高中物理竞赛辅导习题力学部分
- 格式:ppt
- 大小:1.70 MB
- 文档页数:24
1、(本题20分)如图6所示,宇宙飞船在距火星表面H 高度处作匀速圆周运动,火星半径为R 。
当飞船运行到P 点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。
因α很小,所以飞船新轨道不会与火星表面交会。
飞船喷气质量可以不计。
(1)试求飞船新轨道的近火星点A 的高度h 近和远火星点B 的高度h 远 ; (2)设飞船原来的运动速度为v 0 ,试计算新轨道的运行周期T 。
2,(20分)有一个摆长为l 的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x 处(x <l )的C 点有一固定的钉子,如图所示,当摆摇摆时,摆线会受到钉子的阻挡.当l 肯定而x 取不同值时,阻挡后摆球的运动状况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O 点),然后放手,令其自由摇摆,假如摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x 的最小值.3,(20分)如图所示,一根长为L 的细刚性轻杆的两端分别连结小球a 和b ,它们的质量分别为m a 和 m b . 杆可绕距a 球为L/4处的水平定轴O 在竖直平面内转动.初始时杆处于竖直位置.小球b 几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m 的立方体匀质物块,图中ABCD 为过立方体中心且与细杆共面的截面.现用一水平恒力F 作用于a 球上,使之绕O 轴逆时针转动,求当a 转过 角时小球b 速度的大小.设在此过程中立方体物块没有发生转动,且小球b 与立方体物块始终接触没有分别.不计一切摩擦.4、把上端A 封闭、下端B 开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P 0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计.(1)求玻璃管内外水面的高度差h.(2)用手拿住玻璃管并缓慢地把它压入水中,当管的A 端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度.(3)上一小问中,放手后玻璃管的位置是否改变?如何改变?(计算时可认为管内空气的温度不变) 5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右图).一条长度为l 的绳(质量不计),一端的位置固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v 绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画出).aObA BCDF6、(13分) 一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽视不计.起先时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A 经过B 驶向C.设A 到B 的距离也为H,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.7.在两端封闭、内径匀称的直玻璃管内,有一段水银柱将两种志向气体a 和b 隔开.将管直立着,达到平衡时,若温度为T,气柱a 和b 的长度分别为l a 和l b ;若温度为T ',长度分别为l 抋和l 抌.然后将管平放在水平桌面上,在平衡时,两段气柱长度分别为l 攁和l 攂.已知T 、T 挕8.如图所示,质量为Kg M9=的小车放在光滑的水平面上,其中AB 部分为半径R=0.5m 的光滑41圆弧,BC 部分水平且不光滑,长为L=2m ,一小物块质量m=6Kg ,由A 点静止释放,刚好滑到C 点静止(取g=102s m ),求:①物块与BC 间的动摩擦因数②物块从A 滑到C 过程中,小车获得的最大速度9..如图所示,在光滑水平面上放一质量为M 、边长为l 的正方体木块,木块上搁有一长为L 的轻质光滑棒,棒的一端用光滑铰链连接于地面上O 点,棒可绕O 点在竖直平面内自由转动,另一端固定一质量为m 的均质金属小球.起先时,棒与木块均静止,棒与水平面夹角为α角.当棒绕O 点向垂直于木块接触边方向转动到棒与水平面间夹角变为β的瞬时,求木块速度的大小.10 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今渐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.mRωθ rmg图2.1111如图所示,一木块从斜面AC 的顶端A 点自静止起滑下,经过水平面CD 后,又滑上另一个斜面DF ,到达顶端F 点时速度减为零。
高中物理竞赛辅导力学部分目录第一讲:力学中的三种力第二讲:共点力作用下物体的平衡第三讲:力矩、定轴转动物体的平衡条件、重心第四讲:一般物体的平衡、稳度第五讲:运动的基本概念、运动的合成与分解第六讲:相对运动与相关速度第七讲:匀变速直线运动第八讲:抛物的运动第九讲:牛顿运动定律(动力学)第十讲:力和直线运动第十一讲:质点的圆周运动、刚体的定轴转动第十二讲:力和曲线运动第十三讲:功和功率第十四讲:动能定理第十五讲:机械能、功能关系第十六讲:动量和冲量第十七讲:动量守恒《动量守恒》练习题第十八讲:碰撞《碰撞》专题练习题第十九讲:动量和能量《动量与能量》专题练习题第二十讲:机械振动《机械振动》专题练习第二十一:讲机械波第二十二讲:驻波和多普勒效应第一讲: 力学中的三种力【知识要点】(一)重力重力大小G=mg ,方向竖直向下。
一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。
(二)弹力1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定.3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x 为弹簧的拉伸或压缩量)来计算 .在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k 1,k 2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:nk k k 1...111+=,即弹簧变软;反之.若以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为0L 的弹簧的劲度系数为k ,则剪去一半后,剩余2L 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。
高中物理竞赛集训——力学基础篇刚体转动1、如图所示,一均匀细棒,可绕通过其端点并与棒垂直的水平轴转动。
已知棒长为l ,质量为m ,开始时棒处于水平位置。
令棒由静止下摆,求:(1)棒在任意位置时的角加速度;(2) θ 角为300,900时的角速度。
2、一长为l 、质量为m 的均质细杆,可绕光滑轴O 在铅直面内摆动。
当杆静止时,一颗质量为m 0的子弹水平射入与轴相距为a 处的杆内,并留在杆中,使杆能偏转到与竖直方向成θ角。
求子弹的初速v 0。
3、一个质量为M 半径为R 的定滑轮(当作均匀圆盘),上面绕有细绳,绳的一端固定在滑轮边上,另一端挂一质量为m 的物体而下垂。
忽略轴处摩擦,求物体m 由静止下落高度h 时的速度和此时滑轮的角速度。
m 0机械振动机械波1、如图所示,将一粗细均匀、两边开口的U 型管固定,其中装有一定量的水银,汞柱总长为L 。
当水银受到一个初始的扰动后,开始在管中振动。
忽略管壁对汞的阻力,试证明汞柱做简谐运动,并求其周期。
2、如图所示,两根相同的弹性系数分别为k 1和k 2的轻质弹簧,连接一个质量为m 的滑块,可以在光滑的水平面上滑动。
试求这个系统的振动周期T 。
3、某秋千两边绳子不等长,且悬点不等高,相关数据如图14所示,且有a 2 + b 2= +,试求它的周期(认为人的体积足够小)。
21L 22L第21届预赛(2004.9.5)二、(15分)质量分别为m1和m2的两个小物块用轻绳连结,绳跨过位于倾角α=30︒的光滑斜面顶端的轻滑轮,滑轮与转轴之间的磨擦不计,斜面固定在水平桌面上,如图所示。
第一次,m1悬空,m2放在斜面上,用t表示m2自斜面底端由静止开始运动至斜面顶端所需的时间。
第二次,将m1和m2位置互换,使m2悬空,m1放在斜面上,发现m1自斜面底端由静止开始运动至斜面顶端所需的时间为t/3。
求m l与m2之比。
七、(15分)如图所示,B是质量为m B、半径为R的光滑半球形碗,放在光滑的水平桌面上。
力、物体的平衡补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。
一、力学中常见的三种力 1.重力、重心①重心的定义:++++=g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。
②重心与质心不一定重合。
如很长的、竖直放置的杆,重心和质心不重合。
如将质量均匀的细杆AC (AB =BC =1m )的BC 部分对折,求重心。
以重心为转轴,两边的重力力矩平衡(不是重力相等):(0.5-x )2G =(x +0.25)2G ,得x =0.125m (离B 点). 或以A 点为转轴:0.5⨯2G +(1+0.5)2G =Gx ', 得x '=0.875m ,离B 点x =1-x '=0.125m.2.巴普斯定理:①质量分布均匀的平面薄板:垂直平面运动扫过的体积等于面积乘平面薄板重心通过的路程。
如质量分布均匀的半圆盘的质心离圆心的距离为x ,绕直径旋转一周,2321234R x R πππ⋅=,得π34R x = ②质量分布均匀的、在同一平面内的曲线:垂直曲线所在平面运动扫过的面积等于曲线长度乘曲线的重心通过路程。
如质量分布均匀的半圆形金属丝的质心离圆心的距离为x ,绕直径旋转一周,R x R πππ⋅=242,得πR x 2= 1. (1)半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内切圆板,如图a 所示,求剩下部分的重心。
(2)如图b 所示是一个均匀三角形割去一个小三角形AB 'C ',而B 'C '//BC ,且∆AB 'C '的面积为原三角形面积的41,已知BC 边中线长度为L ,求剩下部分BCC 'B '的重心。
[答案:(1) 离圆心的距离6R ;(2)离底边中点的距离92L ] 解(1)分割法:在留下部分的右边对称处再挖去同样的一个圆,则它关于圆心对称,它的重心在圆心上,要求的重心就是这两块板的合重心,设板的面密度为η,重心离圆心的距离为x .有力矩平衡: ),2()2(])2(2[222x R R x R R -=-ηπηπ得6R x ==5cm. 填补法:在没挖去的圆上填上一块受”重力”方向向上的圆,相当于挖去部分的重力被抵消,其重心与挖去后的重心相同,同理可得6R x =. 能量守恒法:原圆板的重力势能等于留下部分的重力势能和挖去部分的重力势能之和,可得6R x =. (2) ∆AB 'C '的面积为原三角形面积的1/4,质量为原三角形质量的41,中线长度应为原三角形中线长度的21。
高中物理竞赛模拟题(力学部分)1.在图1中,反映物体受平衡力作用的图线是:(图V X表示沿X轴的分速度)2.某人在站台上候车,看见远处一辆机车沿平直的铁路以速度V行驶过来,这时该车发出短促的一声鸣号,经过时间t传到站台,若空气中声速为V,则机车能抵达站台还需要的时间至少是:A,v2t/v0; B,(v2+v1t)/v0; C,,(v2-v1t)/v0; D, v1t/v0;3,9如图所示,在静止的杯中盛水,弹簧下端固定在杯底,上端系一密度小于水的木球,当杯自由下落后,弹簧稳定时的长度将:A,变长; C. 恢复到原长;B,不变; D.无法确定;4,A、B、C三个物体的质量分别是M、2M、3M,具有相同的动能,在水平面上沿着同一方向运动,假设它们所受的制动力相同,则它们的制动距离之比是:A,1:2:3; B.1:4:9; C.1:1:1; D.3:2:1;5,如图所示,棒AB的B端支在地上,另一端A受水平力F作用,棒平衡,则地面对棒B 端作用力的方向为:A,总是偏向棒的左边,如F1;B,总是偏向棒的右边,如F3;C,总是沿棒的方向如F2;D,总是垂直于地面向上如F4;6,在倾角为300的光滑斜面顶端,先让一物体从静止开始滑动,经过1秒钟再让另一物体也在顶端从静止开始滑动,则两物体之间的距离将:A,保持恒定; B, 逐渐拉开;C, 逐渐缩短; D, 无确定的关系;7,如图所示,一直角斜面体固定在地面上,左过斜面倾角为600,右边斜面倾角为300。
A、B两物体分别系于一根跨过定滑轮的轻绳两端,分置于斜面上,且两物体下边缘们于同一高度处于平衡状态,设所有摩擦均忽略不计,滑轮两边的轻绳都平行于斜面。
若剪断轻÷绳,让两物体从静止沿斜面下滑,则上列叙述正确的是: A , 着地时两物体的速度相等;B , 着地时两物体的机械能相等;C , 着地时两物体所受重力的功率相等;D , 两物体沿斜面滑行的时间相等;8,如图所示,物体 A 靠在光滑竖直的墙面,用带铰链的棒支住它,物体重为G ,棒重G ‘,棒和竖直方向的夹角为 ,则以下说法正确的是:A , 物体A 对棒端的弹力、磨擦力的合力的方向必沿棒的方向;B , 增加物重G ,物体对棒的弹力将减小;C , 移动铰链的位置,使α角增大,但仍支住物体A ,则物体对棒的弹力将增大; D , 增大棒重G ‘,物体A 对棒的磨擦力将增大;9,全长为L 的均匀链条,对称地挂在一个光滑而轻小的一定滑轮上,如图,若轻轻地拉动一下链条的一端,使它从静止开始下落,则当链条脱离滑轮的瞬间,其速度大小为: A, gl 2; B ,2gl;C ,gl ;D ,22gl 10,一个高为h 的空心木制长方形被放入一个圆柱形容器中,如图,长方体的横截面内外分别是边长d 为和2d 的正方形,容器的半径为3d ,现向容器中灌水,使长方形可在其中自由漂浮,则此容器的最小高度为H :A, h ρ水/(ρ水+ρ木);B , h ;C , h ρ木/3πρ水; D. h ρ木/ρ水。
力学(一)1.有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住,使摆长发生变化。
现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪光照片,如图所示(悬点和小钉未被摄入)。
P为摆动中的最低点,已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为 ( C )A .L/4B .L/2C .3L/4D .无法确定2.如图所示,a 、b 、c 三个相同的小球,a 从光滑斜面顶端由静止开始自由下滑,同时b 、c 从同一高度分别开始自由下落和平抛.下列说法正确的有: ( D )A .它们同时到达同一水平面B .重力对它们的冲量相同C .它们的末动能相同D .它们动量变化的大小相同分析与解:b 、c 飞行时间相同(都是gh 2);a 与b 比较,两者平均速度大小相同(末动能相同);但显然a 的位移大,所以用的时间长,因此A 、B 都不对.由于机械能守恒,c的机械能最大(有初动能),到地面时末动能也大,因此C 也不对.a 、b 的初动量都是零,末动量大小又相同,所以动量变化大小相同;b 、c 所受冲量相同,所以动量变化大小也相同,故D 正确.思路点拨: 这道题看似简单,实际上考察了平均速度.功.冲量等很多知识.另外,在比较中以b 为中介:a .b 的初.末动能相同,平均速度大小相同,但重力作用时间不同;b .c 飞行时间相同(都等于自由落体时间),但初动能不同.本题如果去掉b 球可能更难做一些.3.以力F 拉一物体,使其以加速度a 在水平面上做匀加速直线运动,力F 的水平分量为F 1,如图所示,若以和F 1大小.方向都相同的力F '代替F 拉物体,使物体产生加速度a ',那么:( B C )A .当水平面光滑时,a ' < aB .当水平面光滑时,a ' = aC .当水平面粗糙时,a ' < aD .当水平面粗糙时,a ' = a分析与解:当水平面光滑时,物体在水平面上所受合外力均为F`,故其加速度不变.而当水平面粗糙时,支持力和摩擦力都是被动力,其大小随主动力的变化而变化,当用F`替换F 时,摩擦力将增大,故加速度减小.因此BC 答案正确.思路点拨:运用牛顿运动定律解决力学问题的一般程序为:1.选择研究对象,2.受力分析,3.合成或分解(正交分解),列式计算.在受力分析时,应注意被动力随主动力变化的特点.4.如图所示,在光滑的水平面上,有一绝缘的弹簧振子,小球带负电,在振动过程中当弹簧压缩到最短时,突然加上一个沿水平向左的恒定的匀强电场,此后: ( A )A .振子的振幅将增大B .振子的振幅将减小C .振子的振幅将不变D分析与解:弹簧振子在加电场前,平衡位置在弹簧原长处,设振幅A .当弹簧压缩到最短时,突然加上一个沿水平向左的恒定的匀强电场,此位置仍为振动振幅处,而且振子的运动是简谐振动,只是振动的平衡位置改在弹簧原长的右边,且弹簧神长量x 满足kx = qE ,即振子振动的振幅A 1=A+x ,,所以振子的振幅增大,正确答案为A .思路点拨:弹簧振子在做简谐振动时,平衡位置是合力为零时,当外界条件发生改变,平衡位置有可能随之而变,振子的运动相对于平衡位置对称.5.如图所示,把系在轻绳上的A 、B 两球由图示位置同时由静止释放(绳开始时拉直),则在两球向左下摆动时,下列说法正确的是:( B ) ○1 绳OA 对A 球做正功 ○2 绳AB 对B 球不做功○3 绳AB 对A 球做负功 ○4 绳AB 对B 球做正功 A. ○1 ○2 B .○3 ○4 C .○1 ○3 D .○1 ○4 分析与解:大概画出A 、B 球的运动轨迹,就可以找出绳与球的运动方向的夹角,进而可以判断做功情况.由于OA 绳一直张紧且O 点不动,所以A 球做圆周运动,OA 绳对A 球不做功,而B 球是否与A 球一起做圆周运动呢?让我们用模拟等效法分析:设想A 、B 球分别用两条轻绳悬挂而各自摆动,若摆角较小,则摆动周期为T=g L /2π,可见摆长越长,摆得越慢,因此A 球比B 球先到达平衡位置(如图).可见绳AB 的张力对A 的运动有阻碍作用,而B 球的运动有推动作用,所以正确的答案为○3 ○4. 思路点拨:本题是一道判断做功正负的选择题,通过模拟等效判断出小球的运动情况,再根据F 与v 的夹角判断做不做功和功的正负.6、如图所示,质量为m 的物体放在水平放置的钢板c 上,与钢板间的动摩因数为μ。
物理竞赛辅导测试卷(力学综合1)一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a=。
二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M三、(10分)在密度为ρ0的无限大的液体中,有两个半径为R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。
四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。
在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的X 力。
五、(15分)二波源B 、C 具有相同的振动方向和振幅,振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C点坐标为x C =30m ,求:①二波源的振动表达式;②二波的表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。
六、(15分) 图是放置在水平面上的两根完全相同的轻质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。
当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动至最右端)为一个振动过程。
高中物理竞赛辅导教程(新大纲版)一、力学部分1. 运动学- 基本概念:位移、速度、加速度。
位移是矢量,表示位置的变化;速度是描述物体运动快慢和方向的物理量,加速度则反映速度变化的快慢。
- 匀变速直线运动公式:v = v_0+at,x=v_0t+(1)/(2)at^2,v^2-v_{0}^2 = 2ax。
这些公式在解决直线运动问题时非常关键,要注意各物理量的正负取值。
- 相对运动:要理解相对速度的概念,例如v_{AB}=v_{A}-v_{B},在处理多个物体相对运动的问题时很有用。
- 曲线运动:重点掌握平抛运动和圆周运动。
平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动;圆周运动中要理解向心加速度a =frac{v^2}{r}=ω^2r,向心力F = ma的来源和计算。
2. 牛顿运动定律- 牛顿第二定律F = ma是核心。
要学会对物体进行受力分析,正确画出受力图。
- 整体法和隔离法:在处理多个物体组成的系统时,整体法可以简化问题,求出系统的加速度;隔离法用于分析系统内单个物体的受力情况。
- 超重和失重:当物体具有向上的加速度时超重,具有向下的加速度时失重,加速度为g时完全失重。
3. 动量与能量- 动量定理I=Δ p,其中I是合外力的冲量,Δ p是动量的变化量。
- 动量守恒定律:对于一个系统,如果合外力为零,则系统的总动量守恒。
在碰撞、爆炸等问题中经常用到。
- 动能定理W=Δ E_{k},要明确功是能量转化的量度。
- 机械能守恒定律:在只有重力或弹力做功的系统内,机械能守恒。
要熟练掌握机械能守恒定律的表达式E_{k1}+E_{p1}=E_{k2}+E_{p2}。
二、电磁学部分1. 电场- 库仑定律F = kfrac{q_{1}q_{2}}{r^2},描述真空中两个静止点电荷之间的相互作用力。
- 电场强度E=(F)/(q),电场线可以形象地描述电场的分布情况。
- 电势、电势差:U_{AB}=φ_{A}-φ_{B},电场力做功与电势差的关系W = qU。
全国高中物理力学竞赛试题卷(部分)考生须知:时间150分钟,g取10m/s2(, 题号带△的题普通中学做)一. 单选题(每题5分)△1.如图所示,一物体以一定的初速度沿水平面由A 点滑到B 点,摩擦力做功为W 1;若该物体从M 点沿两斜面滑到N ,摩擦力做的总功为W 2。
已知物体与各接触面的动摩擦因数均相同,则:A .W 1=W 2B .W 1<W 2C .W 1>W 2D .无法确定△2.下面是一位科学家的墓志铭: 爵士安葬在这里。
他以超乎常人的智力第一个证明了行星的运动与形状、彗星的轨道和海洋的潮汐。
他孜孜不倦地研究光线的各种不同的折射角,颜色所产生的种种性质。
对于自然、历史和圣经,他是一个勤勉、敏锐的诠释者。
让人类欢呼,曾经存在过这样一位伟大的人类之光。
这位科学家是:A .开普勒B .牛顿C .伽利略D .卡文迪许3.2002年3月25日,北京时间22时15分,我国在酒泉卫星发射中心成功发射了一艘正样无人飞船,除航天员没有上之外,飞船技术状态与载人状态完全一致。
它标志着我国载人航天工程取得了新的重要进展,为不久的将来把中国航天员送上太空打下了坚实的基础。
这飞船是A .北斗导航卫星B .海洋一号C .风云一号D 星 D .神舟三号4.如图所示,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平地面上做匀减速运动,不计其它外力及空气阻力,则中间一质量为m的土豆A 受到其它土豆对它的总作用力大小应是:A .μmgB .mg 21μ+C .mg 21μ-D .mg 12-μB 、C 、D 、E 、F 五个球并排放置在光滑的水平面上,B 、C 、D 、E 四个球质量相同,均为m=2kg ,A 球质量等于F 球质量,均为m=1kg ,现在A 球以速度v 0向B 球运动,所发生的碰撞均为弹性碰撞,则碰撞之后:A .五个球静止,一个球运动 B. 四个球静止,二个球运动 C .三个球静止,三个球运动 D .六个球都运动6.一物体原来静置于光滑的水平面上。
高中物理竞赛模拟题(力学部分)1.在图1中,反映物体受平衡力作用的图线是:(图V X 表示沿X 轴的分速度)轴的分速度)2.某人在站台上候车,看见远处一辆机车沿平直的铁路以速度V 行驶过来,这时该车发出短促的一声鸣号,出短促的一声鸣号,经过时间经过时间t 传到站台,传到站台,若空气中声速为若空气中声速为V ,则机车能抵达站台还需要的时间至少是:要的时间至少是:A,v 2t/v 0; B,(v 2+v 1t)/v 0; C,,(v 2-v 1t)/v 0; D, v 1t/v 0;3,9如图所示,在静止的杯中盛水,弹簧下端固定在杯底,上端系一密度小于水的木球,当杯自由下落后,弹簧稳定时的长度将:当杯自由下落后,弹簧稳定时的长度将:A , 变长;变长; C. C. C. 恢复到原长;恢复到原长;恢复到原长;B , 不变;不变; D. D. D.无法确定;无法确定;无法确定;4,A 、B 、C 三个物体的质量分别是M 、2M 2M、、3M 3M,具有相同的动能,,具有相同的动能,在水平面上沿着同一方向运动,假设它们所受的制动力相同,则它们的制动距离之比是: A , 1:2:3; B.1 B.1::4:9; C.1 C.1::1:1; D.3 D.3::2:1;5,如图所示,棒AB 的B 端支在地上,另一端A 受水平力F 作用,棒平衡,作用,棒平衡, 则地面对棒B 端作用力的方向为:端作用力的方向为:A , 总是偏向棒的左边,如F 1;B , 总是偏向棒的右边,如F 3;C , 总是沿棒的方向如F 2;D , 总是垂直于地面向上如F 4;6,在倾角为300的光滑斜面顶端,先让一物体从静止开始滑动,经过1秒钟再让另一物体也在顶端从静止开始滑动,则两物体之间的距离将:也在顶端从静止开始滑动,则两物体之间的距离将:A , 保持恒定;保持恒定; B, B, B, 逐渐拉开;逐渐拉开;逐渐拉开;C, C, 逐渐缩短;逐渐缩短;逐渐缩短; D, D, D, 无确定的关系;无确定的关系;无确定的关系;7,如图所示,如图所示,一直角斜面体固定在地面上,一直角斜面体固定在地面上,一直角斜面体固定在地面上,左过斜面倾角为左过斜面倾角为600,右边斜面倾角为300。
物理竞赛辅导力学力学1直线运动题型讲解:基准1:例如图1右图,地面上加一紧固的球面,球面的斜上方p处为一质点.现要确认一条从p至球面扁平斜面轨道,并使质点从恒定已经开始沿轨道转弯至球面上所经时间最长.解析:此题求解关键是:根据点从竖直圆的顶点开始,沿圆内任一弦下滑,经历的时间都相等这一结论,找到一个顶点是p且与固定球面切线的球面m,这样质点从p点与两球切点连线的弦上大幅下滑所经历的时间就最长.(质点沿其他弦大幅下滑时,经历的时间除沿弦大幅下滑的时间外,还要再加之从球面m至紧固球面的一段时间).先证明这样一个问题:设地面附近有一空心球,顶点p上有众多的光滑斜直轨道与球面上其他点相连,试证明质点从p点自静止出发经任一轨道再到达球面所需时间相同.证明:如图2所示,取任一与水平线夹角为φ的轨道pq,其长为l=2rsinφ此处r为球半径.质点沿pq轨道大幅下滑的加速度为gsinφ,因此从p至q所需时间为t==2.图2该t与轨道参量φ无关,故任一轨道对应时间相同.根据上述结论,本题只要以p点为顶点并作一球面,并使其与题中紧固球面切线,从p点至切点q的扁平横的直轨道为所求.下面得出的就是过p且与紧固球面切线的球面的作法:图3:所示,原球面球心记为o,半径记为r.设o、p所在竖直平面即为图示的纸平面,在该竖直面上过p点作一条竖直线ab,且使pa长等于r.连结o、a两点,作直线段oa的中垂线,此中垂线与ab的交点o′即为待作新球面的球心,o′到p点的距离取为新球面的半径r′.这样作出的新球面o′与原球面o相切于q点,p到q的光滑斜直线轨道即为所求.基准2:老鼠返回洞穴沿直线行进,它的速度与至洞穴的距离成反比,当它前进至距洞穴距离为d1的甲处时速度就是v1则它前进至距洞穴距离为d2的乙处时的速度就是.从甲至乙用回去的时间就是.图3解析:由于老鼠的运动速度与至洞穴的距离成反比,故可以通过画-d图象,把反比例图象转化成线性图象,进而求出时间.本题也可以直接应用数学积分知识进行求解.设立老鼠返回洞穴的距离为d,运动的速度为v,则v=,k为反比例常数.根据题意d=d1时,v=v1,则k=d1v1.故d=d2时,v=v2满足用户v2==v1.为求老鼠从甲到乙用用时间,根据分析提出的求解思路如下:(1)图象法.创建图4,右图的-d图象,则图象上任一大的面积(图中阴图4影部分)其物理意义就是老鼠在经历任一长的距离△d时用回去的时间,因为这任意短的距离中,老鼠的速成度可视为不变,则△t==△d,这正是图象阴影面积中的短和阔的乘积.这样图象与d轴围困象与d轴围困的面积可以视作由无数个图中阴影面积所共同组成,也就是说,图在从d1至d2图象与d轴围困的梯形面积就是所求的老鼠Weinreb的时间。