[常耕文库】2020届高三数学上学期月考二试题文
- 格式:doc
- 大小:1.10 MB
- 文档页数:10
2020年东北三省四市教研联合体高考模拟试卷(二)数学(文科)第Ⅰ卷(选择题共60分)本试卷共4页。
考试结束后。
将答题卡交回。
注意事项:1.答题前,考生先将自己的娃名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在答题卡各题目的答题区域内作答.超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出。
确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}42≤∈=x Z x A ,{}24<<-=x x B .则A∩B=A .{}22<≤-=x xB B .{}24≤<-=x x B C .{}2,1,0,1,2-- D .{}1,0,1,2--2.已知复数z 满足i z i -=+1)1(2,则z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知向量a ,b 满足a =(2,1).b =(1,y ).且a ⊥b .则|a +2b | = A .5 B .25 C .5 D .44.为了从甲乙两人中选一人参加校篮球队,教练将二人最近6次篮球比赛的得分数进行统计.如右图.甲乙两人的平均得分分别是乙甲、x x .则下列说法正确的是A .乙甲x x >,乙比甲稳定.应选乙参加校篮球队B .乙甲x x >.甲比乙稳定,应选甲参加校篮球队C .乙甲x x <.甲比乙稳定,应选甲参加校篮球队D .乙甲x x <.乙比甲稳定,应选乙参加校篮球队5.等比数列{}n a 中.5a 与7a 是函数34)(2+-=x x x f 的两个零点.则93a a ⋅等于A .3-B .4-C .3D .46.大学生积极响应“大学生志愿服务西部计划”.某高校学生小刘、小李、小孟、分别去西部某地一中、二中、三中3所学校中的一所学校支教,每校分配一名大学生,他们三人支教的学科分别是数学,语文,英语,且每学科一名大学生.现知道:(1)教语文的没有分配到一中,(2)教语文的不是小孟,(3)教英语的没有分配到三中,(4)小刘分配到一中.(5)小盂没有分配到二中,据此判断.数学学科支教的是谁?分到哪所学校?A .小刘三中B .小李一中C .小盂三中D .小刘二中 7.设b a ,是两条直线βα,是两个平面.则b a ⊥的一个充分条件是A .α⊥a ,β∥b ,βα⊥; C .α⊥a ,β⊥b ,βα∥B .α⊂a ,β⊥b ,βα∥ D .α⊂a ,β∥b ,βα⊥8.已知函数f (x )是定义在R 上的奇函数.在(0.+∞)上是增函数.且0)4(=-f .则使得0)(>x xf 成立的x 的取值范围是A .(4-,4)B .(4-,0)Y (0,4)C .(0,4)Y (4,∞+)D .(∞-,4-)Y (4,∞+) 9.已知直线2-=y 与函数)3sin(2)(πω-=x x f ,(其中w>0)的相邻两交点间的距离为π.则函数)(x f 的单调递增区间为 A .Z k k k ∈+-],65,6[ππππ B .Z k k k ∈+-],65,12[ππππ C .Z k k k ∈+-],611,65[ππππ D .Z k k k ∈+-],1211,65[ππππ 10.若函数⎩⎨⎧≤-->=0,20,log )(2x a x x x f x有且只有一个零点.则a 的取值范围是A .(∞-,1-)Y (0,∞+)B .(∞-,1-)Y [0,∞+)C .[1-,0)D . [0,∞+)11.已知与椭圆121822=+y x 焦点相同的双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21F F ,.离心率为34=e .若双曲线的左支上有一点M 到右焦点2F 的距离为12.N 为2MF 的中点,O 为坐标原点.则|NO|等于A .4B . 3C .2D .32 12.众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”.整个图形是一个圆形.其中黑色阴影区域在y 轴右侧部分的边界为一个半圆,给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是21②当23-=a 时,直线a ax y 2+=与白色部分有公共点; ③黑色阴影部分(包括黑白交界处)中一点(x ,y ).则x+y 的最大值为2; ④设点P (b ,2-),点Q 在此太极图上,使得∠OPQ=45°.b 的范围是[-2.2].其中所有正确结论的序号是A .①①B .①③C .②④D .①②第II 卷(非选择题共90分)本卷包括必考题和选考题两部分,第13~21题为必考题,每个试题考生都必须作答,第22~23题为选考题考生根据要求作答。
安福中学2020届高三第二次段考数学(文)试题一.选择题(本大题共有10个小题,每小题5分,共50分.)1.已知U ={}y | y =log 2x ,x >1,P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪ y =1x ,x >2,则∁U P = ( ) A.⎣⎢⎡⎭⎪⎫12,+∞ B.⎝ ⎛⎭⎪⎫0,12 C.()0,+∞ D.()-∞,0∪⎣⎢⎡⎭⎪⎫12,+∞ 2.把复数z 的共轭复数记作z -,i 为虚数单位,若z =1+i ,则(1+z )·z -=( )A .3-iB .3+iC .1+3iD .33.0a <是方程2210ax x ++=至少有一个负数根的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4.若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A.⎝ ⎛⎭⎪⎫1a ,b B .(10a,1-b ) C.⎝ ⎛⎭⎪⎫10a ,b +1 D .(a 2,2b ) 5.给出如下四个命题:① 若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若122,->>b a b a 则”的否命题为“若a b ≤,则221a b ≤-”;③ “R x ∈∀,x 2+1≥1”的否定是 “∃x ∈R,x 2+1≤1”;④ 在ABC ∆中,“A B >”是“sin sin A B >”的充要条件. 其中不正确...的命题的个数是( ) A .4 B .3 C . 2 D .16.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =( )A .1 B.12 C .-12D .-17.设f(x)为奇函数, 且在(-∞, 0)内是减函数, f (-2)= 0, 则x f(x)< 0的解集为( )A .(-1, 0)∪(2, +∞)B .(-∞, -2)∪(0, 2 )C .(-∞, -2)∪(2, +∞)D .(-2, 0)∪(0, 2 )8.设双曲线的—个焦点为F ;虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A B C D . 9、下列图像中有一个是函数1)1(31)(223+-++=x a ax x x f )0,(≠∈a R a 的导数)(x f ' 的图像,则(1)f -等于( )。
2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q 点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f(x)=sin|x|2+cosxB. f(x)=sinx•ln|x|2+cosxC. f(x)=cosx•ln|x|2+cosxD. f(x)=cosxx5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1(R+r)2 + M2r2=(R+r)M1R3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为()A. √M2M1RB. √M22M1RC. √3M2M13 RD. √M23M13 R6.(单选题,5分)已知函数f(x)={x,0≤x≤1,ln(2x),1<x≤2,若存在实数x1,x2满足0≤x1<x2≤2,且f(x1)=f(x2),则x2-x1的最大值为()A. e2B. e2−1C.1-ln2D.2-ln47.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<08.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条9.(多选题,5分)5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出做出预测.由如图提供的信息可知()A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增12.(多选题,5分)关于函数f(x)=alnx+ 2x,下列判断正确的是()A.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(12,1)C.当a>e时,函数 f (x)有两个零点D.当f (x)的最小值为2时,a=213.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .16.(填空题,5分)若函数f(x)=x(x-1)(x-a),(a>1)的两个不同极值点x1,x2满足f(x1)+f(x2)≤0恒成立,则实数a的取值范围为___ .17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为: b̂=∑x i y i −nxyn i=1∑x i 2n i=1−nx2=i −x )i −y n i=1)∑(x −x )2n â=y −b̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.21.(问答题,12分)已知函数f(x)=x|2a-x|+2x,a∈R.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有3个不相等的实数根,求实数t的取值范围.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【正确答案】:A【解析】:由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】:解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.【点评】:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)【正确答案】:A【解析】:由题意推出∠QOx角的大小,然后求出Q点的坐标.【解答】:解:点P从(0,1)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,所以∠QOx= 2π3,所以Q(cos 2π3,sin 2π3),所以Q (−12,√32).故选:A.【点评】:本题通过角的终边的旋转,求出角的大小是解题的关键,考查计算能力,注意旋转方向.3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)【正确答案】:A【解析】:先求幂函数f(x),再利用导数判定函数g(x)的单调递增区间.【解答】:解:设幂函数f(x)=xα,它的图象过点(√22,12),∴(√22)α= 12,∴α=2;∴f(x)=x2;∴g(x)= x2e x ,g′(x)= x(2−x)e x,令g′(x)>0,即2-x>0,解得:0<x<2,故g(x)在(0,2)递增,故选:A.【点评】:本题考查了幂函数的定义以及利用导数判定函数的单调区间问题,是中档题.4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f (x )=sin|x|2+cosx B. f (x )=sinx•ln|x|2+cosxC. f (x )=cosx•ln|x|2+cosx D. f (x )=cosx x【正确答案】:B【解析】:根据题意,依次分析选项中函数是否符合函数的图象,综合即可得答案.【解答】:解:根据题意,依次分析选项: 对于A , f (x )=sin|x|2+cosx,其定义域为R ,不符合题意;排除A ;对于C ,f (x )= cosx•ln|x|2+cosx,其定义域为{x|x≠0},有f (-x )=cos (−x )ln|−x|2+cos (−x ) = cosx•ln|x|2+cosx=f (x ), 即函数f (x )为偶函数,其图象关于y 轴对称,不符合题意;排除C , 对于D ,f (x )= cosxx,其定义域为{x|x≠0}, 有f (-x )=cos (−x )x =- cosx x=-f (x ), 即函数f (x )为奇函数,其图象关于原点对称, 当x→+∞时,f (x )→0,不符合题意;排除D ; 故选:B .【点评】:本题考查根据函数的图象选择解析式,注意结合函数的奇偶性、定义域等性质运用排除法进行分析,属于基础题.5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r满足方程: M 1(R+r )2+ M 2r 2 =(R+r ) M1R 3 . 设α= rR .由于α的值很小,因此在近似计算中 3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( )A. √M2M1RB. √M22M 1RC. √3M2M 13RD. √M23M 13R【正确答案】:D【解析】:由α= rR.推导出 M 2M 1= 3α3+3α4+α5(1+α)2≈3α3,由此能求出r=αR= √M 23M 13R .【解答】:解:∵α= rR .∴r=αR ,r 满足方程: M 1(R+r )2 + M 2r 2 =(R+r ) M1R3 . ∴11+2•r R +r 2R2•M 1 + R 2r2•M 2 =(1+ r R)M 1,把 α=r R代入,得: 1(1−α)2•M 1+1α2•M 2 =(1+α)M 1, ∴ M 2α2 =[(1+α)- 1(1−α)2 ]M 1=(1+α)3−1(1+α)2•M 1 =α(α2+3α+3)(1+α)2M 1, ∴ M2M 1=3α3+3α4+α5(1+α)2≈3α3, ∴r=αR= √M23M 13R .故选:D .【点评】:本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题. 6.(单选题,5分)已知函数 f (x )={x ,0≤x ≤1,ln (2x ),1<x ≤2,若存在实数x 1,x 2满足0≤x 1<x 2≤2,且f (x 1)=f (x 2),则x 2-x 1的最大值为( ) A. e 2B. e 2−1C.1-ln2D.2-ln4【正确答案】:B【解析】:画出函数图象得到x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],根据函数的单调性求出其最大值即可.【解答】:解:画出函数f(x)的图象,如图示:结合f(x)的图象可知,因为x1=ln(2x2),所以x2∈(1,e2],则x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],则g′(x)=x−1x,所以g(x)在(1,e2]上单调递增,故g(x)max=g(e2)=e2−1,故选:B.【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及数形结合思想,转化思想,是一道常规题.7.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0【正确答案】:A【解析】:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),结合函数的单调性可得x,y的大小关系,结合选项即可判断.方法二:根据条件取x=-1,y=0,即可排除错误选项.【解答】:解:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y-x>0,由于y-x+1>1,故ln(y-x+1)>ln1=0.方法二:取x=-1,y=0,满足2x-2y<3-x-3-y,此时ln(y-x+1)=ln2>0,ln|x-y|=ln1=0,可排除BCD.故选:A.【点评】:本题主要考查了函数的单调性在比较变量大小中的应用,属于基础试题.8.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条【正确答案】:B【解析】:设AB方程为y=m,根据△ABC是等边三角形计算m的值,得出结论.【解答】:解:根据题意,设直线l的方程为y=m,则A(log2m,m),B(log2m-1,m),AB=1,设C(x,2x),∵△ABC是等边三角形,∴点C到直线AB的距离为√32,∴m-2x= √32,∴x=log2(m- √32),又x= 12(log2m+log2m-1)=log2m- 12,∴log 2(m- √32 )=log 2m- 12 =log 2 m √2∴m - √32 = m√2 ,解得m=2√3+√62, 故而符合条件的直线l 只有1条. 故选:B .【点评】:本题考查了指数函数图象与性质的应用问题,也考查了指数,对数的运算问题,属于中档题.9.(多选题,5分)5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G 经济产出做出预测.由如图提供的信息可知( ) A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 【正确答案】:ABD【解析】:根据统计图中的信息,逐个分析选项,即可判断出正误.【解答】:解:对于选项A:由图可知,运营商的经济产出逐年增加,所以选项A正确,对于选项B:由图可知,设备制造商的经济产出在2020~2023年间增长较快,后几年增长逐渐趋于平缓,所以选项B正确,对于选项C:由图可知,设备制造商在各年的总经济产出中在前期处于领先地位,而2029年、2030年信息服务商在总经济产出中处于领先地位,所以选项C错误,对于选项D:由图可知,在2020~2025年间信息服务商与运营商的经济产出的差距不大,后几年中信息服务商的经济产出增长速度明显高于运营商的经济产出增长速度,两种差距有逐步拉大的趋势,所以选项D正确,故选:ABD.【点评】:本题主要考查了简单的合情推理,考查了统计图的应用,考查了学生逻辑思维能力,是基础题.10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件【正确答案】:ACD【解析】:直接利用充分条件和必要条件判定A和B的结论,直接利用命题的否定的应用判定C的结论,直接利用奇函数的性质判定D的结论.【解答】:解:对于A:当“a>1”时,“a2>1”成立,但是当“a2>1”时,“a>1或a<-1”,故选项A正确.对于B:“(a-1)-2<(2a-3)-2”的充要条件是:a-1>2a-3,整理得a<2,故选项B错误.对于C:命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”.故选项C正确.对于D:函数y=f (x)的定义域为R,当“f(0)=0”时,函数f(x)不一定为奇函数,但是,当函数f(x)为奇函数,则f(0)=0,故选项D正确.故选:ACD.【点评】:本题考查的知识要点:充分条件和必要条件,奇函数的性质,命题的否定,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增【正确答案】:ABC【解析】:直接利用函数的周期确定B的结论,直接利用函数的对称性判定A的结论,直接利用函数的解析式的求法判定C的结论,直接利用函数的图象和偶函数的性质判定D的结论.【解答】:解:对于B:函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x),整理得f(x+2)=f(x),所以函数为周期为2的函数,故B正确.对于C:由于0<x<1,所以2<x+2<3,由于x∈(2,3)时,f(x)=log2(x-1),所以f(x)=f(x+2)=log2(x+1),设-1<x<0,则0<-x<1,由于f(x)=-f(-x)=-log2(-x+1),故C正确.对于A:根据函数的性质,函数的图象关于(1,0)对称,故A正确.对于选项D:函数 y=f (|x|)的图象是将函数y=f(x)的图象关于y轴对称,在(-1,0)上单调递减,故D错误.故选:ABC.【点评】:本题考查的知识要点:函数的性质,单调性,周期性,函数的解析式的求法,主要考查学生的运算能力和转换能力及思维能力,属于中档题.12.(多选题,5分)关于函数f(x)=alnx+ 2,下列判断正确的是()xA.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(1,1)2C.当a>e时,函数 f (x)有两个零点D.当f (x ) 的最小值为2时,a=2 【正确答案】:ABD【解析】:对于A ,代入a 的值,求出函数的导数,求出函数的单调区间,得到函数的最小值即可,对于B ,代入a 的值,求出函数的导数,得到函数的单调性,问题转化为关于x 的不等式组,解出即可,对于C ,求出函数的单调性,求出函数的最小值,根据a 的范围判断最小值的范围即可判断, 对于D ,由最小值是2,得到关于a 的方程,解出即可.【解答】:解:对于A :a=1时,f (x )=lnx+ 2x ,f′(x )= x−2x 2 , 令f′(x )>0,解得:x >2,令f′(x )<0,解得:0<x <2, 故f (x )在(0,2)递减,在(2,+∞)递增, 故f (x )≥f (2)=ln2+1, 故A 正确;对于B :a=-1时,f (x )=-lnx+ 2x,f′(x )= −x−2x 2 <0, f (x )在(0,+∞)递减,不等式f (2x-1)-f (x )>0,即f (2x-1)>f (x ),故 {2x −1>0x >02x −1<x ,解得: 12<x <1,故B 正确;对于C :f′(x )= a x- 2x2 =ax−2x 2, ∵a >e ,令ax-2>0,解得:x > 2a,令ax-2<0,解得:0<x < 2a, 故f (x )在(0, 2a )递减,在( 2a ,+∞)递增, 故f (x )min =f ( 2a )=aln 2a+ 22a=a (ln2-lna )+a=aln 2e a,∵0< 2e a <2,故1< 2e a <2时,ln 2ea >0,f (x )min >0,函数无零点, 故C 错误;对于D :结合C ,f (x )min =aln 2e a=2,解得:a=e , 故D 正确; 故选:ABD .【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道常规题.13.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .【正确答案】:[1]-2【解析】:由偶函数的定义可求得x>0时,f(x)的解析式,求得导数,由导数的几何意义,代入x=1,计算可得所求值.【解答】:解:f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,可得x>0时,-x<0,f(x)=f(-x)=lnx-3x,导数为f′(x)= 1x-3,则曲线y=f(x)在点(1,-3)处的切线斜率是k=1-3=-2.故答案为:-2.【点评】:本题考查函数的奇偶性和解析式的求法,以及导数的运用:求切线的斜率,考查转化思想和运算能力,属于中档题.14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .【正确答案】:[1]- 54【解析】:利用二倍角公式整理函数解析式,值函数的解析式关于cosx的一元二次函数,设cosx=t,函数的顶点为最低点,此时函数值为最小值.【解答】:解:y=cosx+cos2x=cosx+2cos2x-1,设cosx=t,则-1≤t≤1,函数f(t)min=f(- 14)= 12- 14-1=- 54,故答案为:- 54.【点评】:本题主要考查了二次函数的性质.考查了学生的换元思想的运用.15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .【正确答案】:[1]a>c>b【解析】:可以得出 log 49>32>1 , (827)−13=32,2-1.2<1,然后即可得出a ,b ,c 的大小关系.【解答】:解:∵ log 49>log 48=log 4432=32>1 , (827)−13=32 ,2-1.2<20=1,∴a >c >b .故答案为:a >c >b .【点评】:本题考查了对数的运算性质,分数指数幂的运算,对数函数和指数函数的单调性,考查了计算能力,属于基础题.16.(填空题,5分)若函数f (x )=x (x-1)(x-a ),(a >1)的两个不同极值点x 1,x 2满足f (x 1)+f (x 2)≤0恒成立,则实数a 的取值范围为___ . 【正确答案】:[1]a≥2【解析】:把x 1,x 2代入到f (x )中求出函数值代入不等式f (x 1)+f (x 2)≤0中,在利用根与系数的关系化简得到关于a 的不等式,求出解集即可.【解答】:解:因f (x 1)+f (x 2)≤0,故得不等式x 13+x 23-(1+a )(x 12+x 22)+a (x 1+x 2)≤0.即(x 1+x 2)[(x 1+x 2)2-3x 1x 2]-(1+a )[(x 1+x 2)2-2x 1x 2]+a (x 1+x 2)≤0. 由于f′(x )=3x 2-2(1+a )x+a .令f′(x )=0得方程3x 2-2(1+a )x+a=0. 因△=4(a 2-a+1)≥4a >0,故 {x 1+x 2=23(1+a )x 1x 2=a3 代入前面不等式, 两边除以(1+a ),并化简得 2a 2-5a+2≥0.解不等式得a≥2或a≤ 12 (舍去)因此,当a≥2时,不等式f (x 1)+f (x 2)≤0成立.【点评】:考查学生求导数及利用导数研究函数极值的能力,灵活运用一元二次方程根与系数的关系解决数学问题的能力.17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?【正确答案】:【解析】:由集合知识可以解出集合A,对集合B进行分类求解,再利用集合的子集,交集,补集解出.【解答】:解:由log2(x-1)>1得x-1>2即x>3,故A=(3,+∞)选① :A⊆B当a>2时,B=(-∞,4-a)∪(a,+∞),∵A⊆B∴2<a≤3;当a<2时,B=(-∞,a)∪(4-a,+∞),∵A⊆B∴4-a≤3即1≤a<2;当a=2时,B=(-∞,2)∪(2,+∞),此时A⊆B综上:1≤a≤3选② ③ :答案同①故答案为:1≤a≤3.【点评】:本题属于结构不良试题,补充条件后,试题完整,利用集合的相关知识解决,属于基础题.18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.【正确答案】:【解析】:(1)利用诱导公式,和同角三角函数的基本关系关系,可将f (α)的解析式化简为f (α)=-cosα;(2)由α是第三象限角,且 cos (3π2−α)=35 ,可得cosα=- 45 ,结合(1)中结论,可得答案.【解答】:解:(1)f (α)= sin (5π−α)cos (π+α)cos(3π2+α)cos(α+π2)tan (3π−α)sin(α−3π2)= sinα•(−cosα)•sinα(−sinα)•(−tanα)•cosα =-sinα•cosα•sinαsinα•sinα=-cosα (2)∵ cos (3π2−α) =-sinα= 35,∴sinα=- 35 ,又由α是第三象限角, ∴cosα=- 45 , 故f (α)=-cosα= 45【点评】:本题考查的知识点是三角函数的化简求值,熟练掌握和差角公式,诱导公式,同角三角函数的基本关系关系,是解答的关键.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为:b ̂=∑x i y i −nxyni=1∑xi 2n i=1−nx2=i −x )i −y ni=1)∑(x −x )2n a ̂=y −b ̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .【正确答案】:【解析】:(1)由已知求得 b ̂ 与 a ̂ 的值,可得线性回归方程,取x=7求得y 值得结论; (2)求出K 2的值,结合临界值表得结论.【解答】:解:(1) x =1+2+3+4+55=3 , y =3+6+9+15+275=12 ,∑x i 5i=1y i =1×3+2×6+3×9+4×15+5×27 =237.b ̂=i 5i=1i −5xy∑x 25−5(x )2= 237−5×3×1255−45=5.7 ,a ̂=y −b̂x =12−5.7×3=−5.1 , 则y 关于x 的线性回归方程为 y ̂=5.7x −5.1 . 取x=7,可得 y ̂=5.7×7−5.1=34.8 .故预测2025~2030年间该市机动车纯增数量的值约为34.8万辆; (2)根据2×2列联表,计算可得 K 2=220×(90×40−20×70)2110×110×160×60=556≈9.167>6.635, ∴有99%的把握认为“对限行的意见与是拥有私家车”有关.【点评】:本题考查线性回归方程的求法,考查独立性检验的应用,考查计算能力,是中档题. 20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.【正确答案】:【解析】:(1)由平面AA 1C 1C⊥平面AA 1B 1B ,推出OC⊥平面AA 1B 1B ,故OC⊥OB ;易证Rt△AOC≌Rt△BOC ,故OA=OB ,从而得AA 1⊥OB ,再由线面垂直的判定定理得证;(2)以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B ,故∠CBO 为直线BC 与平面ABB 1A 1所成角,可得OA=OB=OC=1,写出B 、A 1、B 1、D 的坐标,根据法向量的性质求得平面A 1B 1D 的法向量 m ⃗⃗ ,由OB⊥平面AA 1C 1C ,知平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ ,再由cos < m ⃗⃗ , n ⃗ >= m ⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |即可得解.【解答】:(1)证明:∵平面AA 1C 1C⊥平面AA 1B 1B ,平面AA 1C 1C∩平面AA 1B 1B=AA 1,OC⊥AA 1,∴OC⊥平面AA 1B 1B , ∴OC⊥OB ,∵CA=CB ,OC=OC ,∠COA=∠COB=90°, ∴Rt△AOC≌Rt△BOC , ∴OA=OB , ∵∠BAA 1=45°,∴∠ABO=∠BAA 1=45°,∠AOB=90°,即AA 1⊥OB , 又OC⊥AA 1,OB∩OC=O ,OB 、OC⊂平面BOC , ∴AA 1⊥平面BOC , ∴AA 1⊥BC .(2)解:以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B , ∵直线BC 与平面ABB 1A 1所成角为45°, ∴∠CBO=45°,∵AB= √2 ,∴OA=OB=OC=1,∴B (0,1,0),A 1(-1,0,0),B 1(-2,1,0),D (-1,0,1), ∴ A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1), B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,1), 设平面A 1B 1D 的法向量为 m ⃗⃗ =(x ,y ,z ),则 {m ⃗⃗ •A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0m ⃗⃗ •B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0 ,即 {z =0x −y +z =0 ,令x=1,则y=1,z=0,所以 m ⃗⃗ =(1,1,0),∵OB⊥平面AA 1C 1C ,∴平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ =(0,1,0), ∴cos < m ⃗⃗ , n ⃗ >= m⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |= √2×1= √22 , 由图可知,二面角B 1-A 1D-C 1为锐角, 故二面角B 1-A 1D-C 1的余弦值为 √22 .【点评】:本题考查空间中线与面的位置关系、二面角的求法,熟练掌握线面、面面垂直的判定定理与性质定理,以及利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.21.(问答题,12分)已知函数f (x )=x|2a-x|+2x ,a∈R . (1)若函数f (x )在R 上是增函数,求实数a 的取值范围;(2)若存在实数a∈[-2,2],使得关于x 的方程f (x )-tf (2a )=0有3个不相等的实数根,求实数t 的取值范围.【正确答案】:【解析】:(1)写出f (x )的分段函数,求出对称轴方程,由二次函数的单调性,可得a-1≤2a ,2a≤a+1,解不等式即可得到所求范围;(2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解.讨论 ① 当-1≤a≤1时, ② 当a >1时, ③ 当a <-1时,判断f (x )的单调性,结合函数和方程的转化思想,即可得到所求范围.【解答】:解:(1)∵ f (x )={x 2+(2−2a )x ,x ≥2a−x 2+(2+2a )x ,x <2a 为增函数,由于x≥2a 时,f (x )的对称轴为x=a-1; x <2a 时,f (x )的对称轴为x=a+1, ∴ {a −1≤2a 2a ≤a +1解得-1≤a≤1; (2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解. ① 当-1≤a≤1时,f (x )在R 上是增函数,关于x 的方程f (x )=tf (2a )不可能有3个不相等的实数根. ② 当1<a≤2时,2a >a+1>a-1,∴f (x )在(-∞,a+1)上单调递增,在(a+1,2a )上单调递减, 在(2a ,+∞)上单调递增,所以当f (2a )<tf (2a )<f (a+1)时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根,即4a <t•4a <(a+1)2. ∵a >1,∴ 1<t <14(a +1a +2) .设 ℎ(a )=14(a +1a +2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,∴1<t <h (a )max .又h (a )在(1,2]递增,所以 ℎ(a )max =98,∴ 1<t <98. ③ 当-2≤a <-1时,2a <a-1<a+1,所以f (x )在(-∞,2a )上单调递增, 在(2a ,a-1)上单调递减,在(a-1,+∞)上单调递增, 所以当f (a-1)<tf (2a )<f (2a )时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根, 即-(a-1)2<t•4a <4a .∵a <-1,∴ 1<t <−14(a +1a−2) . 设 g (a )=−14(a +1a −2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,所以1<t <g (a )max . 又可证 g (a )=−14(a +1a −2) 在[-2,-1)上单调递减, 所以 g (a )max =98 ,所以 1<t <98 ..综上,1<t<98【点评】:本题考查分段函数的单调性的判断和运用,注意运用二次函数的对称轴和区间的关系,考查存在性问题的解法,注意运用分类讨论的思想方法,以及函数方程的转化思想的运用,考查运算化简能力,属于中档题.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e【正确答案】:【解析】:(1)依题意,f(x)+f(-x)=0在定义域上恒成立,由此建立方程,解出即可;(2)求导后分m≤2及m>2讨论即可;(3)可知e x0+e−x0=m,进而得到f(x0),研究其单调性,结合已知可得x0≤1,由此可求得实数m的取值范围.【解答】:解:(1)由函数f(x)为奇函数,得f(x)+f(-x)=0在定义域上恒成立,∴e x-ae-x-mx+e-x-ae x+mx=0,化简可得(1-a)(e x+e-x)=0,故a=1;,(2)由(1)可得f(x)=e x-e-x-mx,则f′(x)=e x+e−x−m=e2x−me x+1e x① 当m≤2时,由于e2x-me x+1≥0恒成立,即f′(x)≥0恒成立,故不存在极小值;② 当m>2时,令e x=t,则方程t2-mt+1=0有两个不等的正根t1,t2(t1<t2),故可知函数f(x)=e x-e-x-mx在(-∞,lnt1),(lnt2,+∞)上单调递增,在(lnt1,lnt2)上单调递减,即在lnt2出取到极小值,所以,实数m的取值范围为(2,+∞);(3)由x0满足e x0+e−x0=m代入f(x)=e x-e-x-mx,消去m得f(x0)=(1−x0)e x0−(1+x0)e−x0,构造函数h(x)=(1-x)e x-(1+x)e-x,则h′(x)=x(e-x-e x),当x≥0时,e−x−e x=1−e2xe x≤0,故当x≥0时,h′(x)≤0恒成立,故函数h(x)在[0,+∞)上单调减函数,其中ℎ(1)=−2e ,则f(x0)≥−2e,可转化为h(x0)≥h(1),故x0≤1,由e x0+e−x0=m,设y=e x+e-x,可得当x≥0时,y′=e x-e-x≥0,∴y=e x+e-x在(0,1]上递增,故m≤e+1e,综上,实数m的取值范围为(2,e+1e].【点评】:本题考查利用导数研究函数的单调性,极值及最值,同时也涉及了奇函数的定义,考查转化思想及逻辑推理能力,属于中档题.。
2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>04.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣26.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.278.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.49.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.2011.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=__________.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是__________.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=__________.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.2015-2016学年某某省马某某市红星中学高三(上)第二次月考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.设全集U是实数集R,M={x|y=ln(x2﹣2x) },N={y|y=},则图中阴影部分表示的集合是( )A.{x|﹣2≤x<2} B.{x|1<x≤2}C.{x|1≤x≤2}D.{x|x<1}【考点】Venn图表达集合的关系及运算.【专题】应用题;集合思想;定义法;集合.【分析】由图知,阴影部分表示的集合中的元素是在集合N中的元素但不在集合M中的元素组成的,即N∩C U M.【解答】解:由韦恩图知阴影部分表示的集合为N∩(C U M)M={x|y=ln(x2﹣2x) }∴x2﹣2x>0,解得x<0,或x>2,∴M={x|x<0,或x>2},∴C U M={x|0≤x≤2}=[0,2],N={y|y=}={y|y≥1}=[1,+∞),∴N∩(C U M)=[1,2],故选:C【点评】本小题主要考查Venn图表达集合的关系及运算、二次不等式的解法等基础知识,属于基础题2.已知函数f(x)=且f(a)=﹣3,则f(6﹣a)=( ) A.﹣B.﹣C.﹣D.﹣【考点】分段函数的应用;函数的零点.【专题】函数的性质及应用.【分析】由f(a)=﹣3,结合指数和对数的运算性质,求得a=7,再由分段函数求得f(6﹣a)的值.【解答】解:函数f(x)=且f(a)=﹣3,若a≤1,则2a﹣1﹣2=﹣3,即有2a﹣1=﹣1<0,方程无解;若a>1,则﹣log2(a+1)=﹣3,解得a=7,则f(6﹣a)=f(﹣1)=2﹣1﹣1﹣2=﹣.故选:A.【点评】本题考查分段函数的运用:求函数值,主要考查指数和对数的运算性质,属于中档题.3.给出如下命题,正确的序号是( )A.命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠xB.命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5C.若ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件D.命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0【考点】命题的真假判断与应用.【专题】计算题;规律型;简易逻辑.【分析】利用命题的否定判断A的正误;四种命题的逆否关系判断B的正误;充要条件判断C 的正误;命题的真假判断D的正误;【解答】解:对于A,命题:∀x∈R,x2≠x的否定是:∃x0∈R,使得x02≠x0,不满足命题的否定形式,所以不正确;对于B,命题:若x≥2且y≥3,则x+y≥5的否命题为:若x<2且y<3,则x+y<5,不满足否命题的形式,所以不正确;对于C,若ω=1是函数f(x)=cosx在区间[0,π]上单调递减的,而函数f(x)=cosωx在区间[0,π]上单调递减的,ω≤1,所以ω=1是函数f(x)=cosωx在区间[0,π]上单调递减的充分不必要条件,正确.对于D,命题:∃x0∈R,x02+a<0为假命题,则命题:a≥0,∀x∈R,x2+a≥0是真命题;所以,命题:∃x0∈R,x02+a<0为假命题,则实数a的取值X围是a>0,不正确;故选:C.【点评】本题考查命题的真假的判断与应用,基本知识的考查.4.已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.B.C.D.【考点】由三视图求面积、体积.【专题】图表型.【分析】先由三视图还原成原来的几何体,再根据三视图中的长度关系,找到几何体中的长度关系,进而可以求几何体的体积.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是组合体的体积,一般组合体的体积要分部分来求.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.设F1、F2为椭圆+y2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P、Q两点,当四边形PF1QF2面积最大时,•的值等于( )A.0 B.2 C.4 D.﹣2【考点】椭圆的简单性质.【专题】计算题.【分析】通过题意可推断出当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.进而可根据椭圆的方程求得焦点的坐标和P的坐标,进而求得和,则•的值可求得.【解答】解:根据题意可知当P、Q分别在椭圆短轴端点时,四边形PF1QF2面积最大.这时,F1(﹣,0),F2(,0),P(0,1),∴=(﹣,﹣1),=(,﹣1),∴•=﹣2.故选D【点评】本题主要考查了椭圆的简单性质.考查了学生数形结合的思想和分析问题的能力.6.设a=log37,b=21.1,c=0.83.1,则( )A.b<a<c B.c<a<b C.c<b<a D.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】分别讨论a,b,c的取值X围,即可比较大小.【解答】解:1<log37<2,b=21.1>2,c=0.83.1<1,则c<a<b,故选:B.【点评】本题主要考查函数值的大小比较,根据指数和对数的性质即可得到结论.7.执行如图所示的程序框图,如果输入P=153,Q=63,则输出的P的值是( )A.2 B.3 C.9 D.27【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的R,P,Q的值,当Q=0时,满足条件Q=0,退出循环,输出P的值为3.【解答】解:模拟执行程序,可得P=153,Q=63不满足条件Q=0,R=27,P=63,Q=27不满足条件Q=0,R=9,P=27,Q=9不满足条件Q=0,R=0,P=9,Q=0满足条件Q=0,退出循环,输出P的值为9.故选:C.【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的R,P,Q的值是解题的关键,属于基本知识的考查.8.若点(16,tanθ)在函数y=log2x的图象上,则=( ) A.B.C.4 D.4【考点】三角函数的化简求值.【专题】计算题;转化思想;转化法;三角函数的求值.【分析】先根据对数的运算性质求出tanθ,再化简代值计算即可.【解答】解:点(16,tanθ)在函数y=log2x的图象上,∴tanθ=log216=4,∴====,故选:B.【点评】本题考查了二倍角公式,函数值的求法,以及对数的运算性质,属于基础题.9.已知函数f(x)=()x﹣log3x,若实数x0是方程f(x)=0的解,且x0<x1,则f(x1)的值( )A.恒为负B.等于零C.恒为正D.不大于零【考点】函数的零点与方程根的关系.【专题】函数的性质及应用.【分析】由函数的性质可知,f(x)=()x﹣log3x在(0,+∞)上是减函数,且可得f(x0)=0,由0<x0<x1,可得f(x1)<f(x0)=0,即可判断【解答】解:∵实数x0是方程f(x)=0的解,∴f(x0)=0.∵函数y()x,y=log3x在(0,+∞)上分别具有单调递减、单调递增,∴函数f(x)在(0,+∞)上是减函数.又∵0<x0<x1,∴f(x1)<f(x0)=0.∴f(x1)的值恒为负.故选A.【点评】本题主要考查了函数的单调性的简单应用,解题的关键是准确判断函数f(x)的单调性并能灵活应用.10.已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,则a2+a4+a5+a9的值等于( )A.52 B.40 C.26 D.20【考点】数列的求和.【专题】等差数列与等比数列.【分析】首先根据题中的已知条件已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2,进一步求出数列的通项公式,然后根据通项公式求出各项的值,最后确定结果.【解答】解:已知数列{a n}的前n项和为S n,过点P(n,S n)和Q(n+1,S n+1)(n∈N*)的直线的斜率为3n﹣2则:∴a n=3n﹣5a2+a4+a5+a9=40故选:B【点评】本题考查的知识点:根据点的斜率求出数列的通项公式,由通项公式求数列的项.11.函数y=e|lnx|﹣|x﹣1|的图象大致是( )A.B. C.D.【考点】对数的运算性质;函数的图象与图象变化.【分析】根据函数y=e|lnx|﹣|x﹣1|知必过点(1,1),再对函数进行求导观察其导数的符号进而知原函数的单调性,得到答案.【解答】解:由y=e|lnx|﹣|x﹣1|可知:函数过点(1,1),当0<x<1时,y=e﹣lnx﹣1+x=+x﹣1,y′=﹣+1<0.∴y=e﹣lnx﹣1+x为减函数;若当x>1时,y=e lnx﹣x+1=1,故选D.【点评】本题主要考查函数的求导与函数单调性的关系.12.已知定义在R上的奇函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>2f(﹣x),若g(x)=x2f(x),则不等式g(x)<g(1﹣3x)的解集是( )A.(,+∞)B.(﹣∞,)C.(0,)D.(﹣∞,)∪(,+∞)【考点】函数奇偶性的性质.【专题】转化思想;数学模型法;函数的性质及应用;导数的综合应用.【分析】f(x)是定义在R上的奇函数,可得:f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),可得:xf′(x)+2f(x)>0,由g(x)=x2f(x),可得g′(x)>0.可得函数g(x)在(0,+∞)上单调递增.即可得出.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣x)=﹣f(x).对任意正实数x满足xf′(x)>2f(﹣x),∴xf′(x)+2f(x)>0,∵g(x)=x2f(x),∴g′(x)=2xf(x)+x2f′(x)>0.∴函数g(x)在(0,+∞)上单调递增.又g(0)=0,g(﹣x)=x2f(﹣x)=﹣g(x),∴函数g(x)是R上的奇函数,∴g(x)是R上的增函数.由不等式g(x)<g(1﹣3x),∴x<1﹣3x,解得.∴不等式g(x)<g(1﹣3x)的解集为:.故选:B.【点评】本题考查了函数的奇偶性与单调性,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共4小题,每小题5分.13.计算:()+lg+lg70+=.【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据对数和幂的运算性质计算即可.【解答】解:()+lg+lg70+=+lg()+1﹣lg3=+lg+1=+1+1=,故答案为:.【点评】本题考查了对数和幂的运算性质,关键是掌握性质,属于基础题.14.设变量x,y满足约束条件,则z=x﹣3y的最小值是﹣8.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】将z=x﹣3y变形为,此式可看作是斜率为,纵截距为的一系列平行直线,当最大时,z最小.作出原不等式组表示的平面区域,让直线向此平面区域平移,可探求纵截距的最大值.【解答】解:由z=x﹣3y,得,此式可看作是斜率为,纵截距为的直线,当最大时,z最小.画出直线y=x,x+2y=2,x=﹣2,从而可标出不等式组表示的平面区域,如右图所示.由图知,当动直线经过点P时,z最小,此时由,得P(﹣2,2),从而z min=﹣2﹣3×2=﹣8,即z=x﹣3y的最小值是﹣8.故答案为:﹣8.【点评】本题考查了线性规划的应用,为高考常考的题型,求解此类问题的一般步骤是:(1)作出已知不等式组表示的平面区域;(2)运用化归思想及数形结合思想,将目标函数的最值问题转化为平面中几何量的最值问题处理.15.已知定义在R上的奇函数f(x)满足f(x﹣4)=﹣f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[﹣8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=﹣8.【考点】奇偶性与单调性的综合;函数的周期性.【专题】数形结合.【分析】由条件“f(x﹣4)=﹣f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【解答】解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×(﹣6),另两个交点的横坐标之和为2×2,所以x1+x2+x3+x4=﹣8.故答案为﹣8.【点评】数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.16.关于函数f(x)=(x≠0),有下列命题:①f(x)的最小值是lg2;②其图象关于y轴对称;③当x>0时,f(x)是增函数;当x<0时,f(x)是减函数;④f(x)在区间(﹣1,0)和(1,+∞)上是增函数,其中所有正确结论的序号是①②④.【考点】命题的真假判断与应用;奇偶性与单调性的综合.【专题】函数思想;定义法;函数的性质及应用.【分析】是结合复合函数单调性的关系进行判断.②根据基本由函数奇偶性的定义判断函数为偶函数判断;③利用对勾函数的单调性判断;④由对勾函数的最值及函数奇偶性的性质进行判断即可.【解答】解:①函数f(x)=lg,(x∈R且x≠0).∵=2,∴f(x)=lg≥2,即f(x)的最小值是lg2,故①正确,②∵f(﹣x)==f(x),∴函数f(x)为偶函数,图象关于y轴对称,故②正确;③当x>0时,t(x)=,在(0,1)上单调递减,在(1,+∞)上得到递增,∴f(x)=lg在(0,1)上单调递减,在(1,+∞)上得到递增,故③错误;④∵函数f(x)是偶函数,由③知f(x)在(0,1)上单调递减,在(1,+∞)上得到递增,∴在(﹣1,0)上单调递增,在(﹣∞,﹣1)上得到递减,故④正确,故答案为:①②④【点评】本题考查了命题的真假判断与应用,考查了函数奇偶性的性质,考查了复合函数的单调性,是中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.已知p:|1﹣|≤2;q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要不充分条件,某某数m的取值X围.【考点】必要条件;绝对值不等式的解法.【专题】规律型.【分析】先求出命题p,q的等价条件,利用¬p是¬q的必要不充分条件转化为q是p的必要不充分条件,建立条件关系即可求出m的取值X围.【解答】解:由||=,得|x﹣4|≤6,即﹣6≤x﹣4≤6,∴﹣2≤x≤10,即p:﹣2≤x≤10,由x2+2x+1﹣m2≤0得[x+(1﹣m)][x+(1+m)]≤0,即1﹣m≤x≤1+m,(m>0),∴q:1﹣m≤x≤1+m,(m>0),∵¬p是¬q的必要不充分条件,∴q是p的必要不充分条件.即,且等号不能同时取,∴,解得m≥9.【点评】本题主要考查充分条件和必要条件的应用,将¬p是¬q的必要不充分条件转化为q 是p的必要不充分条件是解决本题的关键.18.已知函数f(x)=﹣x2+2ex+m﹣1,g(x)=x+(x>0).(1)若y=g(x)﹣m有零点,求m的取值X围;(2)确定m的取值X围,使得g(x)﹣f(x)=0有两个相异实根.【考点】函数零点的判定定理;根的存在性及根的个数判断.【专题】计算题;函数的性质及应用;导数的综合应用;不等式的解法及应用.【分析】(1)由基本不等式可得g(x)=x+≥2=2e,从而求m的取值X围;(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,求导F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);从而判断函数的单调性及最值,从而确定m的取值X围.【解答】解:(1)∵g(x)=x+≥2=2e;(当且仅当x=,即x=e时,等号成立)∴若使函数y=g(x)﹣m有零点,则m≥2e;故m的取值X围为[2e,+∞);(2)令F(x)=g(x)﹣f(x)=x++x2﹣2ex﹣m+1,F′(x)=1﹣+2x﹣2e=(x﹣e)(+2);故当x∈(0,e)时,F′(x)<0,x∈(e,+∞)时,F′(x)>0;故F(x)在(0,e)上是减函数,在(e,+∞)上是增函数,故只需使F(e)<0,即e+e+e2﹣2e2﹣m+1<0;故m>2e﹣e2+1.【点评】本题考查了基本不等式的应用及导数的综合应用,同时考查了函数零点的判断与应用,属于中档题.19.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点的对称点Q的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时,总有f(x)+g(x)≥m成立,求m的取值X围.【考点】求对数函数解析式;函数解析式的求解及常用方法;函数最值的应用.【专题】计算题;转化思想.【分析】(1)由已知条件可知函数g(x)的图象上的任意一点P(x,y)关于原点对称的点Q (﹣x,﹣y)在函数f(x)图象上,把Q(﹣x,﹣y)代入f(x),整理可得g(x)(2)由(1)可令h(x)=f(x)+g(x),先判断函数h(x)在[0,1)的单调性,进而求得函数的最小值h(x)min,使得m≤h(x)min【解答】解:(1)设点P(x,y)是g(x)的图象上的任意一点,则Q(﹣x,﹣y)在函数f (x)的图象上,即﹣y=log a(﹣x+1),则∴(2)f(x)+g(x)≥m 即,也就是在[0,1)上恒成立.设,则由函数的单调性易知,h(x)在[0,1)上递增,若使f(x)+g(x)≥m在[0,1)上恒成立,只需h(x)min≥m在[0,1)上成立,即m≤0.m的取值X围是(﹣∞,0]【点评】本题(1)主要考查了函数的中心对称问题:若函数y=f(x)与y=g(x)关于点M (a,b)对称,则y=f(x)上的任意一点(x,y)关于M(a,b)对称的点(2a﹣x,2b﹣y)在函数y=g(x)的图象上.(2)主要考查了函数的恒成立问题,往往转化为求最值问题:m≥h(x)恒成立,则m≥h(x)m≤h(x)恒成立,max则m≤h(x)min20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.(1)写出y与x之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.【考点】基本不等式在最值问题中的应用.【专题】计算题.【分析】(1)赢利总额y元即x年中的收入50x减去购进机床的成本与这x年中维修、保养的费用,维修、保养的费用历年成等差数增长,,(2)由(1)的结论解出结果进行判断得出何年开始赢利.(3)算出每一种方案的总盈利,比较大小选择方案.【解答】解:(1)y=﹣2x2+40x﹣98,x∈N*.(2)由﹣2x2+40x﹣98>0解得,,且x∈N*,所以x=3,4,,17,故从第三年开始盈利.(3)由,当且仅当x=7时“=”号成立,所以按第一方案处理总利润为﹣2×72+40×7﹣98+30=114(万元).由y=﹣2x2+40x﹣98=﹣2(x﹣10)2+102≤102,所以按第二方案处理总利润为102+12=114(万元).∴由于第一方案使用时间短,则选第一方案较合理.【点评】考查审题及将题中关系转化为数学符号的能力,其中第二问中考查了一元二次不等式的解法,第三问中考查到了基本不等式求最值,本题是一个函数基本不等式相结合的题.属应用题中盈利最大化的问题.21.已知函数f(x)=+xlnx,g(x)=x3﹣x2﹣3.(1)讨论函数h(x)=的单调性;(2)如果对任意的s,t∈[,2],都有f(s)≥g(t)成立,某某数a的取值X围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;导数的综合应用.【分析】(1)求导数,利用导数的正负,即可讨论函数h(x)=的单调性;(2)求出g(x)max=g(2)=1,当x∈[,2]时,f(x)=+xlnx恒成立,等价于a≥x﹣x2lnx 恒成立,然后利用导数求函数u(x)=x﹣x2lnx在区间[,2]上取得最大值,则实数a的取值X围可求.【解答】解:(1)h(x)==+lnx,h′(x)=,①a≤0,h′(x)≥0,函数h(x)在(0,+∞)上单调递增②a>0时,h'(x)>0,则x∈(,+∞),函数h(x)的单调递增区间为(,+∞),h'(x)<0,则x∈(0,),函数h(x)的单调递减区间为(0,),.(2)g(x)=x3﹣x2﹣3,g′(x)=3x(x﹣),x 2g′(x)0 ﹣0 +g(x)﹣递减极小值递增 13由上表可知,g(x)在x=2处取得最大值,即g(x)max=g(2)=1所以当x∈[,2]时,f(x)=+xlnx≥1恒成立,等价于a≥x﹣x 2lnx恒成立,记u(x)=x﹣x2lnx,所以a≥u(x)max,u′(x)=1﹣x﹣2xlnx,可知u′(1)=0,当x∈(,1)时,1﹣x>0,2xlnx<0,则u′(x)>0,∴u(x)在x∈(,2)上单调递增;当x∈(1,2)时,1﹣x<0,2xlnx>0,则u′(x)<0,∴u(x)在(1,2)上单调递减;故当x=1时,函数u(x)在区间[,2],上取得最大值u(1)=1,所以a≥1,故实数a的取值X围是[1,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了导数在最大值、最小值问题中的应用,考查了数学转化思想方法和函数构造法,训练了利用分离变量法求参数的取值X围,属于中档题.四、选做题:请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C1的参数方程是(θ为参数)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=﹣4cosθ.(1)求曲线C1与C2交点的极坐标;(2)A、B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).【考点】参数的意义;简单曲线的极坐标方程.【专题】选作题;转化思想;综合法;坐标系和参数方程.【分析】(1)把参数方程和极坐标方程化为直角坐标方程,联立方程组求出交点的坐标,再把交点的直角坐标化为极坐标;(2)画出图象,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.【解答】解:(1)由(θ为参数),消去参数得:x2+(y﹣2)2=4,即x2+y2﹣4y=0;由ρ=﹣4cosθ,得ρ2=﹣4ρcosθ,即x2+y2=﹣4x.两式作差得:x+y=0,代入C1得交点为(0,0),(﹣2,2).其极坐标为(0,0),(2,);(2)如图,由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大.此时|AB|=2+4,O到AB的距离为.∴△OAB的面积为S=×(2+4)×=2+2.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程,考查了推理能力与计算能力,属于基础题.23.已知不等式|2x+2|﹣|x﹣1|>a.(1)当a=0时,求不等式的解集(2)若不等式在区间[﹣4,2]内无解.某某数a的取值X围.【考点】绝对值不等式的解法.【专题】不等式的解法及应用.【分析】(1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)求得f(x)=|2x+2|﹣|x﹣1|=在区间[﹣4,2]内的值域,结合|2x+2|﹣|x﹣1|>a无解,求得a的X围.【解答】解:(1)当a=0时,不等式即|2x+2|﹣|x﹣1|>0,可得①,或②,或③.解①求得 x<﹣3,解②求得﹣<x<1,解③求得x≥1.综上可得,原不等式的解集为{x|x<﹣3,或x>﹣}.(2)当x∈[﹣4,2],f(x)=|2x+2|﹣|x﹣1|=的值域为[﹣2,3],而不等式|2x+2|﹣|x﹣1|>a无解,故有a≤3.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想;还考查了分段函数的应用,求函数的值域,属于中档题.。
2020届云师大附中高三高考适应性月考(二)数学(理)试题一、单选题1.已知集合{}2230A x x x =-->,集合(){}lg 3B x y x ==+,则A B =I ()A .{}31x x -<<- B .{}3x x >C .{}313x x x -<-或 D .{}13x x -<<【答案】C【解析】根据一元二次不等式以及对数函数的定义域化简集合A 、B ,根据交集的定义写出A B I 即可. 【详解】2{|230}{|3A x x x x x =-->=>或1}x <-,{|lg(3)}{|3}B x y x x x ==+=>-,A B =I {|31x x -<<-或3}x >,故选C .【点睛】本题主要考查了集合的化简与运算问题,属于基础题. 2.设122iz i-+=+,则z 的虚部是() A .1 B .iC .-1D .-i【答案】A【解析】根据复数的性质化简z ,结合虚部即可得到结果. 【详解】12i i(2i)i 2i 2iz -++===++,z 的虚部为1,故选A . 【点睛】本题主要考查了复数的运算性质以及复数的分类,属于基础题.3.已知中心在原点,对称轴为坐标轴的双曲线的一条渐近线方程为y =,则该双曲线的离心率是()A B C 2D 或2【答案】D【解析】分为焦点在x 轴上和焦点在y 轴上两种情形,由渐近线的方程得ba的值,结合2221b e a=+可得离心率的值.【详解】依题意,双曲线的焦点在x 轴上时,设它的方程为22221(00)x y a b ab-=>>,; 由渐近线方程为2y x =,得2b a=,故22213b e a =+=,即3e =,焦点在y 轴上时,设它的方程为22221(00)y xa b ab-=>>,, 由渐近线方程为2y x =,得2a b =,故222312b e a =+=,即62e =,故选D . 【点睛】本题主要考查了双曲线的渐近线以及离心率的概念,掌握2221b e a=+是解题的关键,属于中档题.4.下图的程序框图的算法思路源于我国数学名著《九章算术》中的“中国剩余定理”.若正整数N 除以正整数m 后得余数r ,则记为()mod N r m =,如:()82mod3=,则执行该程序框图输出的n 等于()A .7B .6C .5D .8【答案】A【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】根据给定的程序框图,可知:第一次执行循环体得3n =,15M =,此时150(mod 5)=,不满足第一个条件; 第二次执行循环体得5n =,20M =,此时200(mod 5)=,不满足第一个条件; 第三次执行循环体得7n =,27M =,此时272(mod 5)=且2726M =>,既满足第一个条件又满足第二个条件,退出循环,输出7,故选A . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.根据如下样本数据得到的回归直线方程ˆˆˆybx a =+,则下列判断正确的是( )A .ˆˆˆ0,0.94b b a <+=B .ˆˆˆ0,40.9b b a >+=C .ˆˆˆ0,0.94a b a <+=D .ˆˆˆ0,40.9a b a >+=【答案】D【解析】先根据增减性得ˆ0,b<再求,x y 代入验证选项. 【详解】因为随着x 增加,y 大体减少,所以ˆ0,b< 因为234564 2.50.50.524,0.955x y +++++-+-====,所以$0.94ba =+$,$0,a ∴> 故选D 【点睛】本题考查回归直线方程,考查基本分析判断能力,属基础题. 6.在ABC ∆中,D 在边AC 上满足12AD DC =u u u vu u u v ,E 为BD 的中点,则CE =uu u v() A .5163BA BC -u uu v u u u vB .1536BA BC -u u u v u u u v C .1536BA BC +u u u v u u u vD .5163BA BC +u uu v u u u v【答案】B【解析】根据E 为中点,首先易得1122CE CB CD =+u u u r u u u r u u u r,再通过向量加法以及向量的减法和12AD DC =u u u r u u u r 即可得到结果.【详解】 如图所示:因为E 为BD 的中点,所以1122CE CB CD =+u u u r u u u r u u u r ,又12AD DC =u u u r u u u r ,23CD CA =u u u r u u u r ∴,12CE CB =u u u r u u u r ∴12111115()23232336CA CB CA CB BA BC BA BC +⨯=+=+-=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,故选B .【点睛】本题主要考查平面向量基本定理的应用,对向量加法和减法的运用较为灵活,属于基础题.7.已知实数x ,y 满足约束条件0301x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则22x y z -+=的最大值是()A .2B .1C .12D .-1【答案】C【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【详解】由实数x ,y 满足约束条件0301x y x y y -⎧⎪+-≤⎨⎪⎩……,作出可行域如图,则212x z -+=的最大值就是2t x y =-+的最大值时取得,联立01x y y -=⎧⎨=⎩,解得(1,1)A .化目标函数2t x y =-+为2y x t =+,由图可知,当直线2y x t =+过点A 时,直线在y 轴上的截距最大,此时z有最大值为12,故选C .【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.8.()26112x x x ⎛⎫+- ⎪⎝⎭的展开式中,含2x 的项的系数是() A .-40 B .-25C .25D .55【答案】B【解析】写出二项式61x x ⎛⎫- ⎪⎝⎭的展开式中的通项,然后观察含2x 的项有两种构成,一种是()212x+中的1与61x x ⎛⎫- ⎪⎝⎭中的二次项相乘得到,一种是()212x +中的22x 与61x x ⎛⎫- ⎪⎝⎭中的常数项相乘得到,将系数相加即可得出结果。
2021年高三上学期12月月考数学试卷(文科)含解析一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( ) A.(﹣∞,4] B.[0,4] C.(﹣∞,4)D.(0,4)3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.487.设0<a<1,则函数y=的图象大致为( )A.B.C.D.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=__________.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=__________.13.函数y=lg(1﹣)+的定义域是__________.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为__________.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是__________.(写出所有真命题的编号)三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.17.已知数列{a n}前n项和S n满足:2S n+a n=1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,求证:T n<.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.xx山东省潍坊市寿光五中高三(上)12月月考数学试卷(文科)一、选择题(每小题5分,共计50分)1.设i是虚数单位,复数( )A.3﹣2i B.3+2i C.2﹣3i D.2+3i【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】利用复数的运算法则即可得出.【解答】解:复数===3﹣2i,故选:A.【点评】本题考查了复数的运算法则,属于基础题.2.集合A={x|x2﹣a≥0},B={x|x<2},若C R A⊆B,则实数a的取值范围是( )A.(﹣∞,4]B.[0,4]C.(﹣∞,4)D.(0,4)【考点】补集及其运算;集合的包含关系判断及应用.【专题】集合.【分析】根据集合的补集关系进行求解即可.【解答】解:∵A={x|x2﹣a≥0}={x|x2≥a},∴C R A={x|x2≤a},若a<0,则C R A=∅,满足C R A⊆B,若a≥0,则C R A={x|x2<a}={x|﹣<x<},若C R A⊆B,则≤2,解得0≤a≤4,综上a≤4,故选:A【点评】本题主要考查集合的基本运算和集合关系的应用,注意分类讨论.3.已知a0=20.5,b=log32,c=log20.1,则( )A.a<b<c B.c<a<b C.c<b<a D.b<c<a【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用指数函数和对数函数的单调性即可得出.【解答】解:∵a=20.5>20=1,0<b=log32<log33=1,c=log20.1<log21=0.∴c<b<a.故选:C.【点评】本题考查了指数函数和对数函数的单调性,属于基础题.4.下列四个结论:①若x>0,则x>sinx恒成立;②命题“若x﹣sinx=0则x=0”的逆命题为“若x≠0则x﹣sinx≠0”;③“命题p或q为真”是“命题p且q为真”的充分不必要条件;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”.其中正确结论的个数是( )A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【专题】规律型;探究型;构造法;导数的概念及应用;简易逻辑.【分析】令f(x)=x﹣sinx,利用导数分析其单调性,可判断①;写出原命题的逆命题,可判断②;根据充要条件的定义,可判断③;写出原命题的否定,可判断④.【解答】解:令f(x)=x﹣sinx,则f′(x)=1﹣cosx≥0恒成立,故f(x)=x﹣sinx在R上为增函数,故x>0时,f(x)>f(0)=0,即x>sinx恒成立,故①正确;命题“若x﹣sinx=0,则x=0”的逆命题为“若x=0,则x﹣sinx=0”,故②错误;“命题p或q为真”时,“命题p且q为真”不一定成立,“命题p且q为真”时,“命题p或q为真”成立,故“命题p或q为真”是“命题p且q为真”的必要不充分条件,故③错误;④命题“∀x∈R,x﹣lnx>0”的否定是“∃x0∈R,x0﹣lnx0≤0”,故正确.其中正确结论的个数是2个,故选:B【点评】本题考查的知识点是全称命题的否定,四种命题,复合命题,函数的单调性,难度中档.5.直线x+my+1=0与不等式组表示的平面区域有公共点,则实数m的取值范围是( )A.[,]B.[﹣,﹣]C.[,3] D.[﹣3,﹣]【考点】简单线性规划.【专题】不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用线性规划的知识即可得到结论.【解答】解:即直线x+my+1=0过定点D(﹣1,0)作出不等式组对应的平面区域如图:当m=0时,直线为x=﹣1,此时直线和平面区域没有公共点,故m≠0,x+my+1=0的斜截式方程为y=x,斜率k=,要使直线和平面区域有公共点,则直线x+my+1=0的斜率k>0,即k=>0,即m<0,满足k CD≤k<k AB,此时AB的斜率k AB=2,由解得,即C(2,1),CD的斜率k CD==,由,解得,即A(2,4),AD的斜率k AD==,即≤k≤,则≤≤,解得﹣3≤m≤﹣,故选:D.【点评】本题主要考查线性规划以及斜率的应用,利用数形结合是解决本题的关键.6.已知某几何体的三视图,则该几何体的体积是( )A.12 B.24 C.36 D.48【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】利用三视图判断几何体的形状,通过三视图是数据,求出几何体的体积即可.【解答】解:三视图复原的几何体是底面为边长4、3的矩形,高为3的棱锥,高所在棱垂直底面矩形的一个得到,所以棱锥的体积为:=12.故选:A.【点评】本题主要考查关于“几何体的三视图”与“几何体的直观图”的相互转化的掌握情况,同时考查空间想象能力.7.设0<a<1,则函数y=的图象大致为( )A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】利用0<a<1,判断a x,x>0时的范围,以及x<0时的范围,然后求解a x﹣1的范围,倒数的范围,即可判断函数的图象.【解答】解:因为0<a<1,x>0时,0<a x<1,﹣1<a x﹣1<0,<﹣1,x<0时,a x>1,a x﹣1>0,>0,观察函数的图象可知:B满足题意.故选:B.【点评】本题考查指数函数的图象,解题时要认真审题,仔细解答,注意合理地进行等价转化,注意函数的值域以及指数函数的性质.8.已知向量=(0,sinx),=(1,2cosx),函数f(x)=•,g(x)=2+2﹣,则f(x)的图象可由g(x)的图象经过怎样的变换得到( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【考点】函数y=Asin(ωx+φ)的图象变换;平面向量数量积的运算.【专题】平面向量及应用.【分析】由题意利用两个向量的数量积公式、诱导公式可得函数f(x)=sin2x,g(x)=sin2(x+),再根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.【解答】解:由题意可得函数f(x)=•=(2sinxcosx)=sin2x,g(x)=2+2﹣=sin2x+1+4cos2x﹣=3cos2x﹣=cos2x=sin(2x+)=sin2(x+),故把g(x)的图象向右平移个单位长度,可得f(x)的图象,故选:B.【点评】本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.9.已知函数f (x)=Asin(ωx+φ),(0<φ<π)的图象如图所示,若f (x0)=3,x0∈(,),则sinx0的值为( )A. B. C. D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】三角函数的图像与性质.【分析】由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,求出函数的解析式.再由f (x0)=3求出sin(x0+ )的值,可得cos(x0+ )的值,再由两角差的正弦公式求得sinx0 =sin[(x0+ )﹣]的值.【解答】解:由函数的图象可得A=5,且=,解得ω=1再由五点法作图可得1•+φ=,解得φ=.故函数的解析式为f(x)=5sin(x+ ).再由f (x0)=3,x0∈(,),可得5sin(1•x0+ )=3,解得sin(x0+ )=,故有cos(x0+ )=﹣,sinx0 =sin[(x0+ )﹣]=sin(x0+ )cos﹣cos(x0+ )sin=﹣(﹣)=.故选A.【点评】本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由五点法作图求出φ的值,两角差的正弦公式的应用,属于中档题.10.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是( )A.(0,)B.(,e)C.(0,]D.[,)【考点】根的存在性及根的个数判断;函数零点的判定定理.【专题】函数的性质及应用.【分析】首先,画出函数f(x)=|lnx|的图象,然后,借助于图象,结合在区间(0,3]上有三个零点,进行判断.【解答】解:函数f(x)=|lnx|的图象如图示:当a≤0时,显然,不合乎题意,当a>0时,如图示,当x∈(0,1]时,存在一个零点,当x>1时,f(x)=lnx,可得g(x)=lnx﹣ax,(x∈(1,3])g′(x)==,若g′(x)<0,可得x>,g(x)为减函数,若g′(x)>0,可得x<,g(x)为增函数,此时f(x)必须在[1,3]上有两个零点,∴解得,,在区间(0,3]上有三个零点时,,故选D.【点评】本题重点考查函数的零点,属于中档题,难度中等.二、解答题(每小题5分共计25分)11.已知sinα﹣cosα=,α∈(0,π),tanα=﹣1.【考点】同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】已知等式左边提取,利用两角和与差的正弦函数公式化简,求出sin(α﹣)的值为1,由α的范围,利用特殊角的三角函数值求出α的度数,即可求出tanα的值.【解答】解:∵sinα﹣cosα=sin(α﹣)=,∴sin(α﹣)=1,∵α∈(0,π),∴α﹣=,即α=,则tanα=﹣1.【点评】此题考查了同角三角函数间的基本关系,特殊角的三角函数值,以及两角和与差的正弦函数公式,熟练掌握公式及基本关系是解本题的关键.12.已知平面向量=(1,2),=(﹣2,m),且⊥,则2+3=(﹣4,7).【考点】平面向量的坐标运算.【专题】计算题;转化思想;向量法;平面向量及应用.【分析】由向量=(1,2),=(﹣2,m),且⊥,求出m的值,则2+3的答案可求.【解答】解:∵向量=(1,2),=(﹣2,m),且⊥,∴﹣2+2m=0,解得m=1,则2+3=2×(1,2)+3×(﹣2,1)=(﹣4,7).故答案为:(﹣4,7).【点评】本题考查了平面向量数量积的运算,考查了平面向量的坐标运算,是基础题.13.函数y=lg(1﹣)+的定义域是[log23,+∞).【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据函数成立的条件,即可求出函数的定义域.【解答】解:要使函数有意义,则,即,∴x≥log23,即函数的定义域为[log23,+∞),故答案为:[log23,+∞)【点评】本题主要考查函数定义域的求法,要求熟练掌握常见函数成立的条件,比较基础.14.设甲、乙两个圆柱的底面积分别为S1、S2,体积分别为υ1,υ2,若它们的侧面积相等,且的值为.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积.【专题】空间位置关系与距离.【分析】设两个圆柱的底面半径分别为R,r,高分别为H,h,由=,得=,由它们的侧面积相等,得=,由此能求出.【解答】解:设两个圆柱的底面半径分别为R,r,高分别为H,h,∵=,∴=,∵它们的侧面积相等,∴=1,∴=,∴==()2×=.故答案为:.【点评】本题考查两个圆柱的体积的比值的求法,是中档题,解题时要注意圆柱的体积和侧面积计算公式的合理运用.15.给出下列四个命题:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”;②a、b、c是空间中的三条直线,a∥b的充要条件是a⊥c且b⊥c;③命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题;④对任意实数x,有f(﹣x)=f(x),且当x>0时,f′(x)>0,则当x<0时,f′(x)<0.其中的真命题是①④.(写出所有真命题的编号)【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】①利用命题的否定即可判断出;②由a⊥c且b⊥c可得a∥b或相交或为异面直线,另一方面由a∥b,推不出a⊥c,b⊥c,即可判断出;③在△ABC中,A>B⇔a>b,由正弦定理可得:,可得sinA>sinB.④利用偶函数的性质即可得出.【解答】解:①命题“∀x∈R,cosx>0”的否定是“∃x∈R,cosx≤0”,正确;②a、b、c是空间中的三条直线,由a⊥c且b⊥c可得a∥b或相交或为异面直线,由a∥b,推不出a⊥c,b⊥c,因此“a⊥c且b⊥c”是a∥b的既不充分也不必要条件,因此②不正确;③在△ABC中,由A>B⇔a>b,由正弦定理可得:,因此sinA>sinB.可知逆命题为真命题,因此不正确;④对任意实数x,有f(﹣x)=f(x),可知函数f(x)是偶函数.由当x>0时,f′(x)>0,则当x<0时,f′(x)<0.正确.综上可知:只有①④正确.故答案为:①④.【点评】本题综合考查了空间中的线线位置关系、三角形的边角关系、函数的奇偶性单调性、简易逻辑等基础知识与基本技能方法,属于基础题.三、解答题:16.已知函数f(x)=sinωxcosωx﹣cos2ωx﹣(ω>0,x∈R)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若△ABC三个内角A、B、C的对边分别为a、b、c,且c=,f(C)=0,sinB=3sinA,求a,b的值.【考点】余弦定理;两角和与差的正弦函数;正弦函数的单调性.【专题】解三角形.【分析】(Ⅰ)f(x)解析式利用二倍角的正弦、余弦函数公式化简,整理为一个角的正弦函数,根据题意确定出ω的值,确定出f(x)解析式,利用正弦函数的单调性求出函数f(x)的单调递增区间即可;(Ⅱ)由f(C)=0,求出C的度数,利用正弦定理化简sinB=3sinA,由余弦定理表示出cosC,把各自的值代入求出a与b的值即可.【解答】解:f(x)=sin2ωx﹣(1+cos2ωx)﹣=sin(2ωx﹣)﹣1,∵f (x )图象上相邻两个最高点的距离为π,∴=π,即ω=1,则f (x )=sin (2x ﹣)﹣1,(Ⅰ)令﹣+2k π≤2x ﹣≤+2k π,k ∈Z ,得到﹣+k π≤x ≤k π+,k ∈Z ,则函数f (x )的单调递增区间为[﹣+k π,k π+],k ∈Z ;(Ⅱ)由f (C )=0,得到f (C )=sin (2C ﹣)﹣1=0,即sin (2x ﹣)=1,∴2C ﹣=,即C=,由正弦定理=得:b=,把sinB=3sinA 代入得:b=3a ,由余弦定理及c=得:cosC===,整理得:10a 2﹣7=3a 2,解得:a=1,则b=3.【点评】此题考查了正弦、余弦定理,以及二倍角的正弦、余弦函数公式,熟练掌握定理是解本题的关键.17.已知数列{a n }前n 项和S n 满足:2S n +a n =1(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =,数列{b n }的前n 项和为T n ,求证:T n <.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(I )利用递推式可得:.再利用等比数列的通项公式即可得出;(II )由(I )可得b n ==,;利用“裂项求和”即可得出数列{b n }的前n 项和为T n ,进而得到证明.【解答】(I )解:∵2S n +a n =1,∴当n ≥2时,2S n ﹣1+a n ﹣1=1,∴2a n +a n ﹣a n ﹣1=0,化为.当n=1时,2a 1+a 1=1,∴a 1=.∴数列{a n }是等比数列,首项与公比都为.∴.(II )证明:b n = ===,∴数列{b n }的前n 项和为T n =++…+=.∴T n <.【点评】本题考查了递推式的应用、等比数列的通项公式、“裂项求和”、不等式的证明,考查了推理能力与计算能力,属于中档题.18.已知函数.(1)求f(x)的最小正周期;(2)若将f(x)的图象向右平移个单位,得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值,并求出相应的x的值.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用.【专题】三角函数的图像与性质.【分析】(1)利用三角函数的倍角公式和诱导公式化简函数f(x),然后直接由周期公式求周期;(2)通过函数的图象的平移求解函数g(x)的解析式为g(x)=,由x的范围求出的范围,从而求得函数g(x)的最值,并得到相应的x的值.【解答】解:(1)由,得==.∴f(x)的最小正周期为π;(2)∵将f(x)的图象向右平移个单位,得到函数g(x)的图象,∴=.∵x∈[0,)时,,∴当,即时,g(x)取得最大值2;当,即x=0时,g(x)取得最小值.【点评】本题考查了三角函数的倍角公式及诱导公式,考查了三角函数的图象平移,训练了三角函数的最值得求法,是中档题.19.如图正方形ABCD的边长为ABCD的边长为,四边形BDEF是平行四边形,BD与AC 交于点G,O为GC的中点,平面ABCD.(I)求证:AE∥平面BCF;(Ⅱ)若,求证CF⊥平面AEF.【考点】直线与平面垂直的判定;直线与平面平行的判定.【专题】证明题;数形结合;数形结合法;空间位置关系与距离.【分析】(I)利用正方形,平行四边形的性质可得AD∥BC,DE∥BF,可证平面ADE∥平面BCF,即可证明AE∥平面BCF…5分(Ⅱ)由已知可证AC2=AF2+CF2,由勾股定理可得CF⊥AF,又FO⊥平面ABCD,可得FO⊥BD,又AC⊥BD,即可证明BD⊥平面AFC,结合EF∥BD,即可证明EF⊥CF,从而可证CF⊥平面AEF.【解答】证明:(I)∵四边形ABCD为正方形,四边形BDEF是平行四边形,∴AD∥BC,DE∥BF,∵AD∩DE=D,BC∩BF=B,∴平面ADE∥平面BCF,又∵AE⊂平面ADE,∴AE∥平面BCF…5分(Ⅱ)∵正方形ABCD边长为2,∴对角线AC=4,又∵O为GC中点,∴AO=3,OC=1又∵FO⊥平面ABCD,且FO=,∴AF2=AO2+OF2=9+3=12,CF2=OC2+OF2=1+3=4,又AC2=16,∴AC2=AF2+CF2,∴CF⊥AF,又FO⊥平面ABCD,BD⊂平面ABCD,∴FO⊥BD又∵AC⊥BD∴BD⊥平面AFC,又∵EF∥BD,∴EF⊥平面AFC∴EF⊥CF,又EF∩AF=F∴CF⊥平面AEF…12分【点评】本题主要考查了直线与平面垂直的判定,直线与平面平行的判定,考查了空间想象能力和推理论证能力,属于中档题.20.(13分)已知函数f(x)=lnx﹣mx,m∈R(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)≤﹣2m+1在[1,+∞)上恒成立,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】导数的概念及应用;导数的综合应用.【分析】(1)先对原函数求导数,然后通过解导数大于零或小于零的不等式得到原函数的单调区间;(2)先将原不等式归零化简,然后通过求函数的最值解决问题,只需利用导数研究函数的单调性即可,注意分类讨论.【解答】解:由题意可得,函数f(x)的定义域为(0,+∞),f′(x)=.(1)当m≤0时,f′(x)>0,此时函数f(x)在(0,+∞)上单调递增,当m>0时,令f′(x)>0,解得,令f′(x)<0,解得.所以当m≤0时,此时函数f(x)在(0,+∞)上单调递增;当m>0时,函数f(x)的单调递增区间为(0,),单调减区间为().(2)因为在[1,+∞)上恒成立.即在[1,+∞)上恒成立,令g(x)=,则,(1)当,即时,若,则g′(x)<0,g(x)是减函数,所以g(x)<g(1)=0,即g(x)≥0在[1,+∞)上不恒成立;(2)当,即时,若x>1,则g′(x)>0,g(x)是增函数,所以g(x)>g(1)=0,即,故当x≥1时,f(x)恒成立.综上所述,所求的正实数m的取值范围是.【点评】本题考查了利用导数研究函数的单调性的思路,以及不等式恒成立问题转化为函数的最值问题来解的基本思想.21.(14分)近日,国家经贸委发出了关于深入开展增产节约运动,大力增产市场适销对路产品的通知,并发布了当前国内市场185种适销工业品和42种滞销产品的参考目录.为此,一公司举行某产品的促销活动,经测算该产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足(其中0≤x≤a,a为正常数).已知生产该产品还需投入成本(10+2P)万元(不含促销费用),产品的销售价格定为元/件.(1)将该产品的利润y万元表示为促销费用x万元的函数;(2)促销费用投入多少万元时,厂家的利润最大.【考点】基本不等式在最值问题中的应用.【专题】不等式的解法及应用.【分析】(1)根据产品的利润=销售额﹣产品的成本建立函数关系;(2)利用基本不等式可求出该函数的最值,注意等号成立的条件.【解答】解:(1)由题意知,,将代入化简得:(0≤x≤a).…(2),当且仅当,即x=1时,上式取等号.…当a≥1时,促销费用投入1万元时,厂家的利润最大;当a<1时,在[0,a]上单调递增,所以x=a时,函数有最大值.即促销费用投入a万元时,厂家的利润最大.综上,当a≥1时,促销费用投入1万元,厂家的利润最大;当a<1时,促销费用投入a万元,厂家的利润最大.…【点评】本题主要考查了函数模型的选择与应用,以及基本不等式在最值问题中的应用,同时考查了计算能力,属于中档题.。
2020届高三数学上学期月考二试题 文第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。
每小题只有一个选项符合题意,请将正确答案填入答题卷中。
)1、已知集合P {}3|->=x x ,Q {}043|2≤-+=x x x ,则=Q P ( )A. ),4[+∞-B. ),3(+∞-C. ]1,3(-D. ]1,4[- 2、已知复数iiz 215+-=(i 为虚数单位),则复数z 在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3、若直线 :ax+y-1=0 与:3x+(a+2)y+1=0 平行,则a 的值为( ).A.1B.-3C.0或-D.1或-34、等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项和9S 等于( ) A .66 B .99 C .144 D .2975、 函数||2sin 2x y x =的图象可能是( )A B C D6、在△ABC 中,角A,B,C 所对的边分别是a,b,c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a,b,则满足条件的三角形有两个解的概率是( ).A. B. C. D.7、如图在ABC ∆中,G 为ABC ∆的重心,D 在边AC 上,且3CD DA =,则 ( ) A 17312GD AB AC =+ B 11312GD AB AC =-- C 17312GD AB AC =-+ D11312GD AB AC =-+8、某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A. 3πB. C. 12π D. 48πBACG D9、若0a >,0b >且24a b +=,则1ab的最小值为( )A . 12B . 2 C. 4 D .1410、已知函数()f x 是定义域为R 的偶函数,且()()11f x f x +=,若()f x 在[]1,0-上是减函数,记()0.5log 2a f =, ()2log 4b f =, ()0.52c f =,则( )A . a b c >>B . a c b >>C . b a c >>D . b a c >> 11、已知函数)20,0)(sin()(πϕωϕω<<>+=x x f ,0)(,1)(21==x f x f , 若12||x x -的最小值为12,且21)21(=f ,则()f x 的单调递增区间为( ) A. 51+2,+2,.66k k k Z ⎡⎤-∈⎢⎥⎣⎦ B. 15+2,+2,66k k k Z ⎡⎤-∈⎢⎥⎣⎦C. 51+2,+2,66k k k Z ππ⎡⎤-∈⎢⎥⎣⎦D. 17+2,+2,66k k k Z ⎡⎤∈⎢⎥⎣⎦12、已知定义域为),0(+∞,为的导函数,且满足)()('x xf x f -<,则不等式)4()2()2(2-->+x f x x f 的解集是( ).A . )2,0(B . ),2(+∞C . )3,2(D . ),3(+∞第Ⅱ卷(非选择题90分)二、填空题(本大题共4小题,每小题5分,共20分,请将正确答案填入答题卷中。
) 13、实数x ,y 满足390303x y x y y --≥⎧⎪--≤⎨⎪≤⎩,则使得2z y x =-取得最大值是____________14、已知圆C:=4,直线:y=x ,:y=kx-1.若,被圆C 所截得的弦的长度之比为1∶2,则k 的值为15、数列{}n a 的前n 项和为n S ,11a =,121n n a S +=+,若对任意的*n N ∈,11()23n S k +⋅≥恒成立,则实数k 的取值范围是16、在平面直角坐标系中,已知点P(3,0)在圆C :(x-m )2+(y-2)2=40内,动直线AB 过点P 且交圆C 于A,B 两点,若△ABC 的面积的最大值为20,则实数m 的取值范围是三、解答题(本大题共6小题,共70分。
解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知等比数列{}n a 的各项均为正数, 11a =,公比为q ;等差数列{}n b 中, 31=b ,且{}n b 的前n 项和为n S , 3327a S +=, 22S q a =. (1)求{}n a 与{}n b 的通项公式; (2)设数列{}n c 满足nn S c 23=,求{}n c 的前n 项和n T .18.(本小题满分12分)已知函数2()2sin cos f x x x x =+. (1)当]2,0[π∈x ,求函数)(x f 的值域;(2)已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,其中7a =,若锐角A 满足()26A f π-=,且sin sin B C +=,求bc 的值.19.(本小题满分12分)如图,四棱锥S ABCD -中,底面ABCD 是菱形,其对角线的交点为O ,且,SA SC SA BD =⊥. (1)求证:SO ⊥平面ABCD ;(2)设60BAD ︒∠=,2AB SD ==,P 是侧棱SD 上的一点, 且SB ∥平面APC ,求三棱锥A PCD -的体积.20.(本小题满分12分)《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:(1) 请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数y 与月份x 之间的回归直线方程ˆˆˆybx a =+; (2)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(1)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?(3)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.参考公式:1122211()()ˆ()n ni iiii i nniii i x y nx y x x y y bxnx x x ====-⋅-⋅-==--∑∑∑∑,ˆˆay bx =-. 21.(本小题满分12分)已知函数()()221ln ,,,2f x x mxg x mx x m R =-=+∈令()()()F x f x g x =+.(1)当12m =时,求函数()f x 的单调区间及极值; (2)若关于x 的不等式()1F x mx ≤-恒成立,求整数m 的最小值.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一个题目计分. 22. (本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是θρcos 4=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是()为参数t t y t x ⎩⎨⎧=+=ααsin cos 1.(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,且15||=AB ,求直线l 的倾斜角α的值.23.(本小题满分10分)选修4-5:不等式选讲 已知函数|2||1|)(--+=x x x f 的最大值为t .(1)求t 的值以及此时的x 的取值范围;(2)若实数b a ,满足222-=+t b a ,证明:41222≥+b a连城一中2019—2020学年上期高三(文科)月考二数学试题参考答案一、选择题(本大题共12小题,每小题5分,共60分) 1-5 CDABD 6-10 ABCAB 11-12 AD二、填空题(本大题共4小题,每小题5分,共20分)13、5- 14、21 15、 2[,)9+∞ 16、(-3,-1]?[7,9) 三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(1)解:(1)设数列{}n b 的公差为d则由已知有⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+⇒⎪⎩⎪⎨⎧==+33618327222233d q qd d q a s q s a 13-=∴n n a n b n 3= ....................6分(2)由题意得 2)33(n n s n +=111))1(1(322323+-=+⋅==∴n n n n s c n n 1111)111()3121()211(+=+-=+-++-+-=∴n nn n n T n .........12分 18. 解:(1)2()2sin cos f x x x x =+2sin 23x π⎛⎫=+⎪⎝⎭,]2,0[π∈x ]34,3[32πππ∈+∴x所以]2,3[)32sin(2-∈+πx 从而)(x f 的值域为]2,3[- ...........6分(2)由()2sin(2())2sin 26263A A f A πππ-=-+==, 又∵A 为锐角,∴3A π=,由正弦定理可得2sin a R A ===,sin sin 2b c B C R ++==,则13b c +==,由余弦定理可知,22222()21cos 222b c a b c bc a A bc bc +-+--===,可求得40bc =. .........12分19.(1)证明: 底面ABCD 是菱形,∴对角线AC BD ⊥,又A AC SA SA BD =⋂⊥,,⊥∴BD 平面SAC ,⊂SO 平面SAC ,⊥∴BD SO ,又O SC SA ,=为AC 中点,,O BD AC AC SO =⋂⊥∴,⊥∴SO 平面A B C . …………………6分(2)连 ,PO SB ?平面APC ,SB ⊂平面SBD ,平面SBD ⋂平面APC PO =,SB ∴?PO ,在三角形SBD 中,O 是BD 的中点,P ∴是SD 的中点.取OD 的中点E ,连PE ,则PE ?SO ,⊥PE 底面ACD ,且SO PE 21=, 在直角三角形ADO 中,1,302=∴︒=∠=DO DAO AD ,在直角三角形SDO 中,,,23,32=∴==PE SO SD 3120sin 2221=︒⨯⨯⨯=ACD S 三角形2123331=⨯⨯==∴--ACD P PCD A V V 三棱锥三棱锥. …………………12分20(1)依题意3,100x y ==,552111420,55i ii i i x yx ====∑∑5152215142053100ˆ855595i ii ii x y x ybxx ==-⋅-⨯⨯∴===--⨯-∑∑,ˆˆ124a y bx =-= ∴y 关于x 的线性回归方程为:8124y x =-+. …………………5分 (2)由(1)得:当6x =时,76y =. 807645-=<故6月份该十字路口“礼让斑马线”情况达到“理想状态”. …………………7分 (3)设3月份选取的4位驾驶员的分别记为:1234,,,a a a a ,从4月份选取的2位驾驶员的分别为12,B B 从这6人中任抽两人包含以下基本事件:{}12,a a 、{}13,a a 、{}14,a a 、{}11,a B 、{}12,a B 、{}23,a a 、{}24,a a , {}21,a B 、{}22,a B 、{}34,a a 、{}31,a B 、{}32,a B 、{}41,a B 、{}42,a B 、{}12,B B 共15个基本事件,其中两个恰好来自同一月份的包含7个基本事件,∴所求概率715p =. ………………… 12分21.(1)解:(1)由题得,()()21ln 02f x x x x =->,所以()()'10f x x x x=->. 令()'0,f x =得1x =.由()'0,f x >得01x <<,所以()f x 的单调递增区间为()0,1, 由()'0,fx <得1x >,所以()f x 的单调递减区间()1,+∞.所以函数()()1=12f x f =-极大值,无极小值. …………………4分 (2)法一:令()()()()211ln 112G x F x mx x mx m x =--=-+-+,所以()()()2'1111mx m x G x mx m x x-+-+=-+-=.当0m ≤时,因为0x >,所以()'0G x >,所以()G x 在()0,+∞上是递增函数.又因为()31202G m =-+>,所以关于x 的不等式()1G x mx ≤-不能恒成立. 当0m >时,()()()2'1111m x x mx m x m G x x x ⎛⎫-+ ⎪-+-+⎝⎭==-. 令()'0G x =,得1x m=, 所以当10,x m ⎛⎫∈ ⎪⎝⎭时,()'0G x >;当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()'0G x <,因此函数()G x 在10,x m ⎛⎫∈ ⎪⎝⎭上是增函数,在1,x m ⎛⎫∈+∞ ⎪⎝⎭上是减函数.故函数()G x 的最大值为11ln 2G m m m ⎛⎫=- ⎪⎝⎭. 令()1ln 2h m m m =-, 因为()1102h =>,()12ln 204h =-<, 又因为()h m 在()0,m ∈+∞上是减函数, 所以当2m ≥时,()0h m <,所以整数m 的最小值为2. …………………12分法二:由()1F x mx ≤-恒成立,知()()22ln 102x x m x x x++≥>+恒成立.令()()()22ln 102x x h x x x x ++=>+,则()()()()'22212ln 2x x x h x x x -++=+. 令()2ln x x x ϕ=+, 因为11ln 4022ϕ⎛⎫=-< ⎪⎝⎭,()110ϕ=>,且()x ϕ为增函数. 故存在01,12x ⎛⎫∈ ⎪⎝⎭,使()00x ϕ=,即002ln 0x x +=.当00x x <<时,()'0h x >,()h x 为增函数,当0x x >时,()'0h x <,()h x 为减函数,所以()()0002max 0002ln 2212x x h x h x x x x ++===+.而01,12x ⎛⎫∈ ⎪⎝⎭,所以()011,2x ∈, 所以整数m 的最小值为2. …………………12分22解:(Ⅰ)由θρcos 4=得θρρcos 42=. ∵θρθρρsin ,cos ,222===+y x y x ∴曲线C 的直角坐标方程为()42042222=+-=-+y x x y x 即. …………5分(Ⅱ)将⎩⎨⎧=+=ααsin cos 1t y t x 代入圆的方程化简得03cos 22=--αt t .设A ,B 两点对应的参数分别为21,t t ,则⎩⎨⎧-==+3cos 22121t t t t α.∴()1512cos 4422122121=+=-+=-=αt t t t t t AB∴23cos ,3cos 42±==αα则 ∵[)πα,0∈∴656ππα或=. ………10分 23. 解:(1)依题意,得1(2)3,(1)()+1(2)21(1,3),(12)(+1)(2)3,(2)x x x f x x x x x x x x ----=-≤-⎧⎪=--=-∈--<<⎨⎪--=≥⎩所以3=t ,此时),2[+∞∈x ……………………5分(2)由210211222222≤⇒≥-=⇒=+⇒-=+b b a b a t b a ,所以412)2(2422222≥--=+-=+b b b b a ……………………10分 (其他证法酌情给分)。