高三上学期第二次月考(数学文)
- 格式:doc
- 大小:324.98 KB
- 文档页数:8
学必求其心得,业必贵于专精2012—2013年华南师大附中高三综合测试(二)试题数学(文科)本卷共20小题,满分150分,时间120分钟一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知集合11{2,1,0,1,2}{|28R}2x M N x x +=--=<<∈,,,则M N =( )A .{1,0,1}-B .{2,1,0,1,2}--C .{0,1}D .{10}-,2、设a ∈R ,若i i a 2)(-(i 为虚数单位)为正实数,则a =( )A .2B .1C .0D .1-3、一组数据20,30,40,50,50,60,70,80的平均数、中位数、众数的大小关系是A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数4、若 ]2,4[ππθ∈,47sin =θ,则θ2sin =( )A 。
错误! B. -错误! C. 错误! D. -错误!5、设 S n 为等差数列 {a n } 的前 n 项和,若S 3 = 3,S 6 = 24,则a 9 =( )A. 13 B 。
14 C 。
15 D 。
166、已知-7,1a ,2a ,-1四个实数成等差数列,-4,1b ,2b ,3b ,-1五个实数成等比数列,则212b a a-=( )A .1B .-1C .2D .±17、函数],0[)(26sin(2ππ∈-=x x y 为增函数的区间是 ( )A.[0,3π]B.[12π,12π7]C.[3π,6π5]D.[6π5,π]8、已知xx f )21()(=,其反函数为)(x g 则)(2x g 是( )A 。
奇函数且在),0(+∞上是增函数;B.偶函数且在),0(+∞上是增函数; C 。
奇函数且在)0,(-∞上是增函数;D.偶函数且在)0,(-∞上是增函数;9、△ABC 中,∠C = 60°,且CA = 2,CB = 1,点M 满足 错误!= 2错误!,则 错误!·错误!=( )A. 4 + 错误! B 。
三明一中2022-2023学年上学期月考二高三数学科试卷(考试时间:120分钟,满分150分)注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的姓名、准考证号.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.非选择题用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,仅有一项是符合题目要求的.)1.已知集合{}{}22,3,4,230A B x x x ==∈+-<N ,则A B 中元素的个数是A.2B.3C.4D.52.复平面内表示复数622iz i+=-,则z =A. B. C.4 D.3.若非零实数,a b 满足a b >,则A.22ac bc> B.2b a a b+> C.e1a b-> D.ln ln a b>4.函数()cos f x x x =的图像大致是A .B .C .D .5.如图,在矩形ABCD 中,2AD =,点M ,N 在线段AB 上,且1AM MN NB ===,则MD 与NC所成角的余弦值为A .13B .45C .23D .356.足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动.已知某“鞠”的表面上有四个点,,,P A B C ,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为A.256π B.9π C.92π D.98π7.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =A.361B.374C.385D.3958.在ABC 中,角A、B 、C 所对的边分别为a 、b 、c ,若sin c A =,b a λ=,则实数λ的最大值是A.B.32+C.D.2二、多选题(本题共4小题,每小题5分,共20分。
湖南2025届高三月考试卷(二)数学(答案在最后)命题人、审题人:高三数学备课组时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数11i z =+的虚部是()A.1 B.12 C.12- D.1-【答案】C【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i 1i 1i 1i 222z --====-++-,所以其虚部为12-,故C 正确.故选:C.2.已知a 是单位向量,向量b 满足3a b -= ,则b 的最大值为()A.2B.4C.3D.1【答案】B【解析】【分析】设,OA a OB b == ,由3a b -= ,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得 b 的最大值.【详解】设,OA a OB b == ,因为3a b -= ,即3OA OB BA -== ,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a 是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即 b 的最大值为4.故选:B.3.已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为()A.23- B.13- C.23 D.13【答案】D【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=.所以cos 111sin cos 1tan 123θθθθ===+++.故选:D.4.已知函数()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x ->-,则实数a 的取值范围为()A.34a ≤ B.34a ≥ C.1a ≤ D.1a ≥【答案】D【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可.【详解】()()()12120f x f x f x x x ->⇒- 在上单调递增,又()2e 33,0,0x a x f x x a x ⎧+-<=⎨+≥⎩,当0x <时,()e 33xf x a =+-单调递增,当0x ≥时,()f x 单调递增,只需1330a a +-≤+,解得1a ≥.故选:D.5.如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD -的体积为83,则圆柱的表面积为()A.10πB.9π2C.4πD.8π【答案】A【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB -=⋅△,可求解底面半径,即可求解.【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===,取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD ,所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r -=⋅=⨯⨯⨯⨯= ,解得=1,所以圆柱表面积为22π42π10πr r +⨯=.故选:A.6.已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为()A.52+ B.5 C.10 D.11【答案】B【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BF x =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可.【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =,所以抛物线C 的方程为24y x =,焦点坐标为1,0,设直线l 的方程为:()()11221,,,,x ty A x y B x y =+,不妨设120y y >>,联立方程241y x x ty ⎧=⎨=+⎩,整理得2440y ty --=,则12124,4y y t y y +==-,故221212144y y x x =⋅=,又B =1+2=1+1,2212p BF x x =+=+,则()()12122321312352525AF BF x x x x +=+++=++≥=,当且仅当12,23x x ==时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF +211111x x =+++121212211x x x x x x ++==+++,因此23AF BF +()1123AF BF AF BF ⎛⎫=++ ⎪ ⎪⎝⎭235AF BF BF AF =++55≥+=+,当且仅当661,123AF BF =+=+时等号成立,故23AF BF +的最小值为5.故选:B.7.设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.则()y f x =的图象与直线114y x =-的交点个数为()A.1B.2C.3D.4【答案】C【解析】【分析】利用给定条件求出()πcos 4f x x ⎛⎫=- ⎪⎝⎭,再作出图像求解交点个数即可.【详解】对R x ∀∈,都有ππ44f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以π4x =是=的一条对称轴,所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=-.所以()πcos 4f x x ⎛⎫=- ⎪⎝⎭,在平面直角坐标系中画出()πcos 4f x x ⎛⎫=-⎪⎝⎭与114y x=-的图象,当3π4=-x 时,3π14f ⎛⎫-=- ⎪⎝⎭,11113π3π4164y --=⨯(-=-<-,当5π4x =时,5π14f ⎛⎫=- ⎪⎝⎭,5π5π14111461y =⨯-=->-,当9π4x =时,9π14f ⎛⎫= ⎪⎝⎭,11119π9π4416y =⨯-=-<,当17π4x =时,17π14f ⎛⎫= ⎪⎝⎭,111117π17π4416y =⨯-=->所以如图所示,可知=的图象与直线114y x =-的交点个数为3,故C 正确.故选:C.8.已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠-⋅=-,且()()()()()g x g y f x f y g x y -=-,则下列说法正确的是()A.()01f =B.()f x 是偶函数C.若()()1112f g +=,则()()2024202420242f g -=-D.若()()111g f -=,则()()202420242f g +=【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x -,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g -=-,再找出()()11f x g x ---与()()f x g x ⎡⎤-⎣⎦的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x -+-与()()f x g x ⎡⎤+⎣⎦的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y -⋅=- ,令0,0x y ==,即()()()()()00000f g f g f -⋅=,解得()00f =,故A 错;对B ,根据()()()()()f x g y f y g x f x y -=-,得()()()()()f y g x f x g y f y x -=-,即()()f y x f x y -=--,故()f x 为奇函数,故B 错;对C ,()()()()()g x g y f x f y g x y -=- 令0x y ==,即()()()()()00000g g f f g -=,()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴-=-,由题知:()()f x yg x y ---()()()()()()()()f x g y f y g x g x g y f x f y ⎡⎤=-⋅--⎣⎦()()()()f y g y f x g x ⎡⎤⎡⎤=+-⎣⎦⎣⎦,令1y =,即()()()()()()1111f x g x f g f x g x ⎡⎤⎡⎤---=+-⎣⎦⎣⎦,()()1112f g += ,()()()()1112f xg x f x g x ⎡⎤∴---=-⎣⎦,即()(){}f xg x -是以()()001f g -=-为首项2为公比的等比数列;故()()()2024202420242024122f g -=-⨯=-,故C 正确;对D ,由题意知:()()f x yg x y -+-()()()()()()()()f xg y f y g x g x g y f x f y =-⋅+-()()()()g y f y f x g x ⎡⎤⎡⎤=-+⎣⎦⎣⎦,令1y =,得()()()()()()1111f x g x g f f x g x ⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦,又()()111g f -=,即()()()()11f x g x f x g x -+-=+,即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错.故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A.一个样本的方差()()()22221220133320s x x x ⎡⎤=-+-++-⎣⎦L ,则这组样本数据的总和等于60B.若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x -- ,1021x -的标准差为16C.数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D.若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x ⎡⎤=-+-++-⎣⎦ 所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,⨯=A 正确;对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x --- 的方差为2222264s =⨯2816=⨯=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77⨯=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=,所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ⨯+⨯+-====<,故D 正确.故选:ABD.10.已知函数()32f x ax bx =-+,则()A.()f x 的值域为RB.()f x 图象的对称中心为()0,2C.当30b a ->时,()f x 在区间()1,1-内单调递减D.当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =-=-满足()()3g x ax bx g x -=-+=-,可知()g x 为奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于0,2中心对称,正确;对于C :()23f x ax b '=-,当30b a ->时,取1,1a b =-=-,当33,33x ⎛⎫∈- ⎪ ⎪⎝⎭时,()()2310,f x x f x =-+>'在区间33,33⎛⎫- ⎪ ⎪⎝⎭上单调递增,错误;对于D :()23f x ax b '=-,当0ab >时,()230f x ax b '=-=有两个不相等的实数根,所以函数()f x 有两个极值点,正确.故选:BD.11.我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是()A.函数()sin 1f x x =+是圆22:(1)1O x y +-=的一个太极函数B.对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C.对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D.若函数()()3f x kx kx k =-∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈-【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +-=,圆心为0,1,()sin 1f x x =+的图象也过0,1,且0,1是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()331,332313,03231332331,332x x x f x x x x ⎧--<-⎪⎪+-≤≤=⎨⎪+<≤⎪->⎩,与圆交于点()1,0-,1,0,且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k -=---=--=-∈R ,所以()f x 为奇函数,由()30f x kx kx =-=,得0x =或1x =±,所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0-,且过圆心()0,0,由3221y kx kx x y ⎧=-⎨+=⎩,得()2624222110k x k x k x -++-=,令2t x =,则()232222110k t k t kt -++-=,即()()222110t k t k t --+=,得1t =或22210k t k t -+=,当1t =时,1x =±,当22210k t k t -+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k=-=-,若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈-时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈-,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12.曲线2ln y x x =-在点()1,2处的切线与抛物线22y ax ax =-+相切,则a =__________.【答案】1【解析】【分析】求出曲线2ln y x x =-在点()1,2处的切线方程,由该切线与抛物线22y ax ax =-+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =-,则12y x'=-,则11x y ='=,曲线2ln y x x =-在点()1,2处的切线方程为21y x -=-,即1y x =+,当0a ≠时,则212y x y ax ax =+⎧⎨=-+⎩,得()2110ax a x -++=,由2Δ(1)40a a =+-=,得1a =.故答案为:1.13.已知椭圆G22+22=1>>0的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.【答案】23【解析】【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a =,12PF F 的面积为21122b cc PF a⋅⋅=,又由于12PF F 的内切圆的半径为3c,则12PF F 的面积也可表示为()12223c a c +⋅,所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c ca c a =+⋅,整理得:22230a ac c --=,两边同除以2a ,得2320e e +-=,所以23e =或1-,又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23.故答案为:23.14.设函数()()44xf x ax x x =+>-,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.【答案】58##0.625【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b +>恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x ->,则()()441441444x f x ax ax a x a x x x =+=++=-+++---2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b >恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=+=,设事件A =“不等式()f x b >恒成立”,则事件A 包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b >恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC 的面积为334,且2AD DC = ,求BD 的最小值.【答案】(1)π3B =(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由.112333BD BC CA BA BC =+=+,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知双曲线E 的焦点在x 轴上,离心率为233,点(在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y -=(2)6【解析】【分析】(1)由222c a b =+和3e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程;(2)设直线()()121:2,:2l y k x l y x k =-=--,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y -=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCDS AC BD =,即可求出四边形ABCD 面积的最小值.【小问1详解】因为222c a b =+,又由题意得22243c e a ==,则有223a b =,又点(在双曲线E 上,故229213-=b b,解得221,3b a ==,故E 的方程为2213xy -=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=-=--,其中0k ≠,因为12,l l 均与E 的右支有两个交点,所以313,33k k >->,所以2133k <<,将1l 的方程与2213x y -=联立,可得()222213121230k x k x k -+--=.设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k---+==--,所以()222121212114AC k x k x x x x =+-=++-)22222222222311212323114113133113k k k kkk k k k k +⎛⎫---+=+-⨯+ ⎪----⎝⎭,同理)22313k BD k +=-,所以))()()()2222222223131111622313313ABCD kkk S AC BD k kkk+++==⋅⋅=⋅----.令21t k =+,所以241,,43k t t ⎛⎫=-∈⎪⎝⎭,则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥-+-⎛⎫-+---+ ⎪⎝⎭,当112t =,即1k =±时,等号成立.故四边形ABCD 面积的最小值为6.17.如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B -==,2,P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C 的夹角的余弦值为53333?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,点P 为11A B 中点【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解.【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,2AB A B BB ===22OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥.又OB OC O = ,,OB OC ⊂平面OBC ,所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B .【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,0,A B C ,所以((1110,0,,0,,AA AC A B ==-=,()110,B C =.设)111,0,A P A B λλ===,则1AP AA =+)[]1,0,,0,1A P λ=∈,设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ⎧=+=⎪⎨+==⎪⎪⎩⎩,取()()1,1,1,1,,m n λλλ==+,则cos ,33m n m n m n ⋅===.整理得212870λλ+-=,即()()21670λλ-+=,所以12λ=或76λ=-(舍),故存在点P (点P 为11A B 中点时),满足题意.18.若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b ⎛⎫=-= ⎪⎝⎭,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由;(2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析(2)证明见解析【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②.【小问1详解】(i )因为21n a n =-单调递增,但无上限,即不存在M ,使得n a M <恒成立,所以数列不具有性质P .因为113nn b ⎛⎫=< ⎪⎝⎭,又数列为单调递减数列,所以数列具有性质P .(ii )数列{}n S 具有性质P .2112113333n n n S -=⋅+⋅++ ,23111121133333n n n S +-=⋅+⋅++ ,两式作差得23121111211222333333n n n n S +-=⋅+⋅+⋅++⋅- ,即1121121212223313333313n n n n n n S ++⎛⎫- ⎪-+⎝⎭=-+-=--,所以111,3n n n S +=-<∴数列{}n S 满足条件①.(){}11210,,3nn n n n n a b n S S S +⎛⎫=->∴<∴ ⎪⎝⎭为单调递增数列,满足条件②.综上,数列{}n S 具有性质P .【小问2详解】因为*0,1,,,X n n =∈N ,若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]nn n c d p p +==-+001112220C (1)C (1)C (1)C (1)n n n n nn n n n p p p p p p p p --=-+-+-++- ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p ----=--+--+--++-- ②,2n c -=①②,即1(12)2nn p c --=.所以当102p <<时,0121p <-<,故n c 随着n 的增大而增大,且12n c <.故数列{}n c 具有性质P .19.已知函数()24e 2x f x x x-=-,()2233g x x ax a a =-+--(a ∈R 且2a <).(1)令()()()(),x f x g x h x ϕ=-是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围.【答案】(1)ℎ在(),0∞-和0,+∞上单调递增;(2)(],1-∞.【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ-=-=-+-++,定义域为{}0xx ≠∣,所以()()()224e 1223x x h x x x a xϕ--==-+-',所以()()2234e 2220x x x h x x --+=+>'.所以()h x 在(),0-∞和()0,∞+上单调递增.【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=-+=--≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x -=+=-,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x---+-'=-==>',所以()()224e 11x x F x x --=-'在()1,+∞单调递增,又()20F '=,所以当()1,2x ∈时,()()0,F x F x '<单调递减,当()2,x ∈+∞时,()()0,F F x x '>递单调增,所以()()20F x F ≥=,故()f x x ≥-,要证()()f x g x ≥,只需证()x g x -≥,即证()223130x a x a a -+++≥,令()()22313G x x a x a a =-+++,则()()()222Δ(31)43561151a a a a a a a =+-+=-+=--,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =-+++≥.若15a <,则对称轴31425a x +=<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥,综上所述,a 的取值范围为(],1-∞.法二:由题知2224e 233x x x ax a a x--≥-+--对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ-=-+-++≥对任意的()1,x ∈+∞恒成立.由(1)知()()224e 1223x x x x a x ϕ--=-+-'在()1,+∞递增,又()13a ϕ'=-.①若0a ≤,则()()()10,x x ϕϕϕ'>≥'在()1,+∞递增,所以()()24110e x a ϕϕ>=-+>,符合;②若0a >,则()130a ϕ=-<',又()112224e 14e (1)(1)(1)a a a a a a a a a ϕ--⎡⎤+=-=-+⎣⎦++',令()124e(1)a m a a -=-+,则()()()14e 21a m a a h a -=-+=',则()14e 2a h a -'=-为单调递增函数,令()0h a '=得1ln2a =-,当()0,1ln2a ∈-时()()0,h a m a ''<单调递减,当()1ln2,a ∞∈-+时()()0,h a m a ''>单调递增,又()()10,00m m ='<',所以当()0,1a ∈时,()()0,m a m a '<单调递减,当()1,a ∈+∞时,()()0,m a m a '>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ-⎡⎤+'=-+≥⎣⎦+,所以(]01,1x a ∃∈+,使得()00x ϕ'=,即()0200204e 12230x x x a x ---+-=,且当()01,x x ∈时,()()0,x x ϕϕ'<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ'>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ-==-+-++.若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ-=-+-++≥,符合题意.若()1,2a ∈,因为()()()2232120a a a a ϕ=-+=--<,所以不符合题意.综上所述,a 的取值范围为(],1-∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有:(1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
2020年石嘴山市三中11月月考数学试卷(文科)答案和解析【答案】1. A2. A3. A4. C5. C6. C7. D8. D9. A10. B11. B12. D13.14.15.16司长生批 13. (−2,2) 14. {2(n =1)2n−1(n ≥2)15. 2cos x 16. 1:√3:217董红香批17(10分) 解:(1)由a ⃗ ⊥b ⃗ 得,2x +3−x 2=0,即(x −3)(x +1)=0, 解得x =3或x =−1;(2)由a ⃗ //b ⃗ ,则2x 2+3x +x =0, 即2x 2+4x =0,得x =0或x =−2. 当x =0时,a ⃗ =(1,0),b ⃗ =(3,0), ∴a ⃗ −b ⃗ =(−2,0), 此时|a ⃗ −b ⃗ |=2;当x =−2时,a ⃗ =(1,−2),b ⃗ =(−1,2), 则a ⃗ −b ⃗ =(2,−4).故|a ⃗ −b ⃗ |=√22+(−4)2=2√5.18董红香批18. (12) 解:(1)设等差数列{a n }的公差为d ,由a 1+a 2=10,a 4−a 3=2,可得a 1+a 1+d =10,d =2, 解得a 1=4,d =2,可得a n =4+2(n −1)=2n +2; (2)设等比数列{b n }的公比为q ,由b 2=a 3,b 3=a 7,可得b 1q =8,b 1q 2=16, 解得b 1=4,q =2, 则数列{b n }的前n 项和为S n =4(1−2n )1−2=2n+2−4.19(12分 ) .寇 西宁批 解:(Ⅰ)因为△ABC 的外接圆直径为200√573m.由正弦定理BCsin∠CAB =200√573,即200sin∠CAB=200√573,所以sin∠CAB =3√57,cos∠CAB =4√3√57,在△ABC 中,sin∠B =sin(∠CAB +∠ACB)=sin∠CABcos∠ACB +cos∠CABsin∠ACB =√57⋅12+√3√57⋅√32=2√57,由正弦定理可得ACsin∠B =BCsin∠CAB ,所以AC =sin∠Bsin∠CAB ⋅BC =152√573√57⋅200=500m所以AC 的值是500m ;(Ⅱ)由题意可得AD =BC =200,cos∠AED =cos60°=12,在△ADE 中,由余弦定理可得AD 2=AE 2+ED 2−2AE ⋅ED ⋅cos∠AED =(AE +ED)2−3AE ⋅ED , 所以(AE +ED)2−AD 2=3AE ⋅ED ≤3⋅(AE+ED 2)2, 所以14(AE +ED)2≤AD 2=2002, 所以可得:AE +DE ≤400,所以△ADE 的最大周长为:AD +AE +DE =200+400=600m .20.(12分) 寇 西宁批 解:(1)∵f(x)在x =2处有极值,∴f′(2)=0.∵f′(x)=3x 2+2ax ,∴3×4+4a =0,∴a =−3. 经检验a =−3时x =2是f(x)的一个极值点, 故a =−3;(2)由(1)知a =−3,∴f(x)=x 3−3x 2+2,f′(x)=3x 2−6x .令f′(x)=0,得x 1=0,x 2=2.当x 变化时f′(x),f(x)的变化情况如下表:从上表可知f(x)在区间[−1,3]上的最大值是2,最小值是−2.21.(12分) 司长生批 解:(Ⅰ)当0<x <70时,y =100x −(12x 2+40x −400=−12x 2+60x −400),当x ≥70时,y =100x −(101x +6400x−2060)−400=1660−(x +6400x).∴y ={−12x 2+60x −400,0<x <70且x ∈N1660−(x +6400x ),x ≥70且x ∈N; (Ⅱ)当0<x <70时,y =−12x 2+60x −400=−12(x −60)2+1400, 当x =60时,y 取最大值1400万元; 当x ≥70时,y =1660−(x +6400x )≤1660−2√x ⋅6400x=1500,当且仅当x =6400x,即x =80时y 取最大值1500.综上,当月产量为80台时,该企业能获得最大月利润,最大约利润为1500万元.22.(12分)司长生批 解:(I)f′(x)=cosx −sinx −a ,当a =1时,f′(x)=cosx −sinx −1=−√2sin(x −π4)−1,令f′(x)>0可得sin(x −π4)<−√22可得x ∈[−π4,0),令f′(x)<0可得sin(x −π4)>−√22可得x ∈(0,π2],故f(x)在[−π4,0)上单调递增,在(0,π2)上单调递减, 故f(x)max =f(0)=1, ∵f(−π4)=π4,f(π2)=1−π2<π4, ∴f(x)min =f(π2)=1−π2, (II)f(−π)=aπ−1≤1,故a ≤2π,f′(x)=−√2sin(x−π4)−a,∵−π≤x≤0,∴−5π4≤x−π4≤−π4,∴−1≤sin(x−π4)≤√22,−1≤−√2sin(x−π4)≤√2,(i)a≤−1时,f′(x)≥0,f(x)在[−π,0]上单调递增,f(x)<f(0)=1恒成立,(ii)−1<a≤2π时,当−π≤x≤−π4时,f′(x)单调递增,当−π4≤x≤0时,f′(x)单调递减,∴f′(π)=−1−a<0,f′(−π4)=√2−a>0,f′(0)=1−a>0,∴存在a∈(−π,−π4),使得f′(a)=0,所以当−π≤x<a时,f′(x)<0,函数f(x)单调递减,当a<x≤0时,f′(x)>0,函数单调递增,又因为f(−π)=aπ−1≤1,f(0)=1≤1,∴f(x)≤1,∴a≤2π【解析】1. 解:∵集合A={−1,0,4},集合B={x|x2−2x−3≤0,x∈N}={−1,0,1,2,3},图中阴影部分表示的集合是A∩(C U B)={4}故选A由已知中的韦恩图,我们可得图中阴影部分表示的集合是A∩(C U B),根据已知中的集合A,B,可得答案.本题考查的知识点是Venn图表达集合的关系及运算,其中分析出图中阴影部分表示的集合是A∩(C U B),是解答本题的关键.2. 解:根据题意,△ABC满足“勾三股四弦五”,其中股AB=4,则△ABC为Rt△,且cosC=35,△ABD满足勾股定理,则△ABD为Rt△,且∠ADB=90°,则有∠DAB=∠C,又由<AB ⃗⃗⃗⃗⃗ ,AD⃗⃗⃗⃗⃗⃗ >=∠DAB , 则cos <AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ >=cos∠DAB =cosC =35, 故选:A .根据题意,可得△ABC 中cosC =35,由相似三角形的性质可得∠DAB =∠C ,而<AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗⃗ >=∠DAB ,即可得答案.本题考查向量夹角的计算,注意向量夹角的定义,属于基础题.3. 【分析】由已知展开两角差的正切求得tanα,再由万能公式求得cos2α的值. 本题考查三角函数的化简求值,考查了万能公式的应用,是基础题. 【解答】解:由tan(α−π4)=−13,得tanα−tanπ41+tanαtanπ4=−13,即tanα−11+tanα=−13,解得tanα=12,∴cos2α=1−tan 2α1+tan 2α=1−141+14=35.故选:A .4. 解:由已知得f′(x)=a x , g′(x)=12√x ,设切点横坐标为t ,∴{alnt =√t a t=12√t ,解得t =e 2,a =e 2. 故选:C .根据公共点处函数值相等、导数值相等列出方程组求出a 的值和切点坐标,问题可解.本题考查导数的几何意义和切线方程的求法,以及利用方程思想解决问题的能力,属于基础题.5. 【分析】本题考查向量数量积及向量垂直的充要条件,同时考查正弦定理及两角和与差的三角函数,根据向量垂直,可得√3cosA −sinA =0,分析可得A ,再根据正弦定理可得,sinAcosB +sinBcosA =sin 2C ,进而可得sinC =sin 2C ,可得C ,再根据三角形内角和定理可得B ,进而可得答案.【解答】解:根据题意,m⃗⃗⃗ ⊥n⃗,可得m⃗⃗⃗ ·n⃗=0,即√3cosA−sinA=0,即,又0<A<π,∴A=π3,因为acosB+bcosA=csinC,正弦定理可得sinAcosB+sinBcosA=sin2C,即sin(A+B)=sinC=sin2C,又0<C<π,∴sinC=1,C=π2,故选C.6. 解:向量a⃗与b⃗ 的夹角为60°,|a⃗|=1,|b⃗ |=2,由b⃗ ⊥(2a⃗−λb⃗ )知,b⃗ ⋅(2a⃗−λb⃗ )=0,2b⃗ ⋅a⃗−λb⃗ 2=0,2×2×1×cos60°−λ⋅22=0,解得λ=12.故选:C.根据两向量垂直时数量积为0,列方程求出λ的值.本题考查了平面向量的数量积与垂直的应用问题,是基础题.7. 解:函数f(x)=12(√3sin2|x|−cos2|x|)=sin(2|x|−π6),定义域为R,f(−x)=sin(2|−x|−π6)=sin(2|x|−π6)=f(x),所以函数f(x)为偶函数,所以图象关于y轴对称,f(x)=sin(2x−π6),x≥0令2x−π6=π2,解得x=π3,所以x=π3时f(x)最大,故选:D.由三角函数的化简可得函数的解析式,再由函数的奇偶性可得函数f(x)是偶函数,再由x≥0的函数的最大值时的x值可选出结果.本题考查求函数的解析式即函数奇偶性的性质,属于中档题.8. 解:设12x−1=t,则x=2t+2,∴f(t)=4t+7,∴f(m)=4m+7=6,解得m=−14.故选:D.本题考查函数的解析式,属于基础题.设12x−1=t,求出f(t)=4t+7,进而得到f(m)=4m+7,由此能够求出m.9. 解:由题意可得a22=a1a4,∴(a1+2)2=a1(a1+6),解得a1=2,故选:A.由题意可得a1的方程,解方程可得.本题考查等差数列和等比数列的性质,属基础题.10. 解:第1代“勾股树”中,正方形的个数为3=22−1,最小正方形的边长为2,第2代“勾股树”中,正方形的个数为3+4=7=23−1,最小正方形的边长为(√2)2,第3代“勾股树”中,正方形的个数为15=24−1,最小正方形的边长为(2)3,以此类推,第n代“勾股树”中,正方形的个数为2n+1−1,最小正方形的边长为(√2)n,若“勾股树”上共得到8191个正方形,则2n+1−1=8191,解得n=12,此时最小正方形的边长为(√2)12=164.故选:B.第1代“勾股树”中,正方形的个数为3=22−1,最小正方形的边长为√2,第2代“勾股树”中,正方形的个数为7=23−1,最小正方形的边长为(√2)2,第3代“勾股树”中,正方形的个数为15=24−1,最小正方形的边长为(√2)3,以此类推,第n代“勾股树”中,正方形的个数为2n+1−1,最小正方形的边长为(√2)n,根据已知可求得n值,即可求解.本题考查正方形的性质及勾股定理的应用,考查归纳推理等基础知识,考查运算求解能力、推理论证能力、归纳总结能力,属于中档题.11. 解:∵函数y=2sin(2x−π3)(A>0,ω>0)的图象为C,故函数的最小正周期为2π2=π,故A错误;令x=π6,求得f(x)=0,可得图象C关于点(π6,0)对称,故B正确;图象C向右平移π2个单位后,得到y=2sin(2x−π−π3)=−2sin(2x−π3)的图象,显然,所得图象不关于原点对称,故C错误;当x∈区间(−π12,π2),2x−π3∈(−π2,2π3),函数f(x)在区间(−π12,π2)上没有单调性,故D错误,故选:B.由题意利用正弦函数的图象和性质,得出结论.本题主要考查正弦函数的图象和性质,属于中档题.12. 解:由题设可得:当n=2k−1(k∈N∗)时,有a2k=[cos(2k−1)π]⋅a2k−1+22k−1,即:a2k−1+a2k=22k−1(k∈N∗),∴(a1+a2)+(a3+a4)+(a5+a6)+⋯+(a39+a40)=21+23+25+⋯+239=2(1−420)1−4=2(420−1)3.故选:D.由题设条件推出相邻项之间的关系式,即可得到结果.本题主要考查由数列的递推式求数列的和,属于基础题.13. 解:∵a⃗,b⃗ 的夹角是180°∴a⃗,b⃗ 共线,∴设b⃗ =(λ,−λ),∵|b⃗ |=2√2,∴√λ2+(−λ)2=2√2,∴λ=±2,∵a⃗,b⃗ 的夹角是180°∴λ<0 ∴b ⃗ =(−2,2)故答案为:(−2,2)根据两个向量的夹角是180°,得到两个向量共线且方向相反,设出要求的向量,根据之金额各向量的模长做出向量的坐标,把不合题意的舍去.本题考查向量的数量积的坐标表示,是一个基础题,解题时注意向量的设法,这是本题要考查的一个方面,注意把不合题意的舍去.14. 解:由log 2S n =n ,得S n =2n .当n =1时,a 1=S 1=2,当n ≥2时,a n =S n −S n−1=2n −2n−1=2n−1, n =1时不成立. ∴a n ={2(n =1)2n−1(n ≥2).故答案为{2(n =1)2n−1(n ≥2).由对数式变形得到数列{a n }的前n 项和S n ,分类讨论求解其通项a n .本题考查阿勒数列的概念及简单表示法,考查了由数列前n 项和求通项,关键是注意分类讨论,是基础题.15. 解:将函数y =cos2x 的图象向右平移π4个单位,得到函数y =cos(2x −π2)=sin2x =2sinxcosx的图象又因为得到函数y =f(x)⋅sinx ,则f(x)=2cosx , 故答案为:2cos x .由题意利用函数y =Asin(ωx +φ)的图象变换规律,得出结论. 本题主要考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.16. 解:∵三个内角度数之比∠A :∠B :∠C =1:2:3,∠A +∠B +∠C =180°,∴∠A =30°,∠B =60°,∠C =90°,∴a :b :c =sin30°:sin60°:sin90°=12:√32:1=1:√3:2.故答案为:1:√3:2.由三个内角度数之比,求得三角形的内角,再利用正弦定理,即可求得结论. 本题考查正弦定理,考查学生的计算能力,属于基础题.17. 本题主要考查平面向量的坐标运算以及向量共线,垂直的充要条件.(1)利用两个向量互相垂直,可以求出x 的值; (2)由两个向量的互相平行先求出x 的值,再求模长.18. (1)设等差数列{a n }的公差为d ,由等差数列的通项公式,解方程可得公差和首项,进而得到所求通项公式;(2)设等比数列{b n }的公比为q ,运用等比数列的通项公式,解方程可得首项和公比,再由等比数列的求和公式,可得所求和.本题考查等差数列和等比数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.19. (Ⅰ)在△ABC 中,由正弦定理可得sin∠CAB =√57,cos∠CAB =√3√57,再由三角形的内角和π,可得sin∠B =sin(∠CAB +∠ACB)的值,由正弦定理可得AC 的值;(Ⅱ)由余弦定理和均值不等式可得DE +AE 的最大值,进而可得三角形的周长的最大值. 本题考查三角形的正余弦定理及均值不等式,属于中档题.20. (1)由x =−2是f(x)的一个极值点,得f′(2)=0,解出可得;(2)由(1)可求f(x),f′(x),令f′(x)=0,得x 1=0,x 2=2.当x 变化时f′(x),f(x)的变化情况列成表格,由极值、端点处函数值可得函数的最值;本题考查利用导数研究函数的极值、最值,属中档题,正确理解导数与函数的关系是解题关键.21. (Ⅰ)直接由已知分类写出分段函数解析式;(Ⅱ)当0<x <70时,利用配方法求最值,当x ≥70时,利用基本不等式求最值,取两段函数最大值的最大者得结论.本题考查函数模型的选择及应用,训练了利用配方法及基本不等式求最值,是中档题.22. (I)把a =1代入,然后对函数求导,然后结合导数与单调性的关系可求函数的最值;(II)由已知不等式恒成立转化为求解函数的最值,结合导数对a 进行分类讨论,然后结合导数与单调性关系及函数性质可求.本题主要考查了利用导数求解函数的最值,及由不等式的恒成立求解参数范围问题,体现了分类讨论思想的应用.。
2024南开中学高三数学第二次月考一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}ln A x y x ==,{}21B y y x ==+,则()R A B ⋂=ð( )A. ()0,1 B. (]0,1 C. [)0,1 D. []0,12. 设数列{}n a 的公比为q ,则“10a >且01q <<”是“{}n a 是递减数列”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 函数()2cos e ex x x x f x -+=-的大致图像为( )A. B.C. D.4. 设5log 2a =,ln 2b =,0.20.5c -=,则a ,b ,c 的大小关系为( )A. a c b <<B. a b c <<C. b<c<aD. c a b <<5. 设n S 为正项等比数列{}n a 的前n 项和,5a ,33a ,4a 成等差数列,则84S S 的值为( )A. 116 B. 117 C. 16D. 176. 已知35a b =且211a b +=,则a 的值为( )A. 3log 15 B. 5log 15 C. 3log 45 D. 5log 457. 我国古代数学名著《九章算术》中记载“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体.在图1所示羡除中,////AB CD EF ,10AB =,8CD =,6EF =,等腰梯形ABCD 和等腰梯形ABFE 的高分别为7和3,且这两个等腰梯形所在的平面互相垂直.按如图2的分割方式进行体积计算,得该“羡除”的体积为( )A. 84B. 66C. 126D. 1058. 记()n a τ表示区间[],n n a 上的偶数的个数.在等比数列{}n a n -中,14a =,211a =,则()4a τ=( )A. 39B. 40C. 41D. 429. 将函数πsin 24y x ⎛⎫=+ ⎪⎝⎭图象上所有点向右平移π4个单位长度,得到函数()y g x =的图象,则( )A. ()g x 为奇函数 B. ()3πcos 24g x x ⎛⎫=- ⎪⎝⎭C. ()g x 最小正周期为2πD. ()g x 的单调递增区间为5πππ,π88k k ⎡⎤-+-+⎢⎥⎣⎦,Zk ∈二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 设i 是虚数单位,()12a i i bi +=+(,a b ∈R ),则b a -=_____.11. 在5223x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是______.12. 已知直线():20l y kx k =->与圆221x y +=相切,且被圆()()2240x y a a ++=>截得的弦长为k =______;=a ______.13. 锐角α,β满足2π23αβ+=,tan tan 22αβ=-α和β中的较小角等于______.14. D 为ABC 的边AB 一点,满足2AD DB = .记CA a = ,CB b = ,用a ,b 表示CD = ______;若的的1CD = ,且ABC 的面积为98,则ACB ∠的最小值为______.15. 若二次函数()()2121f x ax b x a =+---在区间[]2,3上存在零点,则22a b +的最小值为______.三.解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16. 在ABC 中,,,A B C 对应的边为,,a b c .已知1cos 2a C cb +=.(Ⅰ)求A ;(Ⅱ)若4,6b c ==,求cos B 和()cos 2A B +的值.17. 如图,在直三棱柱111ABC A B C -中,AB BC ⊥,12AB BC BB ===,D 为棱AB 中点.M 为线段1BC 的中点.(1)求证:1//BC 平面1ACD ;(2)求平面1ACD 与平面1C DC 的夹角的余弦值;(3)求点M 到平面1ACD 的距离.18. 椭圆22221x y a b+=的左、右顶点分别为A ,B ,上顶点为()0,2C ,左、右焦点分别为1F ,2F ,且1AF ,12F F ,1F B 成等比数列.(1)求椭圆的方程;(2)过1F 的直线l 与椭圆交于M ,N 两点,直线CM ,CN 分别与x 轴交于P ,Q 两点.若CMN CPQ S S =△△,求直线l 的斜率.19. 已知数列{}n a 是首项为1的等差数列,数列{}n b 是公比不为1的等比数列,满足122a a b +=,233a a b +=,454a a b +=.(1)求{}n a 和{}n b 的通项公式;的(2)求数列{}n n a b 的前n 项和n S ;(3)若数列{}n d 满足11d =,1n n n d d b ++=,记12nk n i k d T b ==∑.是否存在整数m ,使得对任意*n ∈N 都有212n n nd mT b ≤-<成立?若存在,求出m 的值;若不存在,说明理由.20. 已知函数()2e xf x a x =-,0a >且1a ≠.(1)当e a =时,求曲线()y f x =在1x =处的切线方程;(2)若1a >,且()f x 存在三个零点1x ,2x ,3x .(i )求实数a 的取值范围;(ii )设123x x x <<,求证:1233x x x ++>.的2024南开中学高三数学第二次月考一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】B【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B二.填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.【10题答案】【答案】3.【11题答案】【答案】720【12题答案】【答案】①. ②. 4【13题答案】【答案】π6##30︒【14题答案】【答案】 ① 1233a b + ②. π2【15题答案】【答案】125三.解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.【16题答案】【答案】(Ⅰ)π3A =(Ⅱ)1114-【17题答案】【答案】(1)证明见解析;(2; (3.【18题答案】【答案】(1)22154x y += (2)12-或0【19题答案】【答案】(1)21n a n =-,2n n b =(2)()12326n n S n +=-⋅+(3)存在5m =,理由见解析【20题答案】【答案】(1)e e 0x y -+=(2)(i)1a <<,(ii )证明见解析.。
内江六中2022—2023学年(上)高2023第二次月考文科数学试题第Ⅰ卷 选择题(满分60分)一、选择题(每题5分,共60分)1. 已知向量()1,2a =r ,()1,1b = ,若c a kb =+ ,且b c ⊥ ,则实数k =( )A. 32B. 53-C. 53D. 32-【答案】D 【解析】【分析】根据平面向量坐标的线性运算得c得坐标,在根据向量垂直的坐标关系,即可得实数k 的值.【详解】解:因为向量()1,2a =r ,()1,1b = ,所以()1,2c a kb k k =+=++ ,又b c ⊥,所以120b c k k ⋅=+++= ,解得32k =-.故选:D.2. 复数13i2iz -=+的虚部为( )A. 75-B. 7i 5-C. 73-D. 7i 3-【答案】A 【解析】【分析】利用复数的除法运算化简,即可得复数的虚部.【详解】解:复数13i (13i)(2i)17i 17i 2i (2i)(2i)555z -----====--++-故z 的虚部为75-.故选:A .3. 若集合{1A =-,0,1},2{|1B y y x ==-,}x A ∈,则A B = ( )A. {0} B. {1}C. {0,1}D. {0,1}-【答案】D 【解析】【分析】把A 中元素代入B 中解析式求出y 的值,确定出B ,找出两集合的交集即可.【详解】解:把A 中=1x -,0,1代入B 中得:0y =,1,即{0B =,1},则{0A B = ,1}-,故选:D .4. 若变量x 、y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =+取最大值时的最优解是( )A. 5,03⎛⎫ ⎪⎝⎭B. 1,12⎛⎫-- ⎪⎝⎭C. 12,33⎛⎫⎪⎝⎭D. ()2,1-【答案】C 【解析】【分析】作出满足约束条件的可行域,平移直线20x y +=,即可得出结果.【详解】作出满足约束条件的可行域(如图中阴影部分所示).2z x y =+可化为20x y z +-=,平移直线20x y +=,当其经过点C 时,目标函数2z x y =+取得最大值,联立21y x x y =⎧⎨+=⎩,解得13x =,23y =,故最优解是12,33⎛⎫⎪⎝⎭,故选:C.5. 若a ,b 均为实数,则“ln ln a b >”是“e e a b >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据函数ln y x =与e x y =解不等式,即可判断.【详解】解:因为ln ln a b >,由函数ln y x =在()0,+∞上单调递增得:0a b >>又e e a b >,由于函数e x y =在R 上单调递增得:a b >由“0a b >>”是“a b >”的充分不必要条件可得“ln ln a b >”是“e e a b >”的充分不必要条件.故选:A.6. 如图是函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的图象的一部分,则函数()f x 的解析式为( )A. ()2sin 26f x x π⎛⎫=+⎪⎝⎭B. ()2sin 23f x x π⎛⎫=+⎪⎝⎭C. ()sin 3f x x π⎛⎫=+ ⎪⎝⎭D. ()2sin 23f x x π⎛⎫=-⎪⎝⎭【答案】B 【解析】【分析】由图象可确定()f x 最小正周期T ,由此可得ω;根据712f A π⎛⎫=- ⎪⎝⎭可求得ϕ;由()0f =可求得A ,由此可得()f x .【详解】由图象可知:()f x 最小正周期23471T πππ⎛⎫-=⎪⎝⎭=⨯,22T πω∴==;又77sin 126f A A ππϕ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,()73262k k ππϕπ∴+=+∈Z ,解得:()23k k πϕπ=+∈Z ,又02πϕ<<,3πϕ∴=,()sin 23f x A x π⎛⎫∴=+⎪⎝⎭,()0sin 3f A A π=== ,2A ∴=,()2sin 23f x x π⎛⎫∴=+ ⎪⎝⎭.故选:B.7. 已知向量,a b 的夹角为4π,且1||4,(23)122a a b a b ⎛⎫=+⋅-= ⎪⎝⎭,则向量b 在向量a 方向上的投影是( )A.B. 3C. D. 1【答案】D 【解析】【分析】由题意,根据数量积的运算,化简等式,解得模长,结合投影的计算公式,可得答案.【详解】由()123122a b a b ⎛⎫+⋅-= ⎪⎝⎭,22323122a a b a b b -⋅+⋅-= ,2213122a a b b +⋅-= ,21164cos 31224b b π+⨯⋅-=,230b -= ,(30b += ,解得b = b 在向量a 方向上的投影为cos 14b π= ,故选:D.8. 蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系.用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法,现设计一个实验计算圆周率的近似值,向两直角边长分别为6和8的直角三角形中均匀投点40个.落入其内切圆中的点有22个,则圆周率π≈( )A.6320B.3310C.7825D.9429【答案】B 【解析】【分析】根据几何概型的计算公式和题意即可求出结果.【详解】直角三角形内切圆的直径等于两直角边的和与斜边的差,即268104r =+-=,由几何概型得2222140682π⨯≈⨯⨯,从而3310π≈.故选:B.9. 双碳,即碳达峰与碳中和的简称,2020年9月中国明确提出2030年实现“碳达峰”,2060年实现“碳中和”.为了实现这一目标,中国加大了电动汽车的研究与推广,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池随之也迎来了蓬勃发展的机遇.Peukert 于1898年提出蓄电池的容量C (单位:A·h ),放电时间t (单位:h )与放电电流I (单位:A )之间关系的经验公式n C I t =⋅,其中32log 2n =为Peukert 常数.在电池容量不变的条件下,当放电电流10A I =时,放电时间57h t =,则当放电电流15A I =,放电时间为( )A. 28h B. 28.5hC. 29hD. 29.5h【答案】B 【解析】【分析】根据题意求出蓄电池的容量C ,再把15A I =代入,结合指数与对数的运算性质即可得解.【详解】解:根据题意可得5710n C =⋅,则当15A I =时,571015n n t ⋅=⋅,所以32231log 2log 222257575728.5h 333nt ⎛⎫⎛⎫⎛⎫=⋅=⋅=⋅= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即当放电电流15A I =,放电时间为28.5h.故选:B .10. 已知函数()32e ,0461,0x x f x x x x ⎧<=⎨-+≥⎩,则函数()()()2232g x f x f x =--⎡⎤⎣⎦的零点个数为( ).A. 2 B. 3 C. 4 D. 5【答案】B 【解析】【分析】首先根据()()22320f x f x --=⎡⎤⎣⎦,得到()2f x =或1()2f x =-,然后利用导数分析0x ≥时函数的单调性,结合单调性画出函数的图象,通过图象即可观察出函数零点的个数.【详解】由()()()22320g x f x f x =--=⎡⎤⎣⎦,得()2f x =或1()2f x =-.当0x ≥时,2()121212(1)f x x x x x '=-=-,所以当(0,1)x ∈,()0,()'<f x f x 单调递减;当()1,x ∈+∞,()0,()'>f x f x 单调递增,所以1x =时,()f x 有极小值(1)4611f =-+=-.又0x <时,()x f x e =,画出函数()f x 的图象如图所示,由图可知:函数()()()2232g x f x f x =--⎡⎤⎣⎦的零点个数为3.故选:B .11. 已知()f x 是定义在R 上的函数满足(4)()f x f x -=-,且满足(31)f x -为奇函数,则下列说法一定正确的是( )A. 函数()f x 图象关于直线=2x 对称B. 函数()f x 的周期为2C. 函数()f x 关于点1,03⎛⎫- ⎪⎝⎭中心对称 D. (2023)0f =【答案】D 【解析】【分析】对于A.令2x x =+代入(4)()f x f x -=-即可判断.对于C.可考虑图像平移或者将3x 换元进行判断.对于BD.通过AB对称轴和对称中心即可判断出函数周期,继而计算出(2023)f 【详解】因为函数()f x 关于直线2x =-对称,不能确定()f x 是否关于直线2x =对称,A 错误;因为(31)f x -为奇函数,所以(31)(31)f x f x -=---,所以(1)(1)f x f x -=---,所以()(2)f x f x =---,所以函数()f x 关于点(1,0)-中心对称,故C 错误;由()(4)f x f x =--与()(2)f x f x =---得(4)(2)f x f x --=---,即(4)(2)f x f x -=--,故(4)()f x f x -=,所以函数()f x 的周期为4,故B 错误;(2023)(50641)(1)0f f f =⨯-=-=,故D 正确.故选:D的的12. 已知关于x 的不等式(e )e ->x x x x m m 有且仅有两个正整数解(其中e 2.71828= 为自然对数的底数),则实数m 的取值范围是( )A. 43169(,]5e 4eB. 3294(,4e 3eC. 43169[,5e 4eD. 3294[,e 3e 4【答案】D 【解析】【分析】问题转化为2(1)e x x m x +<(0x >)有且仅有两个正整数解,讨论0m ≤、0m >并构造()(1)f x m x =+、2()ex x g x =,利用导数研究单调性,进而数形结合列出不等式组求参数范围.【详解】当0x >时,由2e e 0xxx mx m -->,可得2(1)ex x m x +<(0x >),显然当0m ≤时,不等式2(1)ex x m x +<在(0,)+∞恒成立,不合题意;当0m >时,令()(1)f x m x =+,则()f x 在(0,)+∞上单调递增,令2()ex x g x =,则(2)()e xx x g x '-=,故(0,2)上()0g x '>,(2,)+∞上()0g x '<,∴()g x 在(0,2)上递增,在(2,)+∞上递减,又(0)(0)0f m g =>=且x 趋向正无穷时()g x 趋向0,故()240,e g x ⎛⎤∈ ⎥⎝⎦,综上,(),()f x g x 图象如下:由图知:要使()()f x g x <有两个正整数解,则()()()()()()11{2233f g f g f g <<≥,即2312e 43e 94e m m m ⎧<⎪⎪⎪<⎨⎪⎪≥⎪⎩,解得32944e 3e m ≤<.故选:D【点睛】关键点点睛:问题转化为2(1)ex x m x +<(0x >)有且仅有两个正整数解,根据不等式两边的单调性及正整数解个数列不等式组求范围.第Ⅱ卷非选择题(满分90分)二、填空题(每题5分,共20分)13. 1289log 24⎛⎫+= ⎪⎝⎭______ .【答案】116##516【解析】【分析】利用指数幂与对数运算即可求解.【详解】112388893111log 2log 8log 84236⎛⎫+=+=+= ⎪⎝⎭.故答案为:116.14. 曲线123x y x -=+在点()1,2--处的切线方程为________.(用一般式表示)【答案】530x y -+=【解析】【分析】利用导数的几何意义即得.【详解】由123x y x -=+,得22(23)2(1)5(23)(23)x x y x x +--'==++,所以切线的斜率为255(23)k ==-+,所以所求的切线方程为(2)5[(1)]y x --=--,即530x y -+=.故答案为:530x y -+=.15. 已知π4sin 35α⎛⎫+= ⎪⎝⎭,则πsin 26α⎛⎫+= ⎪⎝⎭___________.【答案】725##0.28【解析】分析】利用倍角余弦公式求得2π7cos(2)325α+=-,由诱导公式π2πsin(2cos(263αα+=-+,即可求值.【详解】22ππ167cos(212sin 12332525αα⎛⎫+=-+=-⨯=- ⎪⎝⎭,而πππ2π7sin(2cos(2)cos(2)662325ααα+=-++=-+=.故答案为:72516. 已知函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭(ω>0),若()f x 在20,3π⎡⎤⎢⎥⎣⎦上恰有两个零点,且在,424ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围是________.【答案】510,23⎡⎤⎢⎥⎣⎦【解析】【分析】由()f x 在20,3π⎡⎤⎢⎥⎣⎦上恰有两个零点,令3x k πωπ+=,Z k ∈,可得52338233ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,令22232k x k ππππωπ-+≤+≤+,Z k ∈,可得f (x )在5,66ππωω⎡⎤-⎢⎥⎣⎦上单调递增,从而有5646240ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,联立求解即可得答案.【详解】解:由题意,令3x k πωπ+=,Z k ∈,得x =33k ππω-,Z k ∈,∴f (x )的第2个、第3个正零点分别为53πω,83πω,【∴52338233ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,解得542ω≤<,令22232k x k ππππωπ-+≤+≤+,Z k ∈,∴52266k k x ππππωωωω-+≤≤+,Z k ∈,令k =0,f (x )在5,66ππωω⎡⎤-⎢⎥⎣⎦上单调递增,∴5,,42466ππππωω⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,∴5646240ππωππωω⎧-≤-⎪⎪⎪≥⎨⎪>⎪⎪⎩,解得1003ω<≤,综上,ω的取值范围是51023ω≤≤.故答案为:510,23⎡⎤⎢⎥⎣⎦.三、解答题(共70分)(一)必考题(共60分)17. 在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c,已知sin sin ,2A Ca b A b +==.(1)求角B 的大小;(2)求2a c -的取值范围.【答案】(1)3π(2)()0,6【解析】【分析】(1)结合A C B π+=-,以及诱导公式、二倍角公式、正弦定理化简原式,即得解;(2)利用正弦定理,辅助角公式可化简26a c A π⎛⎫-=-⎪⎝⎭,结合A 的范围即得解【小问1详解】A CB π+=- ,sinsin 2B a b A π-∴=cos sin 2B a b A ∴=sin cos sin sin 2B A B A ∴=cos sin 2sin cos 222B B B B ∴==1sin 22B ∴=,又B 为锐角,263B B ππ∴==【小问2详解】由正弦定理4sin sin sin a b c A B C ====,214sin ,4sin 4sin 4sin 2sin 32a A c C A A A A A π⎫⎛⎫∴===-=+=+⎪ ⎪⎪⎝⎭⎭,128sin 2sin 6sin cos 2a c A A A A A A A ⎫∴-=--=-=-⎪⎪⎭6A π⎛⎫=- ⎪⎝⎭由锐角ABC ,故20,0232A C A πππ<<<=-<故(),sin ,20,6626A A a c πππ⎛⎛⎫<<∴-∈∴-∈ ⎪ ⎝⎭⎝.18. 已知等差数列{}n a 的前n 项和为n S ,2512a a +=,424S S =.(1)求n a 及n S ;(2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-,2n S n =(2)()2111n T n =-+【解析】【分析】(1)设出等差数列的首项和公差,利用等差数列的通项公式、前n 项和公式得到关于首项和公差的方程组求出1a 和d ,进而求出n a 及n S ;(2)利用(1)求出n b ,再利用裂项抵消法进行求和.【小问1详解】设等差数列{}n a 的公差为d ,则11125124344(2)2a d a d a d +=⎧⎪⎨⨯+=+⎪⎩,解得112a d =⎧⎨=⎩,所以()12121n a n n =+-=-,()21212n n n S n n -⨯=⨯+=.【小问2详解】由(1)得:+121n a n =+,21(1)n S n +=+,则()()122221211111n n n n a n b S S n n n n +++===-⋅++,所以123n nT b b b b =+++⋅⋅⋅+()22222222111111122331114n n =-+-+-+⋅⋅-+⋅+()2111n =-+..19. 已知()2ex x a f x -=.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()1f x x ≤-对[)1,x ∞∈+恒成立,求a 的取值范围.【答案】(1)10x y --=(2)1a ≥【解析】【分析】(1)利用导数的几何意义以及直线方程的点斜式即可求解.(2)分离参数a ,转化成不等式恒成立问题,利用导数求最值即可.【小问1详解】当1a =时,()21ex x f x -=,()01f =-,()22(1)ex x x f x --'=,(0)1k f '∴==,所以切线方程为:11(0)y x +=⨯-,即10x y --=.【小问2详解】()1f x x ≤-恒成立,即2(1)e x a x x ≥--在[)1,x ∞∈+上恒成立,设2()(1)e x g x x x =--,()(2e )x g x x '=-,令()0g x '=,得120,ln 2x x ==,在[)1,+∞上,()0g x '<,所以函数2()(1)e x g x x x =--在[)1,+∞上单调递减,所以max ()(1)1g x g ==,max ()a g x ∴≥,故有1a ≥.20. 2022年2月4日北京冬奥运会正式开幕,“冰墩墩”作为冬奥会的吉祥物之一,受到各国运动员的“追捧”,成为新晋“网红”,尤其在我国,广大网友纷纷倡导“一户一墩”,为了了解人们对“冰墩墩”需求量,某电商平台采用预售的方式,预售时间段为2022年2月5日至2022年2月20日,该电商平台统计了2月5日至2月9日的相关数据,这5天的第x 天到该电商平台参与预售的人数y (单位:万人)的数据如下表:日期2月5日2月6日2月7日2月8日2月9日第x 天12345人数y (单位:万人)4556646872(1)依据表中的统计数据,请判断该电商平台的第x 天与到该电商平台参与预售的人数y (单位:万人)是否具有较高的线性相关程度?(参考:若0.300.75r <<,则线性相关程度一般,若0.75r ≥,则线性相关程度较高,计算r 时精确度为0.01)(2)求参与预售人数y 与预售的第x 天的线性回归方程;用样本估计总体,请预测2022年2月20日该电商平台的预售人数(单位:万人).参考数据:()()()55211460, 6.78i i i i i y y x x y y ==-=--=≈∑∑,附:相关系数()()()121ˆˆˆ,n i i i n i i x x y y r b ay bx x x ==--===--∑∑【答案】(1)具有较高的线性相关程度(2)ˆ 6.641.2yx =+,146.8万人【解析】【分析】(1)根据已知数据计算出相关系数r 可得;(2)由已知数据求出回归方程的系数得回归方程,然后在回归方程中令16x =代入计算可得估计值.【小问1详解】由表中数据可得1234545566468723,6155x y ++++++++====,所以()52110i i x x =-=∑又()()()55211460,66i i i i i y y x x y y ==-=--=∑∑所以0.970.75nx x y y r --==≈>所以该电商平台的第x 天与到该电商平台参与预售的人数y (单位:万人)具有较高的线性相关程度即可用线性回归模型拟合人数y 与天数x 之间的关系.【小问2详解】由表中数据可得()()()12166ˆ 6.610ni ii n i i x x y y b x x ==--===-∑∑则ˆˆ61 6.6341.2a y bx=-=-⨯=所以ˆ 6.641.2yx =+令16x =,可得ˆ 6.61641.2146.8y=⨯+=(万人)故预测2022年2月20日该电商平台预售人数146.8万人21. 已知()()2e 2ln x f x x a x x =-+(1)当e a =时,求()f x 的单调性;(2)讨论()f x 的零点个数.【答案】(1)()f x 在()0,1上单调递减,在()1,+∞上单调递增; (2)当0e ≤<a ,0个零点;当e a =或a<0,1个零点;e a >,2个零点【解析】【分析】(1)求出函数的导函数()()e 2e x f x x x x ⎛⎫'=+- ⎪⎝⎭,可得()10f '=,令()e e x g x x x =-,利用导数说明()g x 的单调性,即可求出()f x 的单调区间;(2)依题意可得()()2ln e 2ln 0x x f x a x x +=-+=,令2ln t x x =+,则问题转化为e t at =,R t ∈,利用零点存在定理结合单调性可判断方程的解的个数.【小问1详解】解:因为e a =,0x >,()()2e e 2ln x f x x x x =-+所以()()()()()2e 22e 2e e 12e 2e x x x x f x x x x x x x x x x +⎛⎫⎛⎫'=+-+=+-=+- ⎪ ⎪⎝⎭⎝⎭,()10f '=令()e e xg x x x =-,()()2e 1e 0x g x x x '=++>,所以()g x 在()0,+∞单增,且()10g =,当()0,1∈x 时()e e 0x g x x x =-<,当()1,x ∈+∞时()e e 0x g x x x =->,所以当()0,1∈x 时()0f x ¢<,当()1,x ∈+∞时()0f x ¢>,所以()f x 在()0,1单调递减,在()1,+∞单调递增【小问2详解】解:因为()()()2ln 2ln e e 2ln e 2ln 0x x x x f x a x x a x x +=⋅-+=-+=令2ln t x x =+,易知2ln t x x =+在()0,+∞上单调递增,且R t ∈,故()f x 零点转化为()()2ln e 2ln e 0x x t f x a x x at +=-+=-=即e t at =,R t ∈,的设()e t g t at =-,则()e tg t a '=-,当0a =时,()e tg t =无零点;当a<0时,()e 0t g t a '=->,故()g t 为R 上的增函数,而()010g =>,11e 10a g a ⎛⎫=-< ⎪⎝⎭,故()g t 在R 上有且只有一个零点;当0a >时,若(),ln t a ∈-∞,则()0g t '<;()ln ,t a ∈+∞,则()0g t '>;故()()()min ln 1ln g t g a a a ==-,若e a =,则()min 0g t =,故()g t 在R 上有且只有一个零点;若0e a <<,则()min 0g t >,故()g t 在R 上无零点;若e a >,则()min 0g t <,此时ln 1a >,而()010g =>,()()22ln 2ln 2ln g a a a a a a a =-=-,设()2ln h a a a =-,e a >,则()20a h a a-'=>,故()h a 在()e,+∞上为增函数,故()()e e 20h a h >=->即()2ln 0g a >,故此时()g t 在R 上有且只有两个不同的零点;综上:当0e ≤<a 时,0个零点;当e a =或a<0时,1个零点;e a >时,2个零点;【点睛】思路点睛:导数背景下的零点问题,注意利用零点存在定理结合函数单调性来讨论.(二)选考题(10分)请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22. 已知曲线1C 的参数方程为e e e e t tt t x y --⎧=+⎨=-⎩(t 为参数),以直角坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线2C 的极坐标方程4cos ρθ=.(1)求1C 的极坐标方程;(2)若曲线π(0)6θρ=>与曲线1C 、曲线2C 分别交于两点A ,B ,点(40)P , ,求△PAB 的面积.【答案】(1)24ππ(cos 244ρθθ=-<<(2)【解析】【分析】(1)将1C 的参数方程化为普通方程,再根据极坐标与直角坐标的转化公式即可得答案;(2)联立方程,分别求得点A ,B 的极坐标,根据三角形面积公式即可求得答案.【小问1详解】由e e e et tt t x y --⎧=+⎨=-⎩消去参数t ,得224x y -=,因为e e 2t t -+≥,所以曲线1C 的直角坐标方程为224(2)x y x -=≥,因为cos sin x y ρθρθ=⎧⎨=⎩,所以曲线1C 的极坐标方程为24ππ()cos 244ρθθ=-<< ;【小问2详解】由2π64cos2θρθ⎧=⎪⎪⎨⎪=⎪⎩得:A ρ=所以曲线π(0)6θρ=>与曲线1C 交于点A π)6,由π64cos θρθ⎧=⎪⎨⎪=⎩,得:B ρ=, 所以曲线π(0)6θρ=>与曲线2C :4cos ρθ=交于点B π6,则PAB S =△PA PBS S -△O △O 1π4()sin 26B A ρρ=⨯⨯-=选修4-5:不等式选讲23. 己知函数()221f x x a x a =+++-.(1)当0a =时,求不等式()2f x ≥的解集;(2)若对于任意x ∈R ,都有()2f x ≥,求实数a 的取值范围.【答案】(1)()1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭(2)32a ≤-或1a ≥.【解析】【分析】(1)分0x ≥,102x -≤<,12x <-三种情况打开绝对值,求解即可;(2)打开绝对值,将函数()f x 写成分段函数,结合单调性求解即可【小问1详解】()21f x x x=++当0x ≥时,()312f x x =+≥,解得13x ≥,当102x -≤<时,()12f x x =+≥,解得x ∈∅,当12x <-时,()312f x x =--≥,解得1x ≤-,所以不等式()2f x >的解集为()1,1,3⎡⎫-∞-⋃+∞⎪⎢⎣⎭.【小问2详解】因为222172()12148(0222a a a a a +++++--==>,故212a a +>-所以()2222231,11,2131,2x a a x a a f x x a a x a a x a a x ⎧⎪++-≥⎪+⎪=+++-≤<⎨⎪+⎪---+<-⎪⎩所以函数()f x 在1,2a +⎛⎤-∞- ⎥⎝⎦上递减,在1,2a +⎡⎫-+∞⎪⎢⎣⎭上递增,所以函数()f x 在R 上的最小值为21122a a f a ++⎛⎫-=+ ⎪⎝⎭.所以2122a a ++≥,即223(23)(1)0a a a a +-=+-≥解得32a ≤-或1a ≥。
(安徽皖智1号卷)全国2023届高三数学上学期月考试卷(二)文(含解析)第I 卷 选择题(共60分)一、选择题:本大题共12小题,每题5分,共60分在每题给出的四个选项中,只 有一项为哪一项符合题目要求的.1.设集合U ={-2,-1,0,1,2,3,4},A={一1,0},B={0,1,2,3,4},那么=( )A.{-2,1}B.{-2}C.{-2,0}D.{0,1,2,3,4}2.以下命题中,真命题是( )A .存在x<0,使得2x>1B .对任意x ∈R ,x 2 -x+l>0C . “x>l ”是“x>2”的充分不必要条件D .“P 或q 是假命题”是“非p 为真命题”的必要而不充分条件3. 已知向量|a |=2,| b |=l ,且a 与b 的夹角为争那么a 与a +2b 的夹角为( )A .6πB .3πC .2π D .23π 4.已知倾斜角为θ的直线,与直线x-3y+l=0垂直,那么2223sin -cos θθ=( ) A .103 B .一103 C .1013 D .一1013 5.设a=0.520152,log 2016,sin1830b c -︒==,那么a ,b ,c 的大小关系是( )A. a>b>cB. a >c> bC. b> c > aD. b > a > c6.函数2cos 22y x x x ππ⎛⎫=-≤≤ ⎪⎝⎭的图象是( )7.假设向量m= (-1,4)与n=(2,t)的夹角为钝角,那么函数f (t)=t 2—2t+1的值域是 ( )A .()1,8181,4⎛⎫+∞ ⎪⎝⎭B .1,4⎛⎫+∞ ⎪⎝⎭C. [0,81) (81,+∞)D. [0,+∞)8.在△ABC 中内角A ,B ,C 的对边分别是a ,b, c ,假设3,a b c b a =,3, 那么tanA=( )AB .1 C.3D.9.在边长为2的正三角形ABC 中,2,3BC BD CA CE AD BE ==⋅=,则A .1B .-1C .3D .-310已知12()2cos ,,()2,()0,12f x x x R f x f x πω⎛⎫=+∈== ⎪⎝⎭又且|x 1-x 2|的最小值 是53π,那么正数ω的值为( ) A .310 B .35 C .103 D .5311.假设对∀x ,y 满足x> y>m>0,都有yInx<xlny 恒成立,那么m 的取值范围是( ) A. (0,e) B.(0,e] C. [e,e 2] D.[e, +∞)12.定义在R 上的奇函数f (x)满足f (x+1)=f (一x ),当x ∈(0,1)时, 1211log ||,22()10, 2x x f x x ⎧-≠⎪=⎨⎪=⎩,那么f (x)在区间[1,32]内是( ) A .增函数且f (x )>0 B .增函数且f (x)<oC .减函数且f (x)>0D .减函数且f (x )<0第II 卷 非选择题(共90分)二、填空题:本大题共4小题,每题5分,共20分13.函数1()tan 26f x x πω⎛⎫=- ⎪⎝⎭的最小正周期为 。
湖南师大附中2025届高三月考试卷(二)数学命题人、审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数11i z =+的虚部是( ) A. 1 B. 12 C. 12− D. 1−2. 已知a 是单位向量,向量b 满足3a b −=,则b 的最大值为( ) A. 2 B. 4 C. 3 D. 13. 已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为( ) A. 23− B. 13− C. 23 D. 134. 已知函数()2e 33,0,x a x f x x a x +−<= +≥ 对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x −>−,则实数a 的取值范围为( ) A 34a ≤ B. 34a ≥ C. 1a ≤ D. 1a ≥ 5. 如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD −的体积为83,则圆柱的表面积为().A. 10πB. 9π2C. 4πD. 8π 6. 已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为( )A. 52+B. 5+C. 10+D. 117. 设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x +=−.则()y f x =的图象与直线114y x =−的交点个数为( ) A. 1 B. 2 C. 3 D. 48. 已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠−⋅=−,且()()()()()g x g y f x f y g x y −=−,则下列说法正确的是( )A. ()01f =B. ()f x 是偶函数C. 若()()1112f g +=,则()()2024202420242f g −=− D. 若()()111g f −=,则()()202420242f g += 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 一个样本的方差()()()22221220133320s x x x =−+−++−,则这组样本数据的总和等于60 B. 若样本数据1210,,,x x x 标准差为8,则数据1221,21,x x −− ,1021x −的标准差为16C. 数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D. 若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小10. 已知函数()32f x ax bx =−+,则( ) A. ()f x 的值域为RB. ()f x 图象的对称中心为()0,2的C. 当30b a −>时,()f x 在区间()1,1−内单调递减D. 当0ab >时,()f x 有两个极值点11. 我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是( )A. 函数()sin 1f x x =+是圆22:(1)1O x y +−=的一个太极函数B. 对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C. 对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D. 若函数()()3f x kx kx k =−∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈− 三、填空题:本题共3小题,每小题5分,共15分.12. 曲线2ln y x x =−在点()1,2处的切线与抛物线22y ax ax =−+相切,则a =__________. 13. 已知椭圆CC :xx 2aa 2+yy 2bb 2=1(aa >bb >0)的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c ,则椭圆C 的离心率为______. 14. 设函数()()44x f x ax x x =+>−,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +−=−. (1)求B ;(2)若ABC ,且2AD DC = ,求BD 的最小值.16. 已知双曲线E 的焦点在x (在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.17. 如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B −==P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C?若存在,求出点P ;若不存在,请说明理由.18. 若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3n n n a n b =−=, (i )判断数列{}{},n n a b 是否具有性质P ,并说明理由; (ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由; (2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .19 已知函数()24e 2x f x x x−=−,()2233g x x ax a a =−+−−(a ∈R 且2a <). (1)令()()()(),x f x g x h x ϕ=−是()x ϕ的导函数,判断()h x 的单调性;的.(2)若()()f x g x ≥对任意()1,x ∈+∞恒成立,求a 的取值范围.的。
长郡中学2025届高三月考试卷(二)数学得分__________.本试卷共8页.时量120分钟.满分150分.一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{}(){}2,128tAxx B t t ==∈Z ∣∣ ,则A B = ( )A. []1,3−B. {}0,1C. []0,2D. {}0,1,2【答案】D 【解析】【分析】解绝对值不等式与指数不等式可化简集合,A B ,再利用交集的定义求解即可.【详解】{}{}|2=22A x x xx =≤−≤≤∣, 由指数函数的性质可得(){}{}1280,1,2,3tB t t =≤≤∈=Z ∣,所以{}{}{}220,1,2,30,1,2A B xx ∩−≤≤∩∣. 故选:D.2. 已知复数z 满足i 1z −=,则z 的取值范围是( ) A. []0,1 B. [)0,1C. [)0,2D. []0,2【答案】D 【解析】【分析】利用i 1z −=表示以(0,1)为圆心,1为半径的圆,z 表示圆上的点到原点的距离可得答案. 【详解】因为在复平面内,i 1z −=表示到点(0,1)距离为1的所有复数对应的点, 即i 1z −=表示以(0,1)为圆心,1为半径的圆, z 表示圆上的点到原点的距离,所以最短距离为0,最长距离为112+=,则z 的取值范围是[0,2]. 故选:D3. 已知()2:ln (11)1p f x a x x=+−<< −是奇函数,:1q a =−,则p 是q 成立的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】当p 成立,判断q 是否成立,再由q 成立时,判断p 是否成立,即可知p 是q 成立何种条件.【详解】由()f x 奇函数,则()00f =,即()ln 20a +=,解得1a =−, 所以p q ⇒,当1a =−时,()21ln 1ln 11x f x x x +=−=−−,11x −<<, ()()1111ln ln ln 111x x x f x f x x x x −−++∴−===−=− +−−,所以()f x 是奇函数, 所以p q ⇐, 所以p 是q 的充要条件. 故选:A.4. 若锐角α满足sin cos αα−sin 22πα+=( ) A.35B. 35C. 35 或35D. 45−或45【答案】B 【解析】【分析】先利用辅助角公式求出πsin 4α−,再利用角的变换ππsin 2sin 2π24αα+=−+,结合诱导公式和二倍角公式求解即可.【详解】由题意可得πsin cos 4ααα−=−=πsin 4α−.是因为α是锐角,所以πππ,444α −∈−,πcos 4α −所以πππππsin 2sin 2πsin 22sin cos 24444ααααα+=−+=−−=−−−325=−=−. 故选:B.5. 某大学在校学生中,理科生多于文科生,女生多于男生,则下述关于该大学在校学生的结论中,一定成立的是( )A. 理科男生多于文科女生B. 文科女生多于文科男生C. 理科女生多于文科男生D. 理科女生多于理科男生【答案】C 【解析】【分析】将问题转化不等式问题,利用不等式性质求解. 【详解】根据已知条件设理科女生有1x 人,理科男生有2x 人, 文科女生有1y 人,文科男生有2y 人;根据题意可知1212x x y y +>+,2211x y x y +<+,根据异向不等式可减的性质有()()()()12221211x x x y y y x y +−+>+−+, 即有12x y >,所以理科女生多于文科男生,C 正确.其他选项没有足够证据论证. 故选:C.6. 如图,某车间生产一种圆台形零件,其下底面的直径为4cm ,上底面的直径为8cm ,高为4cm ,已知点P 是上底面圆周上不与直径AB 端点重合的一点,且,AP BP O =为上底面圆的圆心,则OP 与平面ABC所成的角的正切值为( )为A. 2B.12C.D.【答案】A 【解析】【分析】作出直线OP 与平面ABC 所成的角,通过解直角三角形来求得直线OP 与平面ABC 所成的角的正切值.【详解】设O ′为下底面圆的圆心,连接,OO CO ′′和CO , 因为AP BP =,所以AB OP ⊥,又因为,,AB OO OP OO O OP OO ′′⊥=⊂′ 、平面OO P ′,所以AB ⊥平面OO P ′, 因为PC 是该圆台的一条母线,所以,,,O O C P ′四点共面,且//O C OP ′, 又AB ⊂平面ABC ,所以平面ABC ⊥平面POC ,又因为平面ABC 平面POC OC =,所以点P 在平面ABC 的射影在直线OC 上, 则OP 与平面ABC 所成的角即为POC OCO ∠=∠′,过点C 作CD OP ⊥于点D ,因为4cm,2cm OP O C ′==, 所以tan tan 2OO POC OCO O C∠=′′∠==′. 故选:A7. 在平面直角坐标系xOy 中,已知直线1:2l y kx =+与圆22:1C x y +=交于,A B 两点,则AOB 的面积的最大值为( )A. 1B.12C.D.【答案】D 【解析】【分析】求得直线过定点以及圆心到直线的距离的取值范围,得出AOB 的面积的表达式利用三角函数单调性即可得出结论.【详解】根据题意可得直线1:2l y kx =+恒过点10,2E,该点在已知园内, 圆22:1C x y +=的圆心为()0,0C ,半径1r =,作CD l ⊥于点D ,如下图所示:易知圆心C 到直线l 的距离为12CD CE ≤=,所以1cos 2CD DCB CB ∠=≤, 又π0,2DCB∠∈,可得ππ,32DCB∠∈; 因此可得2π2,π3ACB DCB∠=∠∈,所以AOB 的面积为112πsin 11sin 223AOB S CA CB ACB =∠≤×××= 故选:D 8. 设函数()()2ln f x xax b x =++,若()0f x ≥,则a 的最小值为( )A. 2−B. 1−C. 2D. 1【答案】B 【解析】【分析】根据对数函数性质判断ln x 在不同区间的符号,在结合二次函数性质得1x =为该二次函数的一个零点,结合恒成立列不等式求参数最值.【详解】函数()f x 定义域为(0,)+∞,而01ln 0x x <<⇒<,1ln 0x x =⇒=,1ln 0x x >⇒>, 要使()0f x ≥,则二次函数2y x ax b =++,在01x <<上0y <,在1x >上0y >, 所以1x =为该二次函数的一个零点,易得1b a =−−, 则2(1)(1)[(1)]y x ax a x x a =+−+=−++,且开口向上, 所以,只需(1)0101a a a −+≤⇒+≥⇒≥−,故a 的最小值为1−.故选:B二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知2n >,且*n ∈N ,下列关于二项分布与超几何分布的说法中,错误的有( ) A. 若1(,)3X B n ,则()22113E X n ++ B. 若1(,)3X B n ,则()4219D X n += C. 若1(,)3X B n ,则()()11P X P X n ===−D. 当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布 【答案】BC 【解析】【分析】利用二项分布的期望、方差公式及期望、方差的性质计算判断AB ;利用二项分布的概率公式计算判断C ;利用二项分布与超几何分布的关系判断D.【详解】对于A ,由1(,)3X B n ,得()13E X n =,则()22113E X n ++,A 正确; 对于B ,由1(,)3X B n ,得()122339D X n n =×=,则()()82149D X D X n +==,B 错误; 对于C ,由1(,)3X B n ,得11111221(1)C (),(1)C ()3333n n n n n P X P X n −−−==××=−=××,故(1)(1)P X P X n =≠=−,C 错误;对于D ,当样本总数远大于抽取数目时,可以用二项分布近似估计超几何分布,D 正确. 故选:BC10. 已知函数()sin cos (,0)f x x a x x ωωω=+∈>R 的最大值为2,其部分图象如图所示,则( )A. 0a >B. 函数π6f x−为偶函数 C. 满足条件的正实数ω存在且唯一 D. ()f x 是周期函数,且最小正周期为π 【答案】ACD 【解析】【分析】根据题意,求得函数π()2sin(2)3f x x =+,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由函数()sin cos )f x x a x x ωωωϕ=++,且tan a ϕ=,因为函数()f x 的最大值为22=,解得a =,又因为(0)0f a =>,所以a =A 正确; ()πsin 2sin 3f x x x x ωωω ==+因为πππ2sin 1443f ω=+= ,且函数()f x 在π4的附近单调递减,所以ππ5π2π,Z 436k k ω++∈,所以28,Z k k ω=+∈,又因为π24T >,可得π2T >π2>,解得04ω<<,所以2ω=, 此时π()2sin(2)3f x x =+,其最小正周期为πT =,所以C 、D 正确; 设()πππ2sin 22sin 2663F x f x x x=−=−+=,()()2sin[2()]2sin 2F x x x F x −=−=−=−,所以FF (xx )为奇函数,即函数π()6f x −为奇函数,所以B 不正确. 故选:ACD.11. 已知抛物线2:2(0)C y px p =>的焦点为F ,准线交x 轴于点D ,直线l 经过F 且与C 交于,A B 两点,其中点A 在第一象限,线段AF 的中点M 在y 轴上的射影为点N .若MN NF =,则( )A. lB. ABD △是锐角三角形C. 四边形MNDF2 D. 2||BF FA FD ⋅> 【答案】ABD 【解析】【分析】根据题意分析可知MNF 为等边三角形,即可得直线l 的倾斜角和斜率,进而判断A ;可知直线l 的方程,联立方程求点,A B 的坐标,求相应长度,结合长度判断BD ;根据面积关系判断C.【详解】由题意可知:抛物线的焦点为,02p F,准线为2px =−,即,02p D −,设()()112212,,,,0,0A x y B x y y y ><, 则111,,0,2422x y y p M N+,可得, 因为MN NF =,即MN NF MF ==,可知MNF 为等边三角形,即60NMF ∠=°,且MN ∥x 轴,可知直线l 的倾斜角为60°,斜率为tan 60k =°=,故A 正确;则直线:2p l y x =− ,联立方程222p yx y px=− =,解得32p x y ==或6p x y p= =,即32p A,,6p B p,则,M p p N p,可得28,,,2,,33DFp AD p BDp FA p FB p AB p ======,在ABD △中,BD AD AB <<,且2220BD AD AB +−<, 可知ADB ∠为最大角,且为锐角,所以ABD △是锐角三角形,故B 正确;四边形MNDF 的面积为21122MNDF BDF MNF S S S p p p p p =+=×+×=△△,故C 错误; 因为224,3FB FA p FD p ⋅==,所以2||BF FA FD ⋅>,故D 正确; 故选:ABD.【点睛】方法点睛:有关圆锥曲线弦长、面积问题的求解方法(1)涉及弦长的问题中,应熟练地利用根与系数的关系、设而不求计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解; (2)面积问题常采用12S =× 底×高,其中底往往是弦长,而高用点到直线距离求解即可,选择底很重要,选择容易坐标化的弦长为底.有时根据所研究三角形的位置,灵活选择其面积表达形式,若求多边形的面积问题,常转化为三角形的面积后进行求解;(3)在求解有关直线与圆锥曲线的问题时,应注意数形结合、分类与整合、转化与化归及函数与方程思想的应用.三、填空题(本大题共3小题,每小题5分,共15分.) 12. 在ABC 中,AD 是边BC 上的高,若()()1,3,6,3AB BC==,则AD =______.【解析】【分析】设()6,3BD mBC m m == ,表达出()61,33AD m m =++ ,根据垂直关系得到方程,求出13m =−,进而得到答案.【详解】设()6,3BD mBC m m == ,则()()()1,36,361,33AD AB BD m m m m =+=+=++,由0AD BC = 得6(61)3(33)366990AD BC m m m m =+++=+++=,解得13m =−,故()()12,311,2AD =−−=− ,所以||AD ..13. 已知定义在RR 上的函数()f x 满足()()23e xf x f x =−+,则曲线yy =ff (xx )在点()()0,0f 处的切线方程为_____________. 【答案】3y x =+ 【解析】【分析】利用方程组法求出函数解析式,然后利用导数求切线斜率,由点斜式可得切线方程. 【详解】因为()()23e xf x f x =−+,所以()()23e x f x f x −−=+,联立可解得()=e 2e xx f x −+,所以()03f =,所以()()e2e ,01xx f x f −=′−+=′. 所以曲线()y f x =在点()()0,0f 处的切线方程为3y x −=, 故所求的切线方程为3y x . 故答案为:3y x .14. 小澄玩一个游戏:一开始她在2个盒子,A B 中分别放入3颗糖,然后在游戏的每一轮她投掷一个质地均匀的骰子,如果结果小于3她就将B 中的1颗糖放入A 中,否则将A 中的1颗糖放入B 中,直到无法继续游戏.那么游戏结束时B 中没有糖的概率是__________. 【答案】117【解析】【分析】设最初在A 中有k 颗糖,B 中有6k −颗糖时,游戏结束时B 中没有糖的概率为()0,1,,6k a k = ,归纳找出递推关系,利用方程得出0a ,再由递推关系求3a .【详解】设A 中有k 颗糖,B 中有6k −颗糖,游戏结束时B 中没有糖的概率为()0,1,,6k a k = . 显然0113a a =,()65112112,153333k k k a a a a a k +−=+=+≤≤,可得()112k k k k a a a a +−−=−,则()566510022a a a a a −=−=,()65626765040010002222221a a a a a a a a a a ∴=+=++=+++=− ,同理()256510002221a a a a a =+++=− ,()()760021212133a a ∴−=−+,解得011385255a ==× ()430112115.25517a a ∴=−=×=故答案为:117【点睛】关键点点睛:本题的关键在于建立统一的一个6颗糖果放入2个盒子不同情况的模型,找到统一的递推关系,利用递推关系建立方程求出0a ,即可得出这一统一模型的答案.四、解答题(本大题共5小题,共77分,解签应写出文字说明、证明过程或演算步骤.) 15. 已知数列{}n a 中,11a =,且0,n n a S ≠为数列{}n a 的前nn a =.(1)求数列{}n a 的通项公式;(2)若1(1)n n n n n c a a +−=,求数列{}n c 的前n 项和. 【答案】(1)21na n =− (2)421,42n n n n T n n n − += + − + ,为偶数为奇数 【解析】【分析】(1)1={aa nn }的通项公式; (2) 求出(1)1142121n n c n n − =+ −+,再讨论n 为奇、偶数,利用裂项相消法即可求数列{}n c 的前n 项和. 【小问1详解】 根据题意知1,2n n n a S S n −=−≥0n a +≠=②,1,2n =≥,所以可得1=为首项,1为公差的等差数列,11n n =+−=,所以2n S n =,121,2n n n a n S S n −−==−≥,当1n =时11a =也满足该式,所以21na n =−. 【小问2详解】由(1)结论可知21n a n =−,所以()()1(1)(1)(1)11212142121n n n n n n n n c a a n n n n +−−− ===+ −+−+, 设{}n c 的前n 项和为n T ,则当n 为偶数时,111111111111433557212142142n n T n n n n =−+++−++++=−+=− −+++则当n 为奇数时,1111111111111433557212142142n n T n n n n + =−+++−++−+=−−=− −+++所以421,42n n n n T n n n − += + − + ,为偶数为奇数.16. 如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形CDEF 均为等腰梯形,AB∥,CD EF ∥,224CD CD AB EF ===,AD DE AE ===.(1)证明:平面ABCD ⊥平面CDEF ;(2)若M 为线段CD 1=,求二面角A EM B −−的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)通过勾股定理及全等得出线线垂直,应用线面垂直判定定理得出OE ⊥平面ABCD ,由OE ⊂平面CDEF 进而得出面面垂直;(2)由面面垂直建立空间直角坐标系,分别求出法向量再应用向量夹角公式计算二面角余弦值.【小问1详解】证明:在平面CDEF 内,过E 做EO 垂直于CD 交CD 于点O ,由CDEF 为等腰梯形,且24CD EF ==,则1,DO =又OE =,所以2OE ,连接AO ,由ADO EDO ≅ ,可知AO CD ⊥且2AO =,所以在三角形OAE 中,222AE OE OA =+,从而OE OA ⊥,又,,,OE CD OA CD O OA CD ⊥∩=⊂平面ABCD ,,所以OE ⊥平面ABCD , 又OE ⊂平面CDEF ,所以平面ABCD ⊥平面CDEF【小问2详解】由(1)知,,,OE OC OA 两两垂直,以O 为坐标原点,建立如图所示的空间直角坐标系,则()()()()0,0,2,2,0,0,0,2,0,0,2,2A E M B ,()()()2,0,2,2,2,0,0,0,2AE EM MB =−=−= ,设平面AEM 的一个法向量为(),,n x y z =, 则00n AE n EM ⋅= ⋅=,即220220x z x y −= −+= , 取1z =,则()1,1,1n = ,设平面BEM 的一个法向量为()111,,m x y z =, 则00m MB m EM ⋅= ⋅=,即11120220z x y = −+= , 取11y =,则()1,1,0m = ,所以cos,m nm nm n⋅==⋅由图可以看出二面角A EM B−−为锐角,故二面角A EM B−−.17. 已知函数2()e2,Rxf x ax a=−∈.(1)求函数()f x的单调区间;(2)若对于任意的0x>,都有()1f x≥恒成立,求a的取值范围.【答案】(1)答案见解析(2)(],1−∞【解析】【分析】(1)对2()e2xf x ax=−求导,可得2()2e2xf x a′=−,再分类讨论a的取值,得出导数的正负即可得出单调区间;(2)对a进行分类讨论,根据导数正负求得()f x的最小值,判断是否满足()1f x≥,即可求解.【小问1详解】对2()e2xf x ax=−求导,可得2()2e2xf x a′=−,令()0f x′=,即22e20x a−=,即2e x a=,当0a≤时,ff′(xx)>0恒成立,()f x在R上单调递增;当0a>时,21e,2ln,ln2x a x a x a===,当1ln2x a<时,()()0,f x f x′<在1,ln2a∞−上单调递减;当1ln2x a>时,ff′(xx)>0,()f x在1ln,2a∞+上单调递增;综上,当0a≤时,()f x单调递增区间为R;当0a>时,()f x的单调递减区间为1,ln2a∞−,单调递增区间为1ln,2a∞+.【小问2详解】因为对于任意的0x>,都有()1f x≥恒成立,的的对2()e 2x f x ax =−求导,可得2()2e 2x f x a ′=−,令()0f x ′=,即22e 20x a −=,即2e x a =,①当0a ≤时,ff ′(xx )>0,则()f x 在(0,+∞)单调递增,()()01f x f >=,符合题意; ②当01a <≤时,2e x a =,则1ln 02x a ≤, 则()0f x ′>,()f x 在(0,+∞)单调递增,()()01f x f >=,符合题意; ③当1a >时,2e x a =,则1ln 02xa >, 当10,ln 2x a∈ 时,()0f x ′<,则()f x 在10,ln 2a单调递减, 当1ln ,2x a ∞ ∈+ 时,()0f x ′>,则()f x 在1ln ,2a ∞ +单调递增, 所以()ln 11ln e 2ln ln 22a f x f a a a a a a ≥=−⋅=−, 令()ln ,1g a a a a a =−>,则()ln 0g a a ′=−<, 所以()g a 在(1,+∞)上单调递减,所以()()11g a g <=,不合题意; 综上所述,(],1a ∞∈−.18. 已知双曲线()2222:10,0x y E a b a b−=>>的左、右焦点分别为12,,F F E 的一条渐近线方程为y =,过1F 且与x 轴垂直的直线与E 交于P ,Q 两点,且2PQF 的周长为16.(1)求E 的方程;(2),A B 为双曲线E 右支上两个不同的点,线段AB 的中垂线过点()0,4C ,求ACB ∠的取值范围.【答案】(1)22:13y E x −=; (2)2π0,3. 【解析】 【分析】(1)将x c =−代入曲线E 得2b y a =±,故得211b PF QF a==,从而结合双曲线定义以及题意得24416b a b a a = +=,解出,a b 即可得解. (2)设:AB y kx m =+,联立双曲线方程求得中点坐标,再结合弦长公式求得ACM ∠的正切值,进而得ACM ∠范围,从而由2ACB ACM ∠=∠即可得解.【小问1详解】将x c =−代入2222:1(0,0)x y E a b a b −=>>,得2b y a=±, 所以211b PF QF a==,所以2222b PF QF a a ==+,所以由题得24416b a b a a= +=,1a b = ⇒ = 所以双曲线E 的方程为22:13y E x −=. 【小问2详解】由题意可知直线AB斜率存在且k ≠,设:AB y kx m =+,AA (xx 1,yy 1),BB (xx 2,yy 2),设AB 的中点为M . 由2233y kx m x y =+ −=消去y 并整理得222(3)230k x kmx m −−−−=,230k −≠, 则22222(2)4(3)(3)12(3)0km k m m k ∆=+−+=+−>,即223m k >−, 12223km x x k+=−,212233m x x k +=−−,12122226()2233km m y y k x x m k m k k +=++=⋅+=−−,于是M 点为2(3km k −,23)3m k −,2223431243M C MC M m y y m k k k km x kmx k −−−+−===−. 由中垂线知1A MC B k k ⋅=−,所以231241m k km k−+=−,解得:23m k =−. 所以由,A B 在双曲线的右支上可得:22221220333033m m x x m k k k m+−<+=−=>⇒⇒=−>−, 且12222003km x x k k k+>⇒>−, 且()()()()()22222222Δ43390333403m k k k k k k =−+>⇒−+−=−−>⇒<或24k >, 综上24k >即2k >,又CM =, 所以tan AM ACM CM ∠===因为24k >,所以213m k =−<−,故2333k 0−−<<(, 所以π0,3ACM∠∈. 所以2π20,3ACB ACM∠=∠∈ . 19. 对于集合,A B ,定义运算符“Δ”:Δ{,A B x x A x B =∈∈∣两式恰有一式成立},A 表示集合A 中元素的个数.(1)设][1,1,0,2A B =−= ,求ΔA B ;(2)对于有限集,,A B C ,证明ΔΔΔA B B C A C +≥,并求出固定,A C 后使该式取等号的B 的数量;(用含,A C 的式子表示)(3)若有限集,,A B C 满足ΔΔΔA B B C A C +=,则称有序三元组(),,A B C 为“联合对”,定义{}*1,2,,,I n n ∈N ,(){},,,,u A B C A B C I ⊆∣. ①设m I ∈,求满足ΔA C m =的“联合对”(),,A B C u ⊆的数量;(用含m 的式子表示) ②根据(2)及(3)①的结果,求u 中“联合对”的数量.【答案】(1)[1,0)(1,2]−∪(2)||2A C ∆(3)①C 2m n m n +⋅②6n【解析】【分析】(1)根据新定义,对区间逐一分析即可得解;(2)利用韦恩图及新定义,求出不等式等号成立的条件,利用集合的性质转化为求子集个数; (3)①分别求出(),A C ,B 取法的种数,再由分步乘法计数原理得解②结合(2)及(3)①的结果,利用二项式定理求解.【小问1详解】对于,,[1),0x x A x B −∈∈∉,故x A B ∈∆;对于,,[0,1]x x A x B ∈∈∈,故x A B ∉∆;对于,,(1,2]x x A x B ∉∈∈,故x A B ∈∆;对于,,[1],2x x A x B ∉−∉∉,故x A B ∉∆,即[10)(12],,A B −∆ .【小问2详解】画出Venn 图,如图,将A B C 划分成7个集合17,,S S ,则14562547||||||||||,||||||||||A B S S S S B C S S S S ∆=+++∆=+++,1267||||||||||A C S S S S ∆=+++,故45||||||2||2||0A B B C A C S S ∆+∆−∆=+≥不等式成立,当且仅当45S S ==∅时取等号, 4S =∅等价于()A C B ∩⊆,5S =∅等价于()B A C ⊆∪,故当且仅当()()A C B A C ∩⊆⊆∪取等号. 设()B A C D =∩∪,其中集合D 与A C 无交集,由于()\()A C A C A C ∆= ,故有()()\ΔD A C A C A C ∅⊆⊆∪∩=,即D 为A C ∆的某一子集,有||2A C ∆种,从而使上式取等的B 有||2A C ∆个.【小问3详解】①设X A C u =∆⊆,有||X m =,故X 有C m n 种取法,对于每一个x ,知X 中每一个元素x 有两种情形:,x A x C ∈∉或,x A x C ∉∈,且/I X 中每一个元素x 有两种情形:,x A x C ∈∉或,x A x C ∉∈,故,x I x ∀∈共有两种选择,也就是这样的(),A C 有||22I n =种,对于每一个(),A C ,由(2)知B 有||22A C m ∆=种取法.故由乘法原理,这样的“联合对(),,A B C 有C 2m n m n +⋅个.②由①知,u 中“联合对”的数量为()00C 22C 212216n n n m n m n m m n m n n nnm m +−===⋅=+=∑∑(二项式定理), 故u 中“联合对”(),,A B C 的数量为6n .【点睛】关键点点睛:集合新定义问题的关键在于理解所给新定义,会抽象的利用集合的知识,分步乘法计数原理,二项式定理推理运算,此类问题难度大.。
深圳外国语学校2024-2025学年度高三第一学期第二次月考数学试题试卷共4页,卷面满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,则( )A.B.C.D.2.已知命题,则命题的否定为( )A. B.C. D.3.设函数在区间上单调递减,则实数的取值范围是( )A. B. C.D.4.函数的图象大致为()A. B.C. D.5.设正实数满足,则当取得最小值时,的最大值为( )A.1B.2C.3D.46.已知函数的定义域为是偶函数,是奇函数,则的值为{{},21x A xy B y y ====+∣∣A B ⋂=(]1,2(]0,1[]1,2[]0,2:1,1p x x ∀>>p 1,1x x ∀><1,1x x ∀≤>1,1x x ∃>≤1,1x x ∃≤≤()()3x x a f x -=30,2⎛⎫⎪⎝⎭a (),1∞--[)3,0-(]0,1[)3,∞+()1cos ex x xf x -=a b c 、、2240a ab b c -+-=c ab 236a b c+-()f x (),e xy f x =+R ()3e xy f x =-()ln3f( )A.B.3C.D.7.已知三倍角公式,则的值所在的区间是( )A. B. C. D.8.已知函数,若对于任意的实数与至少有一个为正数,则实数的取值范围是( )A.B.C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是()A.若函数定义域为,则函数的定义域为B.若定义域为的函数值域为,则函数的值域为C.函数与的图象关于直线对称D.成立的一个必要条件是10.若,则下列不等式一定成立的是( )A. B.C. D.11.已知定义在上的偶函数和奇函数满足,则( )A.的图象关于点对称B.是以8为周期的周期函数C.D.三、填空题:本题共3小题,每小题5分,共15分.731031133sin33sin 4sin ααα=-sin10 11,43⎛⎫⎪⎝⎭11,54⎛⎫ ⎪⎝⎭11,65⎛⎫ ⎪⎝⎭11,76⎛⎫ ⎪⎝⎭()()()22241,f x mx m x g x mx =--+=(),x f x ()g x m ()0,2()0,8[)2,8(),0∞-()f x []1,3()21f x +[]0,1R ()f x []1,5()21f x +[]0,215xy ⎛⎫= ⎪⎝⎭5log y x =-y x =a b >1a b ->log 1a b >a b <1ab a b+>+11a b a b ->-11a b a b+<+R ()f x ()g x ()()21f x g x ++-=()f x ()2,1()f x ()()8g x g x +=20241(42)2025k f k =-=∑12.已知函数,则__________.13.已知函数且,若函数的值域是,则实数的取值范围是__________.14.若,则的最大值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设函数(1)求曲线在点处的切线方程;(2)设,若函数有三个不同零点,求c 的取值范围.16.(本小题满分15分)记的角的对边分别为,已知.(1)求;(2)若点是边上一点,且,求的值.17.(本小题满分15分)如图,四棱锥中,底面是边长为2的菱形,,已知为棱的中点,在底面的投影为线段的中点,是棱上一点.(1)若,求证:平面;(2)若,确定点的位置,并求二面角的余弦值.18.(本小题满分17分)已知函数.(1)函数与的图像关于对称,求的解析式;()cos2f x x =066lim x f x f xππ∆→⎛⎫⎛⎫+∆-⎪ ⎪⎝⎭⎝⎭=∆()223,2(06log ,2a x x x f x a x x ⎧-++≤=>⎨+>⎩1)a ≠()f x (],4∞-a ()e 1xa xb ≥++()1a b +()32.f x x ax bx c =+++().y f x =()()0,0f 4a b ==()f x ABC V ,,A B C ,,a b c sin sin sin A B Cb c a b-=++A D BC ,2AB AD CD BD ⊥=sin ADB ∠P ABCD -ABCD π3ABC ∠=E AD P H EC M PC 2CM MP =PE ∥MBD ,PB EM PC EC ⊥=M B EM C --()()()2ln 1cos 2g x x x =--+--()f x ()g x 1x =-()f x(2)在定义域内恒成立,求a 的值;(3)求证:,.19.(本小题满分17分)设集合,其中.若集合的任意两个不同的非空子集,都满足集合的所有元素之和与集合的元素之和不相等,则称集合具有性质.(1)试分别判断在集合与是否具有性质P ,不必说明理由;(2)已知集合具有性质P .①记,求证:对于任意正整数,都有;②令,,求证:;(3)在(2)的条件下,求的最大值.()1f x ax -≤2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑*n ∈N {}()12,,,3n S a a a n =≥ *,1,2,,i a i n ∈=N S A B 、A B S P {}11,2,3,4S ={}21,2,4,8S ={}12,,,n S a a a = 121kik i aa a a ==+++∑L k n ≤121kk i i a =≥-∑12i i i d a -=-1kk ii D d==∑0k D ≥12111na a a +++深圳外国语学校2025届高三第二次月考数学答案一、选择题:题号1234567891011答案ACDADDCBACBDABC二、填空题12. 13.14.三、解答题15.解:(1)由,得.因为,,所以曲线在点处的切线方程为.(2)当时,,所以.令,得,解得或.与在区间上的情况如下:所以,当且时,⎫⎪⎪⎭e2()32f x x ax bx c =+++()232f x x ax b =++'()0f c =()0f b '=()y f x =()()0,0f y bx c =+4a b ==()3244f x x x x c =+++()2384f x x x =++'()0f x '=23840x x ++=2x =-23x =-()f x ()f x '(),-∞+∞x(),2-∞-2-22,3⎛⎫-- ⎪⎝⎭23-2,3⎛⎫-+∞ ⎪⎝⎭()f x '+0-0+()f x Zc]3227c -Z0c >32027c -<存在,,,使得.由的单调性知,当且仅当时,函数有三个不同零点.16.(1)由及正弦定理得,整理得,所以由余弦定理得:因为,所以.(2),记,则.在中,.①在中,由正弦定理得.②由①②及得,解得.由,解得.17.(1)设,因为底面是边长为2的菱形,所以,对角线BD 平分,又为棱的中点,所以,在中,根据角平分线性质定理得,又,所以,所以,,平面,且平面平面.()14,2x ∈--222,3x ⎛⎫∈--⎪⎝⎭32,03x ⎛⎫∈- ⎪⎝⎭()()()1230f x f x f x ===()f x 320,27c ⎛⎫∈ ⎪⎝⎭()3244f x x x x c =+++sin sin sin A B C b c a b -=++a b cb c a b-=++222a b c bc =++2221cos ,22b c a A bc +-==-()0,πA ∈2π3A =π6DAC BAC BAD ∠=∠-∠=ADB α∠=π6C DAC αα∠=-∠=-Rt ABD V cos AD BD α=ADC V ππsinsin 66AD CDα=⎛⎫- ⎪⎝⎭2CD BD =cos 2ππsin sin 66αα=⎛⎫- ⎪⎝⎭4=tan α=22πtan cos 1,0,2αααα⎛⎫=+=∈ ⎪⎝⎭sin α=sin ADB ∠=BD CE N ⋂=ABCD CD AB =ADC ∠E AD 2CD AB DE ==ADC V 2CN CDNE DE==2CM MP =2CM MP =2CN CMNE MP==MN ∴∥PE PE ⊄MBD MN ⊂,MBD PE ∴∥MBD(2)平面,且平面,,因为,所以,在中,,,所以是等边三角形,又为棱的中点,所以,平面,平面,所以平面平面,又平面平面,平面ABCD ,平面,又平面,,又,平面,平面,且平面,.因为P 在底面的投影H 为线段的中点,所以,又所以为等边三角形,故为中点,所以在底面上的投影为的中点.在中,,,以为原点,分别以为轴,以过点且与平面垂直的直线为轴建立空间直角坐标系,所以,,设是平面的一个法向量,则,令,则,即,平面,是平面的一个法向量,PH ⊥ ABCD BC ⊂ABCD PHBC ∴⊥π3ABC∠=2π3BCD ∠=ACD V CD AB =π3ABC ∠=ACD V E AD BC CE ⊥PH ⊥ ABCD PH⊂PCE PCE ⊥ABCD PCE ⋂ABCD =CE BC ⊂BC ∴⊥PEC EM ⊂PEC BC EM ∴⊥PB EM ⊥ ,,PB BC B PB BC ⋂=⊂PBC EM ∴⊥PBC PC ⊂PBC EM PC ∴⊥EC PC PE =PC CE =PCE V MPC M ABCD CH CDE V CE ===3,2CEAD PH ⊥== C ,CB CE ,x y C ABCD z ()()()30,0,0,2,0,0,,4C B E M ⎛⎫⎪ ⎪⎝⎭()32,,4EB ME ⎛⎫∴==- ⎪ ⎪⎝⎭(),,n x y z = EBM 0203004n EB x n ME y z ⎧⋅=⇒=⎪⎨⋅=⇒-=⎪⎩ 2y =x z ==2,n =BC ⊥ PEC ()2,0,0CB ∴=PEC因为二面角是一个锐角,所以二面角18.(1)依题意,设图像上任意一点坐标为,则其关于对称的点在图像上,则,则,故,;(2)令,,则在在恒成立,又,且在上是连续函数,则为的一个极大值点,,,下证当时,在恒成立,令,,当,,在上单调递增,当,,在上单调递减,故,在上恒成立,又,则时,恒成立,综上,.(3)由(2)可知:,则,即,则,又由(2)可知:在上恒成立,则在上恒成立且当且仅当时取等,令,,则,cos ,n CB n CB n CB⋅∴===⋅B EMC --B EM C --()f x ()00,x y 1x =-()002,x y --()g x 000()(2)y f x g x ==--0000()(2)2ln(1)cos f x g x x x =--=++0(1)x >-()()2ln 1cos f x x x =++()1x >-()()()12ln 1cos 1h x f x ax x x ax =--=++--()1x >-()0h x ≤(1,)x ∈-+∞()00h =()h x (1,)x ∈-+∞0x =()h x 2()sin 1h x x a x '=--+(0)202h a a '=-=⇒=2a =()0h x ≤(1,)x ∈-+∞()ln(1)x x x ϕ=+-1()111x x x x ϕ'=-=-++()1,0x ∈-()0x ϕ'>()x ϕ()1,0-(0,)x ∈+∞()0x ϕ'<()x ϕ()0,∞+()()00x ϕϕ≤=()ln 1x x ≤+(1,)-+∞cos 1x ≤2a =()()()()12ln 1cos 10h x f x ax x x x ⎡⎤=--=+-+-⎦≤⎣2a =()12f x x -≤11111222f k k ⎛⎫⎛⎫--≤-⎪ ⎪⎝⎭⎝⎭1122f k k⎛⎫-≤ ⎪⎝⎭211111122122nk n f k n n n =+⎛⎫⎛⎫-≤+++ ⎪ ⎪++⎝⎭⎝⎭∑ ()ln 1x x ≤+()1,-+∞ln 1x x ≤-()0,∞+1x =(0,1)1nx n =∈+*N n ∈1ln1111n n n n n -<-=+++即,则,综上,,即证19.(1)对于集合,因为,故集合的元素和相等,故不具有性质.对于,其共有15个非空子集:,,各集合的和分别为:,,它们彼此相异,故具有性质.(2)①因为具有性质,故对于任意的,也具有性质,否则有两个非空子集,它们的元素和相等,而也是的子集,故不具有性质,矛盾.注意到共有个非空子集,每个子集的元素和相异,且子集的和最大为,最小为,故.②因为,故,由①可得,故.(3)不妨设,设,则,由(2)可得,且.而11ln ln ln(1)ln 11n n n n n n n +<-==+-++111ln(1)ln ln(2)ln(1)ln(2)ln(21)122n n n n n n n n n+++<+-++-+++--++ ln(2)ln ln 2n n =-=21112ln 2ln 42nk n f k =+⎛⎫-<= ⎪⎝⎭∑{}11,2,3,4S =1423+=+{}{}1,4,2,31S P {}21,2,4,8S ={}{}{}{}{}{}{}{}{}{}8,,,,,,1,2481,21,41,82,42,,,84,{}{}{}{}{}1,2,41,2,81,4,82,4,81,2,4,8,,,,59610121,2,4,8,3,,,,,7,11,13,14,152S P {}12,,,n a a a P k {}12,,,k a a a P {}12,,,k a a a ,A B ,A B {}12,,,n a a a {}12,,,n a a a P {}12,,,k a a a 21k -12k a a a +++ 1a 1221kk a a a +++≥- 12i i i d a -=-()112122k k k D a a a -=+++-+++ ()1221k k a aa =+++-- ()12210kk a a a +++--> 0k D ≥12n a a a <<< 1121112122111112112222n n n n n n a a a a a a a a a ---⎛⎫+++-+++=+++ ⎪--⎝⎭- 112i i ic a -=10i i c c +->12i i i d a -=-10kk ii D d==≥∑112112211222122n n n n n n a a a c d c d c d a a a ---+++=+++-- ()()()112213321n n n c D c D D c D D c D D -=+-+-++-,故,当且仅当时等号成立,即此时任意的正整数,即故此时时等号成立,故的最大值为.()()()121232110n n n n n c c D c c D c c D c D --=-+-++-+≥ 111211*********n n n a a a --+++≤+++=- 120n D D D ==== k 1221kk a a a ++=-1111,222kk k k a a --==-=12k k a -=12111n a a a +++ 1122n --。
阳信二中质量检测文科数学试题一、选择题:(本大题共12小题,每小题5分,满分60分.)1、设全集I 是实数集R ,{}24M x x =>与{}13N x x =<≤都是I 的子集(如图所示),则阴影部分所表示的集合为( )A .{}2x x < B .{}21x x -≤< C .{}22x x -≤≤ D .{}12x x <≤2、曲线x x y 2212-=在点(1 ,23-)处切线的倾斜角为( ) A .1 B .︒45 C .︒-45 D .︒1353、定义在R 上的函数()f x 满足下列各条件,不能得出函数()f x 的具有周期性的是A .()(2)2009f x f x +=B ()(4)f x f x =-C .(1)()(2)f x f x f x +=++ D.()f x 为奇函数且()(2)f x f x =-4、设函数则不等式的解集是 ( )A BC D5、设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则122009x x x ⋅⋅⋅的值为 A 12009 B 12010 C 20092010 D. 16.函数131)(23+++=x ax ax x f 有极值的充要条件是( )A .1a ≥或0a ≤B .1a >或0a <C .1a ≥或0a <D .10<<a7、集合A 是集合1{1,0,,1,2,3}2M =-的子集,且,x A ∀∈都有1,A x ∈则集合A 的个数有A .2个B 3个C .6个 D. 7个8、下列函数中不是奇函数的是⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f )1()(f x f >),3()1,3(+∞⋃-),2()1,3(+∞⋃-),3()1,1(+∞⋃-)3,1()3,(⋃--∞1.()lg 1x A f x x +=-21.()21x x B f x -=+.())C f x x = 11.()()212x D f x x =+-9、函数的零点所在的区间为( )w. .A .(-1,0)B .(0,1)C .(1,2)D .(1,e ) 10、已知123(),(),()log ,x a a f x a f x x f x x ===(其中0,1)a a >≠在同一坐标系中画出其中两个函数在第一象限内的函数部分图象,其中正确的是( )11、若2()8f x x kx =---在[5,10]上不是单调函数,则 ( ).A .10k ≥B .10k ≥-或20k ≤-C .20k ≤-D .2010k -<<-12、设函数()y f x =在(,)-∞+∞内有定义,对于给定的常数k ,定义函数(),(),()k f x f x k f k f x k ≤⎧=⎨>⎩,取函数()sin f x x =,恒有()()k f x f x =,则A .k 有最大值1B .k 有最小值1C .k 有最大值1-D .k 有最小值1-x x x f ln )(+=第Ⅱ卷(共90分二、填空题:本大题共4小题,每小题4分,共16分.13、已知,,(0,1)a b c∈且123113{2,,log}{,,}242a b c=-,则_______b=14、函数22()lg[(1)(1)6]f x a x a x=-+-+的定义域为(2,1)-,则_______a=15、函数1()1xf xx+=-的单调减区间是____________16、已知函数3()sin,F x x x b=++若(2)3F=,求(2)F-。
解答如下:332sin23,-2sin-2(2),bb F++=++=-①()()②①+②得(2)23F b-=-。
请借鉴以上题的特点和解答过程,自编一道类似的题目,不用解答。
已知函数_________________________若____________,求____________ 三、解答题:本大题共6小题,共74分.17、若2()lg(1)f x x ax=++的定义域为R,(1)求实数a的取值范围构成的集合A(2)若B={}|121x m x m+≤≤-且B A⊆,求实数m的范围。
18、列出你对函数()()af x x a Rx=+∈的认识,(提示:从函数的定义域、奇偶性、单调性、值域、图像等多个方面,有理有分)19、已知函数21 ()21xxf x-=+(1)判断()f x的奇偶性并给出证明(2)若()2xf x k=⋅有两个不同的实数根,求k的取值范围。
20、设a为实数,3()3f x x x a=-++(1)求()f x的极值.(2)当a为何值时,()0f x=恰有两个实根.21、已知21()(1)2x f x e a x =-+(1)求()f x 在0x =处的切线方程.(2)若()f x 在区间(0,2]x ∈为增函数,求a 的取值范围。
22、已知函数2()|23|f x x x =--. (1)作出()f x 的图像。
(2)求k 的取值范围,使方程()f x k =总有两个不同的解;(3)若方程()f x k =有四个不同的根,且这四个根成等差数列,求实数k 的值.文科数学参考答案1.D2.D3.选B ,为对称性,D 中()(2)(2)4f x f x f x T =-=--∴=4.选A 。
2(1)3,46331f x x x x =-+>>≤<由得或0,由633x x +>>>-得0 5.选B ,切线方程(1),1n ny n x n x n =+-=+,6.选B ,2'()210f x ax ax =++=有两解0∴∆> 7.选D ,1111{1},{1},{2,},{1,1},{1,2,},{1,2,},{1,1,2,}2222A =---- 8.D 为偶函数9.B10.选C 。
A 中是一个指数函数与一个幂函数图像,从指数函数看a>1而从幂函数上看a<1B 中是一个指数函数与一个幂函数图像,从指数函数看a<1而从幂函数上看a>1 D 中是一个对数函数与一个幂函数图像,从对数函数看a>1而从幂函数上看a<1[11. ()f x 的增区间为(,)2k -∞-,减区间为(,)2k -+∞,故5102k <-<选D12.k f 就是取()f x 与k 两个中小的那个值,()sin f x x =有最大值1,恒有()()k f x f x =说明sin ,1k x k ≥∴≥13. 由,,(0,1)a b c ∈得11223121,01,log 0,4a b c b ><<<∴= 得116b =14.2a =-15. (,1)(1,)-∞+∞和16. 已知()()f x g x 与都是奇函数且函数()()(),F x f x g x b =++若()3F t =,求()F t -。
(若()()f x g x 与都是具体函数只得2分,有创新者得4分)17.(1){|11}A a a =-<<(2)当B =∅时,2m >,当B ≠∅时221111m m m ≤⎛ -≤ +≥-⎝解得21m -≤≤综上得21m -≤≤或2m >18.(1)定义域为R 1()121122()()12121()12x xx x x x f x f x ------====-+++ (2)21()21x x f x -=+2x k =⋅即2(2)(1)210x x k k ⋅+-⋅+=有两个不同解 即2(1)10k t k t ⋅+-⋅+=有两个不同正根,故01010kk k ⎧⎪∆>⎪⎪>⎨⎪-⎪>⎪-⎩解得03k <<-19,①_函数的定义域{|0}x x ≠(1分)②当0a =时,(),f x x =在R 上为增函数(1分)③当0a <时,()f x 在(,0),(0,)-∞+∞上为增函数(1分)④奇函数(1分)⑤当0a >时,()f x在(,(,)-∞+∞和减和增(4分) ⑥当0a >时,当0x >,2a y x x =+≥;当0x <,2a y x x =+≥-(2分) ⑦当0a >时,图像为 (图略)(1分)⑧当0a >时,()f x 在区间[,]m n上的单调性要讨论,m n 的关系。
(1分) 其它只要正确就给1分20(1)令.2'()330f x x =-+=得1x =±,(1)2,(1)2f f a f f a =-=-==+极小极大 (2)()0f x =恰有两个实根,则2a =或2a =-21.'()(1)x f x e a x =-+,切线:y x = '()(1)0x f x e a x =-+≥在区间(0,2]x ∈上恒成立 即(1)xe a x +<在02x <≤上恒成立. 令2(1)(),'()x xe x e g x g x x x -==当x=1时()xe g x x =有最小值e 所以1a e <-22解:22223,13()|23|23,13x x x x f x x x x x x ⎧--≤-≥=--=⎨-++-<<⎩或 (1)①当0k <时,显然,()f x k =无解;②当0k =时,()f x k =有两个解;③当0k >时,方程 ()f x k = 即 2230x x k ---= 总有两个解;根据题意,方程 -()f x k = 即 2230x x k -+-= 无解,△=224(3)0k --< 即 4k >,所以,当 0k = 或 4k > 时,()f x k = 有两个解。
…………………5分(2)设方程2230x x k ---= 的两根为14,x x , 由韦达定理,得:141423x x x x k +=⎧⎨⋅=--⎩,设方程2230x x k -+-=的两个根为23,x x ,由韦达定理,得:232323x x x x k +=⎧⎨⋅=-⎩,不妨设 1234x x x x <<<,则1234,,,x x x x 成等差数列, 41323()x x x x -=-,224132()9()x x x x -=-,2241413232()49[()4]x x x x x x x x +-=+- 即:2224(3)9[24(3)]k k ---=-+, ∴165k =……………12分。