扰动后无初速沿轨道右方滑下。
试问:小球是否会中途脱离轨道?4、与水平面成α角的钢丝两端固定,其上套有一质量为m 1的小环,小环借助一根轻绳与质量为m 2的小球相连。
不计一切摩擦,试问:(1)当环和球的系统从铅直位置开始释放时,绳子的内张力多大?(2)绳子与铅直方向成多大角度开始释放时,可以确保系统滑动时不会发生摆动?5、质量为m 、倾角分别为α和β的双斜面体放在水平面上,另有质量分别为m 1和m 2的滑块通过轻滑轮跨过双斜面(两边的绳子和斜面平行)。
不计一切摩擦,静止释放整个系统,试求双斜面体....的加速度。
《动力学考试》提示与答案1、提示:整体质心无水平位移。
建右图所示的坐标,并引入参数θ ,然后消去即可。
答案:22)2L (x + 22)L 2(y = 1 ,轨迹为椭圆。
2、提示——(1)对图示的灰色三角形用正弦定理,有βsin ut = αsin vt 得 β = arcsin 17172 (2)以β为未知,看v (β)函数 v = βαsin sin u 显然 v min = usin α答案:(1)与公路夹角θ = arctg 41+ arcsin 17172(约14.0°+ 29.0°= 43.0°);(2)2.43m/s 。
高中物理竞赛公式及结论物理学作为一门自然科学,研究物质及其运动规律,是高中学生必修的一门学科。
在高中物理竞赛中,掌握并灵活运用物理公式是取得好成绩的关键。
本文将介绍一些常见的高中物理竞赛公式及结论,并简要解释其应用。
1. 力学部分1.1 动力学动力学研究物体的运动规律,其中最基本的公式是牛顿第二定律:F = ma其中F表示物体所受的力,m表示物体的质量,a表示物体的加速度。
这个公式表明,物体受到的力越大,加速度也越大;物体的质量越大,加速度越小。
1.2 动量守恒定律在弹性碰撞中,动量守恒定律适用:m1v1 + m2v2 = m1v1' + m2v2'其中m1和m2分别是两个物体的质量,v1和v2是碰撞前的速度,v1'和v2'是碰撞后的速度。
这个公式表明,两个物体在碰撞前后的总动量保持不变。
2. 热学部分2.1 热力学第一定律热力学第一定律也被称为能量守恒定律,它表明能量在物理系统中是守恒的。
对于一个封闭系统,它的内能变化等于吸收的热量减去对外做的功:ΔU = Q - W其中ΔU表示内能的变化,Q表示吸收的热量,W表示对外做的功。
2.2 热力学第二定律热力学第二定律主要描述了热能的自发传递方式,即热量只能从高温物体传递到低温物体。
其中最著名的表达方式是卡诺循环的效率公式:η = 1 - T2 / T1其中η表示卡诺循环的效率,T2表示低温物体的温度,T1表示高温物体的温度。
这个公式表明,卡诺循环的效率随着温差的增大而增大。
3. 电磁学部分3.1 电场强度电场强度描述了单位正电荷所受到的力的大小,电场强度的公式为:E = k * Q / r^2其中E表示电场强度,k表示电场强度与电荷之间的比例常数,Q表示电荷的大小,r表示距离电荷的距离。
3.2 电势差电势差描述了单位正电荷从一个点移动到另一个点所做的功,电势差的公式为:ΔV = W / q其中ΔV表示电势差,W表示从一个点到另一个点移动电荷所做的功,q表示电荷的大小。
第3讲 动力学 一般问题与特殊问题一、知识点击1.惯性系与牛顿运动定律⑴惯性系:牛顿运动定律成立的参考系称为惯性参考系.地球参考系可以很好地近似视为惯性参考系一切相对地面静止或匀速直线运动的参考系均可视为惯性参考系.⑵牛顿运动定律牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.牛顿第一定律也称为惯性定律.牛顿第二定律:物体的加速度与其所受外力的合力成正比,与物体的质量成反比,其方向与合外力的方向相同.即F ma .常作正交分解成:F x =ma x F y =ma y F z =ma z牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上.2.联结体所谓“联结体”就是一个系统内有若干个物体,它们的运动情况和受力情况都一种关系联系起来.若联结体内(即系统内)各物体只有相同的加速度时应先把这联结体当成一个整体(看成一个质点).分析这类问题的一般方法是:(l )将系统中的每个物体隔离开来分别进行受力分析;(2)对每个物体用牛顿第二、三定律列方程,有的物体可以列互为正交方向上的两个方程;(3)根据具体情况确定各物体的运动特征量般(如速度、加速度)之间的关系. 在解决联结体问题时确定齐物体加速度之间的关系是}分币要的.3.非惯性系牛顿第一、二定律只适用十某一类参考系、这类参考系叫惯性系.比如地面就是一个相当好的惯性系,太阳是一个非常好的惯性系,一般我们认为,相对地面没有加速度的参考系,都可视为惯性系,相对地而有加速度的参考系,都可视为非惯性系.在非惯性系中,为了使牛顿第一、二定律在形式上仍然成立,我们可以给每个物体加上一个惯性力F 0.F 0的大小为ma 0(m 为研究的物体,a 0为所选参考系相对地而的加速度), F 0的方向和a 0的方向相反.如果取一个转动的参考系,则要加上惯性离心力F 0=m ω2 R 。
惯性力是一个假想的力,完全是为了使牛顿第一、二定律在非惯性系中也能成立而人为地想象出来的,实际上并不存在.惯性力不存在施力物体,也没有反作用力.惯性力从其性质上来说,也是一个保守力,所以在有些场合也会讨论惯性力的势能.3.质心运动问题质心是物体质量中心,由几个质点组成的质点系,若这几个质点所在的位置分别是(x 1,y 1,z 1)、(x 2,y 2,z 2)……则系统的质心位置为i i i i m xx m =∑∑ i i i i m y y m =∑∑ i i i i m z z m =∑∑二、方法演练类型一、牛顿第二定律是动力学的核心,特别是质点系的牛顿第二定律解题时应用起来特别灵活多变,是解决复杂的动力学问题的主要手段。
高中物理竞赛课程教案
目标:帮助学生深入理解物理知识,培养物理思维和解决问题的能力,为参加物理竞赛做准备。
教学内容:
第一节课:动力学基础
- 概念:质点、速度、加速度、牛顿第一、二、三定律
- 计算:速度、加速度的计算
- 例题:运动学问题解决
第二节课:力学应用
- 质点的平衡
- 斜面运动
- 包括摩擦力、弹簧力等特殊力的计算
- 例题:力学问题实践
第三节课:动能和功
- 动能定理
- 动能的计算
- 功的计算
- 动能守恒定律
- 例题:动能和功问题解决
第四节课:力学解决问题
- 综合力学计算题
- 弹性碰撞
- 完全非弹性碰撞
- 质点系连接体问题
- 例题:力学解决问题
第五节课:热力学基础
- 热学的基本概念
- 理想气体状态方程
- 理想气体定律
- 例题:热力学问题解决
第六节课:热力学应用
- 等容过程、等压过程、等温过程、绝热过程
- 熵的概念
- 卡诺循环
- 例题:热力学应用问题实践
教学活动:
- 例题练习
- 实验演示
- 小组讨论
- 竞赛模拟考试
评估方式:单元测试和期末考试
教材:高中物理教材
参考资料:物理竞赛相关资料和试卷
备注:本课程旨在帮助学生提高物理竞赛的动手能力和解题能力,提高物理学科竞赛成绩。
动力学1、如图1所示,在光滑的固定斜面上,A 、B 两物体用弹簧相连,被一水平外力F 拉着匀速上滑。
某瞬时,突然将F 撤去,试求此瞬时A 、B 的加速度a A 和a B 分别是多少(明确大小和方向)。
已知斜面倾角θ= 30°,A 、B 的质量分别为m A = 1kg 和m B = 2kg ,重力加速度g = 10m/s 2。
(a A = 0 ;a B = 7.5m/s 2 ,沿斜面向下。
)2倾角为α的固定斜面上,停放质量为M 的大平板车,它与斜面的摩擦可以忽略不计。
平板车上表面粗糙,当其上有一质量为m 的人以恒定加速度向下加速跑动时,发现平板车恰能维持静止平衡。
试求这个加速度a 值。
3:光滑水平桌面上静置三只小球,m 1=1kg 、m 2=2kg 、m 3=3kg ,两球间有不可伸长的轻绳相连,且组成直角三角形,α=37°.若在m 1上突然施加一垂直于m 2、m 3连线的力F =10N ,求此瞬时m 1受到的合力,如图1所示.4:图4所示。
为斜面重合的两楔块ABC 及ADC ,质量均为M ,AD 、BC 两面成水平,E 为质量等于m 的小滑块,楔块的倾角为a ,各面均光滑,系统放在水平平台角上从静止开始释放,求两斜面未分离前E 的加速度。
αa 图 5m M5 长分别为l1和l2的不可伸长的轻绳悬挂质量都是m的两个小球,如图4所示,它们处于平衡状态。
突然连接两绳的中间小球受水平向右的冲击(如另一球的碰撞),瞬间内获得水平向右的速度v0,求这瞬间连接m2的绳的拉力为多少?图5 6:定滑轮一方挂有m1=5kg的物体,另一方挂有轻滑轮B,滑轮B两方挂着m 2=3kg与m3=2kg的物体(图5),求每个物体的加速度。
7:如图9所示,两个木块A和B间的接触面垂直于图中纸面且与小平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦因数和动摩擦因数均为μ.开始时A、B都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B之间不发生相对滑动,则:(1)μ的数值应满足什么条件?(2)推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)8:如图11所示,C为一放在固定的粗糙水平桌面上的双斜面,其质量m c=6.5kg,顶端有一定滑轮,滑轮的质量及轴处的摩擦皆可不计.A和B是两个滑块,质量分别为m A=3.0kg,m B=0.50kg,由跨过定滑轮的不可伸长的轻绳相连.开始时,设法抓住A、B和C,使它们都处于静止状态,且滑轮两边的轻绳恰好伸直.今用一大小等于26.5N的水平推力F作用于C,并同时释放A、B和C.沿桌面向左滑行,其加速度a=3.0m/s2,B相对于桌面无水平方向的位移(绳子一直是绷紧的).试求C与桌面间的动摩擦因数μ.(图中α=37°,β=53°,已知sin37°=0.6,重力加速度g=10m/s2)9:如图2所示,质量为m的物体C用两根绳子系住,两绳分别跨过同一高度的滑轮O1和O2后与滑块A、B相连.滑块A的质量为m,滑块B的质量为2m,分别放在倾角为60°和30°的固定光滑斜面上.当系统平衡时,在物体C上无初速地放上另一质量也为m的物体D,并且C、D立刻粘在一起.试求刚放上D的瞬时物体A和B的加速度.10、一个质量为m的小物体,放在半径为R的半球顶上,设半球面光滑,初始时它们之间相对静止.求在下列情况中物体m离开球面时,它距半球底面的距离,如图所示.(1)半球以10m/s的速度匀速上升;(2)半球以a=g/4的加速度匀加速向右运动.11、如图3所示,弹簧秤下面悬挂着定滑轮,跨过滑轮两边的绳子分别连接着三个钩码和五个钩码,每个钩码的质量为50g ,当系统从静止开始释放后,试求弹簧秤的示数。
动力学
1、如图1所示,在光滑的固定斜面上,A 、B 两物体用弹簧相连,被一水平外力F 拉着匀速上滑。
某瞬时,突然将F 撤去,试求此瞬时A 、B 的加速度a A 和a B 分别是多少(明确大小和方向)。
已知斜面倾角θ= 30°,A 、B 的质量分别为m A = 1kg 和m B = 2kg ,重力加速度g = 10m/s 2。
(a A = 0 ;a B = 7.5m/s 2 ,沿斜面向下。
)
2倾角为α的固定斜面上,停放质量为M 的大平板车,它与斜面的摩擦可以忽略不计。
平板车上表面粗糙,当其上有一质量为m 的人以恒定加速度向下加速跑动时,发现平板车恰能维持静止平衡。
试求这个加速度a 值。
3:光滑水平桌面上静置三只小球,m 1=1kg 、m 2=2kg 、m 3=3kg ,两球间有不可伸长的轻绳相连,且组成直角三角形,α=37°.若在m 1上突然施加一垂直于m 2、m 3连线的力F =10N ,求此瞬时m 1受到的合力,如图1所示
.
图 5
4:图4所示。
为斜面重合的两楔块ABC及ADC,质量均为M,AD、BC两面成水平,E为质量等于m的小滑块,楔块的倾角为a,各面均光滑,系统放在水平平台角上从静止开始释放,求两斜面未分离前E的加速度。
5 长分别为l1和l2的不可伸长的轻绳悬挂质量都是m的两个小球,如图4所示,它们处于平衡状态。
突然连接两绳的中间小球受水平向右的冲击(如另一球的碰撞),瞬间内获得水平向右的速度v0,求这瞬间连接m2的绳的拉力为多少?
图5 6:定滑轮一方挂有m1=5kg的物体,另一方挂有轻滑轮B,滑轮B两方挂着m2=3kg与m3=2kg的
物体(图5),求每个物体的加速度。
7:如图9所示,两个木块A和B间的接触面垂直于图中纸面且与小平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦因数和动摩擦因数均为μ.开始时A、B都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B之间不发生相对滑动,则:
(1)μ的数值应满足什么条件?
(2)推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)
8:如图11所示,C为一放在固定的粗糙水平桌面上的双斜面,其质量m c=6.5kg,顶端有一定滑轮,滑轮的质量及轴处的摩擦皆可不计.A和B是两个滑块,质量分别为m A=3.0kg,m B=0.50kg,由跨过定滑轮的不可伸长的轻绳相连.开始时,设法抓住A、B和C,使它们都处于静止状态,且滑轮两边的轻绳恰好伸直.今用一大小等于26.5N的水平推力F作用于C,并同时释放A、B和C.沿桌面向左滑行,其加速度a=3.0m/s2,B相对于桌面无水平方向的位移(绳子一直是绷紧的).试求C与桌面间的动摩擦因数μ.(图中α=37°,β=53°,已知sin37°=0.6,重力加速度g=10m/s2)
9:如图2所示,质量为m的物体C用两根绳子系住,两绳分别跨过同一高度的滑轮O1和O2后与滑
块A、B相连.滑块A的质量为m,滑块B的质量为2m,分别放在倾角为60°和30°的固定光滑斜面上.当系统平衡时,在物体C上无初速地放上另一质量也为m的物体D,并且C、D立刻粘在一起.试求刚放上D的瞬时物体A和B的加速度.
10、一个质量为m的小物体,放在半径为R的半球顶上,设半球面光滑,初始时它们之间相对静止.求在下列情况中物体m离开球面时,它距半球底面的距离,如图所示.
(1)半球以10m/s的速度匀速上升;
(2)半球以a=g/4的加速度匀加速向右运动.
11、如图3所示,弹簧秤下面悬挂着定滑轮,跨过滑轮两边的绳子分别连接着三个钩码和五个钩码,每个钩码的质量为50g ,当系统从静止开始释放后,试求弹簧秤的示数。
重力加速度g = 10m/s2,忽略滑轮的质量。
12、如图4所示,倾角为α的粗糙斜面上,放置长方形大木箱,木箱顶部用细绳悬挂一个小球。
当木箱沿斜面加速下滑时,发现悬绳相对箱内“墙壁”摆起一个稳定的角度β(β<α)。
试据此求出木箱与斜面的摩擦因素μ。
13、在竖直平面内建立图示直角坐标,在坐标系中有光滑的抛物线轨道,轨道对应方程y = Ax 2 。
轨道的顶点O 处有一小球,受轻微扰动后无初速沿轨道右方滑下。
试问:小球是否会中途脱离轨道?
14、轻绳的一端连接于天花板上A 点,绳上距A 点为a 处系有一个质量为m 的质点B ,绳的另一端跨过C 处的定滑轮(滑轮的质量可以忽略,C 与A 在同一水平线上)。
某人握住绳的自由端,以恒定的速率v 收绳。
当绳收至图示位置时(B 两边的绳与水平线夹角分别为α和β),求右边绳子的张力。
15、汽车重量为G ,其重心离前轮(轴所在的竖直线)和后轮(轴所在的竖直线)分别为l 1和l 2(l 2>l 1),重心离地面的高度为h 。
试求:汽车以多大加速度a 前进时,其前、后轮对地面的压力相等?
16、均质半圆形金属拱架ACB ,圆心在O
点,质量
M = 1000kg ,A端与地面的铰链相连,B端搁在滚珠上。
现有一质量m = 500kg的物体从顶点C无摩擦滑下,当它滑到D点时(已知∠COD = 30°),试求A、B两处对拱架的作用力。
一个质量为m的小物体,放在半径为R的半球顶上,设半球面光滑,初始时它们之间相对静止.求在下列情况中物体m离开球面时,它距半球底面的距离,如图所示.
(1)半球以10m/s的速度匀速上升;
(2)半球以a=g/4的加速度匀加速向右运动.
17、如图所示,质量为M的圆形滑块平放在桌面上,一轻绳跨过滑块后,两端各挂一个质量分别为m1和m2的物体,两物体通过平行的绳子悬垂在桌面外边。
不计所有摩擦,试求圆形滑块的加速度。
18一个质量为m 的小球C 固定在一根长2l 的轻杆的中点,轻杆由竖直位置开始沿墙滑下,杆B 端的速度恒为v ,求当杆和墙成α角时,杆对C 的作用力。
19、在半径为R的水平转台边缘放一质量为m的物块,当转台的转速增大到n0(即每秒n0转)时,物体被抛出转台。
若在转台上物块所在半径的中点再放一个相同的物块,并用不可伸长的细绳将这两个物块连接起来。
试问:(1)转速增为1.1n0时,细绳的拉力T为多大?(2)转速为多大时,两物块会在转台上滑动?
20、用细杆把质量为M的圆环固定起来,其顶部套有两个质量均为m的小环,它们之间无摩擦。
现给两小环一个微小扰动,令两小环分别从左、右两边下滑(不计初速)。
试讨论:m和M满足何关系时,大环有上升或下降的趋势。
21 一根不可伸长的轻绳,穿上一粒质量为m 的小珠子,绳的一端
固定在 A 点,另一端系在轻环上,环可以沿水平杆自由滑动。
开始时
珠子被维持在环旁边,绳子拉直,绳长为L ,A 点到杆的距离为h ,绳能承受的最大张力为T0,求当绳子被拉断时珠子的速度。
(设各处都很光滑)。