重点高中物理竞赛(静力学)
- 格式:doc
- 大小:708.50 KB
- 文档页数:16
高中物理竞赛辅导讲义静力学高中物理竞赛辅导讲义第1篇静力学【知识梳理】一、力和力矩1.力与力系(1)力:物体间的的相互作用(2)力系:作用在物体上的一群力①共点力系②平行力系③力偶2.重力和重心(1)重力:地球对物体的引力(物体各部分所受引力的合力)(2)重心:重力的等效作用点(在地面附近重心与质心重合)3.力矩(1)力的作用线:力的方向所在的直线(2)力臂:转动轴到力的作用线的距离(3)力矩①大小:力矩=力×力臂,M =FL②方向:右手螺旋法则确定。
右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。
③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。
4.力偶矩(1)力偶:一对大小相等、方向相反但不共线的力。
(2)力偶臂:两力作用线间的距离。
(3)力偶矩:力和力偶臂的乘积。
二、物体平衡条件1.共点力系作用下物体平衡条件:合外力为零。
(1)直角坐标下的分量表示ΣF ix = 0,ΣF iy = 0,ΣF iz = 0(2)矢量表示各个力矢量首尾相接必形成封闭折线。
(3)三力平衡特性①三力必共面、共点;②三个力矢量构成封闭三角形。
2.有固定转动轴物体的平衡条件:3.一般物体的平衡条件:(1)合外力为零。
(2)合力矩为零。
4.摩擦角及其应用(1)摩擦力①滑动摩擦力:f k = μk N(μk-动摩擦因数)②静摩擦力:f s ≤μs N(μs-静摩擦因数)③滑动摩擦力方向:与相对运动方向相反(2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。
①滑动摩擦角:tanθk=μ②最大静摩擦角:tanθsm=μ③静摩擦角:θs≤θsm(3)自锁现象三、平衡的种类1.稳定平衡:当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。
2.不稳定平衡:当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。
3.随遇平衡:当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。
第一讲:力、物体的平衡补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。
一、力学中常见的三种力 1.重力、重心重心的定义:ΛΛΛΛ++++=g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。
问题:半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内切圆板,如图a 所示,求剩下部分的重心。
2.弹力、弹簧的弹力(F =kx ,或F =-kx ) (1)两弹簧串联总伸长x ,F =?由x 1+x 2=x ,k 1x 1=k 2x 2,得2112k k x k x +=,所以kx k k xk k x k F =+===212122.(2)并联时F =(k 1+k 2)x .(3)把劲度系数为k 的弹簧均分为10段,每段劲度系数k '=?(10k )1. 一个重为G 的小环,套在竖直放置的半径为R 的光滑大圆上。
一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,其上端固定在大圆环最高点,下端与小环相接,不考虑一切摩擦,小环静止时弹簧与竖直方向的夹角为:. (答案:GkR kL22cos 1--)3.摩擦力(1)摩擦力的方向:①静摩擦力的方向:跟运动状态与外力有关。
②滑动摩擦力的方向:跟相对运动方向相反。
2. 如图所示,在倾角θ=300的粗糙斜面上放一物体,物体的重力为G ,现用与斜面底边平行的水平作用力F (F =G /2)推物体,物体恰好在斜面上作匀速直线运动,则物体与斜面的动摩擦因数为 . (答案:36)(2)摩擦角:f 和N 的合力叫全反力,全反力的方向跟弹力的方向的最大夹角(f 达到最大)叫摩擦角,摩擦角ϕ=tan -1f /N =tan -1μ。
摩擦角与摩擦力无关,对一定的接触面,ϕ是一定的。
水平地面上有一质量为m 的物体,受斜向上的拉力F 作用而匀速移动,物体与地面间的动摩擦因数为μ,则为使拉力F 最小,F 与水平地面间的夹角多大?F 的最小值为多少?二、物体的平衡1.三力平衡特点 (1)任意两个的合力与第三个力是一对平衡力(2)三力汇交原理:互不平行的三个力处于平衡,这三个力的作用线必交于一点。
⾼中物理竞赛静⼒学静⼒学1如图所⽰,⼀个半径为R 的四分之⼀光滑球⾯放在⽔平桌⾯上,球⾯上放置⼀光滑均匀铁链,其A 端固定在球⾯的顶点,B 端恰与桌⾯不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉⼒T.2:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与绳间光滑接触,试求盘对绳的法向⽀持⼒线密度.3、质量为m ,⾃然长度为2πa ,弹性系数为k 的弹性圈,⽔平置于半径为R 的固定刚性球上,不计摩擦。
⽽且a = R/2 。
(1)设平衡时圈长为2πb ,且 b = 2a ,试求k 值;(2)若k = R 2mg 2 ,求弹性圈的平衡位置及长度。
4、均质铁链如图2悬挂在天花板上,已知悬挂处的铁链的切线与天花板的夹⾓为θ,⽽铁链总重为G , 试求铁链最底处的张⼒。
5、如图3所⽰,两不计⼤⼩的定滑轮被等⾼地固定在天花板上,跨过滑轮的轻绳悬挂三部分重物。
A 、B 部分的重量是固定的,分别是A G = 3⽜顿和B G = 5⽜顿,C G 则可以调节⼤⼩。
设绳⾜够长,试求能维持系统静⽌平衡的C G 取值范围。
6、如图5所⽰,长为L 、粗细不均匀的横杆被两根轻绳⽔平悬挂,绳⼦与⽔平⽅向的夹⾓在图上已标⽰,求横杆的重⼼位置。
7、如图所⽰,⼀个重量为G 的⼩球套在竖直放置的、半图 2θA B C 图 3径为R 的光滑⼤环上,另⼀轻质弹簧的劲度系数为k ,⾃由长度为L (L <2R ),⼀端固定在⼤圆环的顶点A ,另⼀端与⼩球相连。
环静⽌平衡时位于⼤环上的B 点。
试求弹簧与竖直⽅向的夹⾓θ。
思考:若将弹簧换成劲度系数k ′较⼤的弹簧,其它条件不变,则弹簧弹⼒怎么变?环的⽀持⼒怎么变?8、光滑半球固定在⽔平⾯上,球⼼O 的正上⽅有⼀定滑轮,⼀根轻绳跨过滑轮将⼀⼩球从图中所⽰的A 位置开始缓慢拉⾄B 位置。
试判断:在此过程中,绳⼦的拉⼒T 和球⾯⽀持⼒N 怎样变化?9、如图所⽰,⼀个半径为R 的⾮均质圆球,其重⼼不在球⼼O 点,先将它置于⽔平地⾯上,平衡时球⾯上的A 点和地⾯接触;再将它置于倾⾓为30°的粗糙斜⾯上,平衡时球⾯上的B 点与斜⾯接触,已知A 到B 的圆⼼⾓也为30°。
第二部分:静力学一、复习基础知识点一、 考点内容1.力是物体间的相互作用,是物体发生形变和物体运动状态变化的原因。
2.重力是物体在地球表面附近所受到的地球对它的引力,重心。
3.形变与弹力,胡克定律。
4.静摩擦,最大静摩擦力。
5.滑动摩擦,滑动摩擦定律。
6.力是矢量,力的合成与分解。
7.平衡,共点力作用下物体的平衡。
二、 知识结构⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎩⎨⎧→→→⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎭⎫ ⎝⎛→→⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛-→的灵活使用方法:整体法和隔离法产生条件、摩擦力、弹力、重力顺序原则受力分析实效原则图解法(几何法)力的分解式法图解法(几何法)、公力的合成力的等效性使物体产生形变物体产生加速度)改变物体运动状态(使力的效果效果各异作用力与反作用力效果相同平衡力支持力等回复力、浮力、压力、动力、阻力:向心力、效果子力、电场力、磁场力不接触的力:重力、分产生条件、大小、方向力接触的力:弹力、摩擦性质力的种类物体受力物体同时定是施力物体施力物体同时定是受力相互性受力物体施力物体物体间作用物质性力的属性—物体间的相互作用—力的定义力.......321 三、 复习思路在复习力的概念时,同学们应注重回顾学过的各种具体的力,包括电磁学中的各种力,也可以联系牛顿第三定律展开研究力的相互性。
对于重力,在复习时可以联系万有引力定律,分清为什么“重力是由于地球的吸引而产生的力”。
且通过分析物体随地球自转需向心力,最终认识重力与万有引力之间的差异很小,一般可认为2地R GMmmg =。
摩擦力是本单元的重点,也是难点,要结合具体的例子,对摩擦力的大小和方向,摩擦力的有无的讨论以及物体在水平面、斜面上、竖直墙上等的滑动摩擦力与弹力的关系等,要分门别类地进行讨论、研究。
今天,我们除了要复习一下之前的内容之外,还需要学习一点关于流体的简单知识,算是对于初中物理的致敬吧~1.静止流体内的压强在重力场中相互连通的静止流体内的压强与位置的关系十分简单。
此关系可归结为两点: ⑴ 等高点,压强相等⑵ 高度差为h 的两点,压强差为gh ρ,越深处压强越大。
2.浮力,浮心由阿基米德原理可知,浮力和排开体积的流体的受重力大小相等,方向相反。
F gV ρ=浮力的作用点称为浮心,和物体同形状,同体积那部分流体的重心,但定不等同于物体的重心,只有在物体密度均匀时,它才与浸没在流体中的物体部分的重心重合。
3.浮体平衡的稳定性浮在流体表面的浮体,所受浮力与重力大小相等,方向相反,处于平衡状态。
浮体对铅垂方向(即垂直于水面)的扰动,显然平衡是稳定的。
浮体对水平方向(即水平方向)的扰动,其平衡是随遇的。
浮体对于过质心的水平对称轴的旋转扰动,平衡稳定性与浮心和物体的重心的相对位置有关。
向右扰动后,如果重心G 的位置比浮心B 更右侧,则为不稳定平衡;如果重心G 的位置右移等于浮心B ,则为随遇平衡;如果重心G 右移小于浮心B ,则为稳定平衡。
【例1】 一立方形钢块平正地浮在容器内的水银中,已知钢块的密度ρ为37.89g/cm ,水银的密度为0ρ为313.6g/cm 。
⑴ 问钢块露出水面之上的高度与边长之比为多大?⑵ 如果在水银面上加水,使水面恰与钢块的顶相平,问水层的厚度与钢块边长之比为多大?例题精讲 方法提示本讲导学高中物理竞赛专题流体静力学和运动学【例2】 用手捏住悬挂着细木棒的细绳的一端,让木棒缓慢地逐渐浸入水中,讨论在此过程中木棒和绳的倾斜情况。
【例3】 一个下窄上宽的杯中盛有密度为ρ的均匀混合液体,经一段时间后,变为两层液体,密度分别为1ρ和2ρ(21ρρ>)则会分层并且总体积不变,问杯底压强是否改变,变大或变小?【例4】 一个半球形漏斗紧贴着桌面放置(如图)现有位于漏斗最高处的孔向内注水,当漏斗内的水面刚好达到孔的位置时,漏斗开始浮起,水开始从下面流去。
静力学1如图所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力T.2:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长 但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与 绳间光滑接触,试求盘对绳的法向支持力线密度.3、质量为m ,自然长度为2πa ,弹性系数为k 的弹性圈,水平置于半径为R 的固定刚性球上,不计摩擦。
而且a = R/2 。
(1)设平衡时圈长为2πb ,且b = 2a ,试求k 值;(2)若k =R2mg2 ,求弹性圈的平衡位置及长度。
4、均质铁链如图2悬挂在天花板上,已知悬挂处的铁链的切线与天花板的夹角为θ,而铁链总重为G , 试求铁链最底处的张力。
5、如图3所示,两不计大小的定滑轮被等高地固定在天花板上,跨过滑轮的轻绳悬挂三部分重物。
A 、B 部分的重量是固定的,分别是A G = 3牛顿和B G = 5牛顿,C G 则可以调节大小。
设绳足够长,试求能维持系统静止平衡的C G 取值范围。
6、如图5所示,长为L 、粗细不均匀的横杆被两根轻绳水平悬挂,绳子与水平方向的夹角在图上已标示,求横杆的重心位置。
θ图 37、如图所示,一个重量为G 的小球套在竖直放置的、半径为R 的光滑大环上,另一轻质弹簧的劲度系数为k ,自由长度为L (L <2R ),一端固定在大圆环的顶点A ,另一端与小球相连。
环静止平衡时位于大环上的B 点。
试求弹簧与竖直方向的夹角θ。
思考:若将弹簧换成劲度系数k ′较大的弹簧,其它条件不变,则弹簧弹力怎么变?环的支持力怎么变?8、光滑半球固定在水平面上,球心O 的正上方有一定滑轮,一根轻绳跨过滑轮将一小球从图中所示的A 位置开始缓慢拉至B 位置。
试判断:在此过程中,绳子的拉力T 和球面支持力N 怎样变化?9、如图所示,一个半径为R 的非均质圆球,其重心不在球心O 点,先将它置于水平地面上,平衡时球面上的A 点和地面接触;再将它置于倾角为30°的粗糙斜面上,平衡时球面上的B 点与斜面接触,已知A 到B 的圆心角也为30°。
受力分析是高中物理一项重要的基本功,包含常见力的性质,平衡力的规律两大基本内容。
本讲我们从常见模型一点点的入手逐步巩固的复习。
第一部分:常见力 知识点睛1.弹力的性质以及规律弹力是由于形变长生的力,具体的体现在弹簧,接触面,杆,绳等。
弹簧弹力:胡克定律F kx =.轻绳:弹力方向沿绳且指向绳收缩方向轻杆:与轻绳不同,轻杆的弹力可以指向任意方向 面和面:弹力垂直于接触面 球和球:弹力沿两球球心连线难点:轻杆的弹力,可以自由转动的轻杆只有两个受力点时,弹力一定沿杆方向,可以是拉力也可 以是压力。
对于多个点受力的轻杆,必须用力矩平衡与力平衡规律联立分析。
2.判断弹力有无:①消除法:去掉与研究对象接触的物体,看研究对象能否保持原状态,若能则说明此处弹力不存在,若不能则说明弹力存在.如图:球A 静止在平面B 和平面C 之间,若小心去掉B ,球静止,说明平面B 对球A 无弹力,若小心去掉C ,球将运动,说明平面C 对球有支持力.②假设法:假设接触处存在弹力,做出受力图,再根据平衡条件判断是否存在弹力.如图,若平面B 和平面C 对球的弹力都存在,那么球在水平方向上将不再平衡,故平面B 的弹力不存在,平面C 的弹力存在.③替换法:用轻绳替换装置中的轻杆,看能否维持原来的力学状态,如果可以,则杆提供的是拉力,如果不能,则提供支持力.3.判断摩擦物体间有相对运动或相对运动的趋势.有相对运动时产生的摩擦力叫滑动摩擦力,有相对运动趋势时产生的摩擦力叫静摩擦力.①滑动摩擦力:N F F μ=,μ是动摩擦因数,与接触物体的材料和接触面的粗糙程度有关,与接触面的第2讲 静力学复习本讲导学知识模块讲述高端的,真正的物理学2高一·物理竞赛秋季班·第2讲·教师版大小无关.N F 表示压力大小,可见,在μ一定时,N F F ∝.②静摩擦力:其大小与引起相对运动趋势的外力有关,根据平衡条件或牛顿运动定律求出大小.静摩擦力的大小在零和最大静摩擦力max F 之间,即max 0F F ≤≤.静摩擦力的大小与N F 无关,最大静摩擦力的大小与N F 有关.③方向:滑动摩擦力方向与相对运动方向相反,静摩擦力方向与相对运动趋势方向相反. 判断静摩擦力的有无:在接触面粗糙,两物体接触且互相挤压的条件下,可使用下列方法假设法:假设没有静摩擦力,看物体是否发生相对运动,若发生,则存在相对运动趋势,存在静摩擦力.反推法:根据物体的状态和受力分析推出静摩擦力的大小和方向.4.摩擦角与自锁当物体与支持面之间粗糙,一旦存在相对运动趋势,就会受静摩擦力作用,设最大静摩擦因数为μ(中学不要求最大静摩擦因数跟动摩擦因数的区别),则最大静摩擦力为fM =μFN 。
一、力 物体的平衡(训练卷)【08年高考天津卷理综】在粗糙水平地面上与墙平行放着一个截面为半圆的柱状物体A , A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态。
现对B 加一竖直向下的力F ,F 的作用线通过球心,设墙对B 的作用力为F 1,B 对A 的作用力为F 2,地面对A 的作用力为F 3。
若F 缓慢增大而整个装置仍保持静止,截面如图所示,在此过程中C A . F 1保持不变,F 3缓慢增大 B . F 1缓慢幼大,F 3保持不变 C . F 2缓慢增大,F 3缓慢增大 D . F 2缓慢增大,F 3保持不变【08年高考广东卷理科基础】如图2所示,质量为m 的物体悬挂在轻质的支架上,斜梁OB 与竖直方向的夹角为θ。
设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2。
以下结果正确的是DA .1sin F mg θ=B .1sin mgF θ=C .2cos F mg θ=D .2cos mgF θ=【05辽宁卷】两光滑平板MO 、NO 构成一具有固定夹角θ0=75°的V 形槽,一球置于槽内,用θ表示NO 板与水平面之间的夹角,如图5所示。
若球对板NO 压力的大小正好等于球所受重力的大小,则下列θ值中哪个是正确的?( B )A .15°B .30°C .45°D .60°【08年高考海南卷物理】如图,质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m 的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为DA .(M +m )gB .(M +m )g -FC .(M +m )g +F sin θD .(M +m )g -F sin θ【08年高考山东卷理综】用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为L 0现用该弹簧沿斜面方向拉住质量为2m 的物体,系统静止时弹簧伸长量也为L 0斜面倾角为300,如图所示。
第一章 静力学例题:如图均匀带轴的直角弯杆,质量为m ,OA 段长度是AB 段长度的2倍,对杆施力F ,使杆静止在如图的位置,求F 的最小值 (在计算重力矩时,可分别计算OA 、AB 部分的重力矩。
)解: mgl l mg l F 322315+= 15F N = 例题:如图,半径为R 的匀质球体,内部挖去半径为R/2的球,求剩余部分重心的位置。
提示:设球的密度为ρ 挖去部分的质量 31432R m πρ⎛⎫= ⎪⎝⎭剩余部发的质量 33244332R m R πρπρ⎛⎫=- ⎪⎝⎭376R πρ= 则 124R m m x =(x 为m 2到球心间距) 3317266R R R x πρπρ= 14R x = 例题:一薄壁烧杯,半径为r ,质量为m ,重心位于中心线上,离杯底的距离为H ,今将水慢慢注入杯中,问烧杯连同杯内的水共同重心最低时,水面离杯底的距离等于多少?为什么?(设水的密度为ρ)解:当烧杯连同杯内的水共同重心在水面上时,就处于最低位置。
有 ()222h mgH g r hm g r h gh ρπρπ+=+ 22()2h mgH g r h mg g r h h ρπρπ+⋅⋅=+h = 例题:两个轻弹簧,劲度系数为k 1、k 2,按图所示连接,并在下面悬挂一重物G ,滑轮质量不计,把滑轮和两个弹簧等效一个弹簧,求等效弹簧的劲度系数。
解:设悬挂上重物G 后滑轮的位置比未悬挂重物G 时的位置下降了x ∆,而弹簧k 1和k 2分别伸长了1x ∆和2x ∆122x x x ∆+∆=∆而 1122k x k x ∆=∆滑轮受力平衡 1122k x k x G ∆+∆=等效弹簧的劲度系数 G k x =∆21214k k k k += 例题:如图所示,质量为m 的物体放在摩擦因数为µ的水平面上,对物体施加一和水平方向成θ的力F 的作用,要使物体运动,求力F 的大小范围?解:要使物体运动,应符合)sin (cos θμθF mg F +>mg F μθμθ>-)sin (cos若θμcot <,则θμθμsin cos ->mg F 若θμcot ≥,则用再大的力也推不动物体。
全国物理竞赛知识点总结物理竞赛是对学生物理素养的综合考量,要求学生对物理知识的掌握、科学思维的运用和物理实验的技能都需要有一定的水平。
下面将对物理竞赛的一些重点知识点进行总结。
1. 力学力学是物理竞赛的重点内容之一,包括静力学、动力学和运动学等。
静力学主要讲述物体在力的作用下的静止情况,需掌握平衡的条件以及杠杆、滑轮等简单机械的运用。
动力学主要讲述物体在力的作用下的运动情况,需掌握牛顿三定律、动量守恒定律、能量守恒定律等基本定律。
运动学包括直线运动、曲线运动等,需要能够分析运动图像、速度、加速度等。
2. 热学热学是物理竞赛的另一重点内容,包括热力学和热传导等。
热力学主要讲述物体的热平衡和热力学定律,需要掌握理想气体状态方程、内能、热量等概念。
热传导主要涉及导热方程、热传导系数等内容,需要能够分析传热现象。
3. 电磁学电磁学是物理竞赛的重要内容之一,包括电荷、电场、电动势、电流、电磁感应等。
需要掌握库仑定律、高斯定律、安培定律等,能够分析电场和电路中的问题。
4. 光学光学是物理竞赛的重点内容之一,包括几何光学和物质光学。
需要掌握光的反射和折射规律,能够分析镜片和透镜等光学器件的特性。
5. 原子物理原子物理是物理竞赛的重要内容之一,包括原子结构、原子光谱、原子核、核反应等。
需要掌握玻尔模型、光子效应、核衰变等内容。
以上是物理竞赛的一些重点知识点总结,希望对参加物理竞赛的同学有所帮助。
物理竞赛需要学生在知识储备、思维能力和实验技能等方面都有一定的水平,学生需要多加练习和思考,才能取得好的成绩。
祝愿参加物理竞赛的同学取得好成绩!。
重点高中物理竞赛(静力学)————————————————————————————————作者:————————————————————————————————日期:23力、物体的平衡补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。
一、力学中常见的三种力 1.重力、重心 ①重心的定义:ΛΛΛΛ++++=g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。
②重心与质心不一定重合。
如很长的、竖直放置的杆,重心和质心不重合。
如将质量均匀的细杆AC (AB =BC =1m )的BC 部分对折,求重心。
以重心为转轴,两边的重力力矩平衡(不是重力相等):(0.5-x )2G =(x +0.25)2G,得x =0.125m (离B 点). 或以A 点为转轴:0.5⨯2G +(1+0.5)2G=Gx ',得x '=0.875m ,离B 点x =1-x '=0.125m. 2.巴普斯定理:①质量分布均匀的平面薄板:垂直平面运动扫过的体积等于面积剩平面薄板重心通过和路程。
如质量分布均匀的半圆盘的质心离圆心的距离为x , 绕直径旋转一周,2321234R x R πππ⋅=,得π34Rx =②质量分布均匀的、在同一平面内的曲线:垂直曲线所在平面运动扫过的面积等于曲线长度剩曲线的重心通过路程。
如质量分布均匀的半圆形金属丝的质心离圆心的距离为x ,绕直径旋转一周,R x R πππ⋅=242,得πRx 2=1. (1)半径R =30cm 的均匀圆板上挖出一个半径r =15cm的内切圆板,如图a 所示,求剩下部分的重心。
(2)如图b 所示是一个均匀三角形割去一个小三角形AB 'C ',而B 'C '//BC ,且∆AB 'C '的面积为原三角形面积的41,已知BC 边中线长度为L ,求剩下部分BCC 'B '的重心。
[答案:(1) 离圆心的距离6R ;(2)离底边中点的距离92L]解(1)分割法:在留下部分的右边对称处再挖去同样的一个圆,则它关于圆心对称,它的重心在圆心上,要求的重心就是这两块板的合重心,设板的面密度为η,重心离圆心的距离为x .有力矩平衡: ),2()2(])2(2[222x R R x R R -=-ηπηπ得6Rx ==5cm.4 填补法:在没挖去的圆上填上一块受”重力”方向向上的圆,相当于挖去部分的重力被抵消,其重心与挖去后的重心相同,同理可得6Rx =.能量守恒法:原圆板的重力势能等于留下部分的重力势能和挖去部分的重力势能之和,可得6Rx =.(2) ∆AB 'C '的面积为原三角形面积的1/4,质量为原三角形质量的41,中线长度应为原三角形中线长度的21。
设原三角形BC 边的中线长为L 。
原重心离BC 边的距离为3L,且在中线上。
类似于(1)的解法,可得重心离底边中点的距离92Lx =,且在原三角形的中线上。
思考:三根均匀杆AB 、BC 、CA 组成三角形,其重心在哪?(内心,要用解析几何) 2. 完全相同的4块砖,每块砖的长都为0.3m ,叠放在水平桌面上,如图所示。
求它的最大跨度(即桌边P 点离最上面一块砖右边的Q 点的水平距离)。
(答案:0.3125m )解:165)4131211(2=++=ΛΛL L m m=0.3125m 3. 一薄壁圆柱形烧杯,半径为R ,质量为m ,重心位于中心线上,离杯底的高度为H ,今将水慢慢注入烧杯中,问烧杯连同杯中的水共同重心最低时水面离杯底的距离是多少?(设水的密度为ρ)(答案:ρπρπ2222R mHR m m h ++-=)解:开始注水时共同重心在水面之上,这时如果加水,就等于在共同重心下方加质量,所以重心将会随着水的注入而逐渐下降.当重心下降到水面时,重心最低,因为此时如果再加水,就是在共同重心上方加质量,重心就会升高.重心最低时水面离杯底的距离为h 应满足:ρπR 2hg 2h+mgH =(πR 2h ρ+m )hg , 解得:ρπρπ2222R mHR m m h ++-=.2.弹力、弹簧的弹力(F =kx ,或F =-kx )(1)两弹簧串联总伸长x ,F =?由x 1+x 2=x ,k 1x 1=k 2x 2,得2112k k x k x +=,所以kx k k xk k x k F =+===212122.(2)并联时F =(k 1+k 2)x .5(3)把劲度系数为k 的弹簧均分为10段,每段劲度系数k '=?(10k )4. 一个重为G 的小环,套在竖直放置的半径为R 的光滑大圆上。
一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,其上端固定在大圆环最高点,下端与小环相接,不考虑一切摩擦,小环静止时弹簧与竖直方向的夹角为:. (答案:G kR kL22cos 1--)提示:力的平行四边形为等腰三角形. 3.摩擦力(1)摩擦力的方向:①静摩擦力的方向:跟运动状态与外力有关。
②滑动摩擦力的方向:跟相对运动方向相反。
5. 如图所示,在倾角θ=300的粗糙斜面上放一物体,物体的重力为G ,现用与斜面底边平行的水平作用力F (F =G /2)推物体,物体恰好在斜面上作匀速直线运动,则物体与斜面的动摩擦因数为 . (答案:36) 6. 如图所示,一个质量m =20kg 的钢件,架在两根完全相同的、平行的直圆柱上。
钢件的重心与两柱等距。
两柱的轴线在同一水平面内。
圆柱的半径r =0.025m ,钢件与圆柱间的动摩擦因数μ=0.20。
两圆柱各绕自己的轴线作转向相反的转动,角速度ω=40rad/s ,若沿平行于柱轴的方向施力推着钢件作速度为v =0.050m/s 的匀速运动,求推力的大小。
设钢件左右受光滑导槽限制(图中未画出),不发生横向运动。
(答案:2.0N )解:因滑动摩擦力的方向与相对滑动方向相反。
所以推力大小F =2f cos α=μmg cos α=2)/(1v r mgωμ+=2.0N 。
(2)摩擦角:f 和N 的合力叫全反力,全反力的方向跟弹力的方向的最大夹角(f 达到最大)叫摩擦角,摩擦角ϕ=tan -1f /N =tan -1μ。
摩擦角与摩擦力无关,对一定的接触面,ϕ是一定的。
6 7. 水平地面上有一质量为m 的物体,受斜向上的拉力F 作用而匀速移动,物体与地面间的动摩擦因数为μ,则为使拉力F 最小,F 与水平地面间的夹角多大?F 的最小值为多少?(答案:tan -1μ;21μμ+mg)解:先把f 和N 合成一个力T ,因f 和N 成正比,所以当F 发生变化时T 的大小也要发生变化,但方向不变,且β=tan -1N f=tan -1μ. 这样,就把四个力平衡问题变成了三个力平衡问题,如左图所示.根据平行四边形定则,当F 和T 垂直时F 最小,如右图所示.得F 与水平地面间的夹角α=β=tan -1μ, sin α=21μμ+,F 的最小值F min =mg sin α=21μμ+mg.另解:设F 与水平面成α角时F 最小,有F cos α-μ(mg -F sin α)=0,得αμαμsin cos +=mgF ,令μ=cot ϕ,,代入上式得)sin(sin αϕϕμ+=mg F =21μμ+mg。
8. 将质量为M 的小车沿倾角为α,动摩擦因数为μ的斜面匀速拉上,求拉力的方向与斜面夹角θ为多大时,拉力最小?最小的拉力为多大?(答案:tan -1μ;21cos sin μαμα++=Mg Mg )解:小车受四个力作用处于平衡,先把摩擦力f 和支持力N 合成一个力R ,因f 和N 成正比,所以R 和N 的夹角β=tan -1μ,这样问题就转化成小车在三个力作用的平衡问题.小车受到的重力Mg 的大小和方向都保持不变,当拉力F 和R 垂直时,F 最小,θ=β=tan -1μ,最小值为:F min =Mg sin(α+β)=Mg sin(α+tan -1μ)21cos sin μαμα++=Mg Mg .二、物体的平衡1.三力平衡特点 (1)任意两个的合力与第三个力是一对平衡力(2)三力汇交原理:互不平行的三个力处于平衡,这三个力的作用线必交于一点。
7①确定墙壁或天花板对杆的弹力方向?②若墙壁与杆间动摩擦因数为μ,物体只能挂在什么范围?9. 如图所示,质量为M 的杆AB 静止在光滑的半球形容器中,设杆与水平方向的夹角为α.则容器面对杆A 点的作用力F 为多大?(答案:αtan Mg F =) 解:F 的作用线通过圆心B 点对杆的作用力N 与相垂直角度关系如图所示 根据正弦定理ααsin )90sin(0FMg =- 得αtan Mg F = 2.力矩和力矩平衡:M =FL(1)力矩的平衡条件:对任意点∑=0M∑=0M 也常用来受力分析,如三个完全相同的小球叠放在水平地面上处于静止状态,则下面的球受到几个力作用?对球心,根据力矩平衡可知,下面的球受到二个大小相等的摩擦力,共五个力作用 这是确定圆柱体受摩擦力的常用方法。
又如板与墙之间夹一球,两边的摩擦力大小相等,若μ相同,对球心有∑=0M 得板对球的弹力大,可判断沿墙滑动,沿板滚动。
10. 如图所示,质量为M 的立方块和质量为m 的圆柱体置于倾角为α的固定斜面上,立方体和圆柱体与斜面间的动摩擦因数都为μ,立方体与圆柱体之间摩擦不计。
求当平行于斜面的作用力F 多大时,立方体和圆柱体沿斜面向上匀速运动。
[答案:F =(Mg +mg )sin α+μmg cos α]解:对圆柱体,以圆心为转轴,根据力矩平衡可知,圆柱体与斜面间的摩擦力为零(这是确定摩擦力的常用方法)。
所以F =(Mg +mg )sin α+μmg cos α.注意:若M 和m 间有摩擦,则球受两个大小相等的摩擦力,先要分析哪一接触面先达到最大,即先滑动。
11. 将重为30N 的均匀球放在斜面上,球用绳子拉住,如图所示.绳AC与水平面平行,C 点为球的最高点斜面倾角为370.求: (1)绳子的张力.8 (2)斜面对球的摩擦力和弹力. [答案:(1)10N ;(2)10N ,30N]解:(1)取球与斜面的接触点为转轴:0)37cos (37sin 20=+-R R T mgR ,得T =10N; (2)取球心为转轴得,f =T =10N;取C 点为转轴:037sin )37cos (00=-+NR R R f ,得N =30N.12. 一根质量均匀的米尺AB 用细绳悬挂,现用重为米尺重量的5/3倍的砝码挂在尺上某点,这时两端细绳成如图所示,米尺呈水平状态,则此砝码距A 点的距离应为多少? (答案:0.1m )解:米尺长用L 表示,重用G 表示,设砝码距A 点的距离为x , 对悬挂点,有力矩平衡:,354141G x L G L ⨯⎪⎭⎫ ⎝⎛-=⨯解得x=0.1m. 13. 两根细线悬挂在同一点,另一端分别系有带电小球A 、B ,静止时如图所示,已知绳长OB =2OA ,两球的质量关系是M A =2M B ,α=450,求θ. (答案:450)(对整体,根据对O 点的力矩平衡,θ=α=450)14. 水平路面上有一根弯成直角的铁条ABC ,AB 段和BC 段的长度相等,质量分别是M 1和M 2,通过系在角顶B 的绳子用平行于路面的力匀速地拉铁条,如图所示,求绳子必须与AB 成多大的角. (答案:211tan M M--=πθ)(根据摩擦力矩对B 点的力矩为零,得211tan M M--=πθ(2)二力杆:两端受力的杆,力的作用线一定沿杆(根据力矩平衡)。