粘度法测定大分子化合物的相对分子质量
- 格式:pdf
- 大小:389.08 KB
- 文档页数:34
高分子分子量的主要测定方法用途高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。
它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。
也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。
表征方法及原理1.粘度法测相对分子量(粘均分子量Mη)用乌式粘度计,测高分子稀释溶液的特性粘数[η],根据Mark-Houwink公式[η]=kMα,从文献或有关手册查出k、α值,计算出高分子的分子量。
其中,k、α值因所用溶剂的不同及实验温度的不同而具有不同数值。
2.小角激光光散射法测重均分子量(Mw)当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。
这种散射波的强弱和小粒子(高分子)中的偶极子数量相关,即和该高分子的质量或摩尔质量有关。
根据上述原理,使用激光光散射仪对高分子稀溶液测定和入射光呈小角度(2℃-7℃)时的散射光强度,从而计算出稀溶液中高分子的绝对重均分子量(MW)值。
采用动态光散射的测定可以测定粒子(高分子)的流体力学半径的分布,进而计算得到高分子分子量的分布曲线。
3.体积排除色谱法(SES)(也称凝胶渗透色谱法(GPC))当高分子溶液通过填充有特种多孔性填料的柱子时,溶液中高分子因其分子量的不同,而呈现不同大小的流体力学体积。
柱子的填充料表面和内部存在着各种大小不同的孔洞和通道,当被检测的高分子溶液随着淋洗液引入柱子后,高分子溶质即向填料内部孔洞渗透,渗透的程度和高分子体积的大小有关。
大于填料孔洞直径的高分子只能穿行于填料的颗粒之间,因此将首先被淋洗液带出柱子,而其他分子体积小于填料孔洞的高分子,则可以在填料孔洞内滞留,分子体积越小,则在填料内可滞留的孔洞越多,因此被淋洗出来的时间越长。
按此原理,用相关凝胶渗透色谱仪,可以得到聚合物中分子量分布曲线。
粘度法测定高聚物的相对分子质量粘度法是一种常用的方法来测定高聚物(聚合物)的相对分子质量。
它基于高聚物分子在溶液中的流动性质与分子质量之间的关系。
在进行粘度法测定之前,需要确定合适的实验条件和测定原理。
一、实验条件1.选择合适的溶剂:溶剂应具有与高聚物相容性好、可对高聚物进行良好的溶解以及测量粘度的条件。
(例如,对于聚乙烯醇,水是常用的溶剂)2.控制温度:温度会对粘度值产生较大影响,因此需要在恒温条件下进行实验。
3.粘度计的选择:常用的粘度计有奈米粘度计、卡诺粘度计、光纤旋光粘度计等。
需根据具体情况选择合适的粘度计。
二、测定原理高聚物在溶液中的流动性质与其相对分子质量有关,分子量较大的高聚物流动性较差,因此溶液的粘度值会随着高聚物分子量的增大而增大。
粘度法通过测量高聚物溶液的粘度值,从而间接推算出高聚物的相对分子质量。
三、实验步骤1.准备高聚物溶液:根据所选溶剂的配比,将一定质量的高聚物溶解于溶剂中,并彻底搅拌,直到高聚物完全溶解。
2.校正粘度计:用纯溶剂测量粘度计的零点,然后用标准物质(例如苯酚、萘酚等)来校正粘度计,以确保测量结果的准确性。
3.测量粘度:将装有高聚物溶液的容器放置在保持恒温的温水槽中,保持一定的温度,并等待溶液充分平衡。
然后将准备好的粘度计浸入溶液中,并等待一段时间让溶液与粘度计达到热平衡。
之后,开始测量粘度。
通常,需要测量多个时间点的粘度值,以获取精确的结果。
4.重复测量:进行多次测量以确认结果的准确性,并计算平均值。
5.构建标准曲线:根据已知分子量的标准品制备溶液,并测量其粘度值。
将不同分子量的标准品的粘度值与相对分子质量进行绘图,得到标准曲线。
6.根据标准曲线计算未知样品的相对分子质量:通过测量未知样品的粘度值,并根据标准曲线拟合计算得到样品的相对分子质量。
四、注意事项1.在测量前要完全溶解样品,以避免溶液中存在固体颗粒影响测量结果。
2.测量过程中要保持恒温环境,温度的变化会对粘度值产生较大的影响。
黏度法测定聚乙烯醇的相对分子质量及其分子构型的确定一、目的要求1.以聚乙酸乙烯酯(PVAc)为原料制备聚乙烯醇(PVA)。
2.用乌氏粘度计测定自制PVA被高碘酸盐降解前后的黏均相对分子质量。
3.计算PVA分子链中“头碰头”键合方式的比率。
二、实验原理、实验流程。
1.聚乙烯醇的制备原理聚乙烯醇(PVA)不能直接通过烯类单体单体聚合得到,而是经过聚乙酸乙烯酯(PVAc)的高分子反应获得的。
与水解法相比,经醇解法生成的聚乙烯醇精制容易,纯度较高,产品性能较好,因而工业上多采用醇解法。
以甲醇为醇解剂、氢氧化钠为催化剂进行醇解反应,并在较为缓和的醇解条件下进行。
PVAc在NaOH/CH OH溶液中的醇解的主要反应为:3在主反应中NaOH仅起催化作用,但是NaOH还可能参加反应(副反应):当反应体系中含水量较大时,这两个副反应明显增加,消耗大量的氢氧化钠,从而降低对主反应的催化效能,是醇解反应进行不完全。
因此为了避免这些副反应,对物料的含水量应严格控制,一般在5%以下。
2.乌氏粘度计测定溶液粘度的原理和方法测定高分子粘度的η时,用毛细管粘度计最为方便。
液体在毛细管粘度计内因重力作用而流出时遵守泊肃叶定律式中,ρ为液体的密度,l是毛细管长度,r 是毛细管半径,t 是流出时间,h 是流经毛细管液体的平均液柱高度,g 为重力加速度,V 是流经毛细管的液体体积,m 是与机器的几何形状有关的常数,在r/l ﹤﹤1时,可取m=1。
式中,β﹤1,当t ﹥100s 时,等式右边第二项可以忽略。
设溶液的密度ρ与溶剂密度ρ。
近似相等,这样,通过测定溶液和溶剂的流出时间t 和0t 就可求算x η。
x η=η/0η=t/0t进而计算得到sp η,sp η/c 和ln sp η/c 的值。
配置一系列不同浓度的溶液分别进行测定,以sp η/c 和ln sp η/c 为纵坐标,c 为横坐标作图,得两条直线,分别推到c=0处,为了方便,引进相对浓度′c ,即′c =c/0c 。
用粘度法测定聚乙二醇的相对分子质量一、实验目的:1、掌握用乌氏粘度计测定高聚物溶液粘度的原理和方法。
2、测定线型聚合物聚乙二醇的粘均相对分子质量。
二、实验原理:利用高分子溶液的特性粘度和分子量间的经验方程来计算分子。
聚合物的相对分子质量是一个统计的平均值。
粘度法测定高聚物相对分子质量适用的相对分子质量范围为1×10^4~1×10^7,方法类型属于相对法。
粘性液体在流动过程中所受阻力的大小可用粘度系数来表示。
粘度分绝对粘度和相对粘度。
绝对粘度有两种表示方法:动力粘度和运动粘度。
相对粘度是某液体粘度与标准液体粘度之比。
溶液粘度与纯溶剂粘度的比值称作相对粘度ηr,即ηr=η/ηo,相对于溶剂,溶液粘度增加的分数称为增比粘度,ηsp=ηr-1。
使用同一粘度计,在足够稀的聚合物溶液里,ηr=η/ηo=t/to,只要测定溶液和溶剂在毛细管中的流出时间就可得到ηr;同时,在足够稀的溶液里,质量浓度c,ηr 和[η]之间符合经验公式:(lnηr)/c=[η]-β[η]2c,通过lnηr/c对c作图,外推至c=0时所得截距即为[η];同时,在足够稀的溶液里,质量浓度c,ηsp和[η]之间符合经验公式:ηsp/c=[η]+k[η]2c,通过ηsp/c对c作图,外推至c=0时所得截距即为[η]。
两个线性方程作图得到的截距应该在同一点。
聚合物溶液的特性粘度[η]与聚合物相对分子质量之间的关系,可以通过Mark——Houwink经验方程来计算,[η]=KMηα;Mη是粘均相对分子质量,K、α是与温度、聚合物及溶剂的性质相关的常数.三、实验仪器:容量瓶250ml(1只)、乌式粘度计(1只)、移液管5ml(1只)、医用乳胶管(2根)、洗耳球(1个)、秒表(1只)四、实验药品:聚乙二醇(380~400)、蒸馏水五、实验步骤:称量PEG 4.9918g→加入蒸馏水溶解在250ml的容量瓶中,配制成稀溶液→洗涤粘度计→测定不同浓度聚乙二醇的流出时间→记录、处理数据Cf: 1、乌式粘度计的正确操作:A管注入溶液,洗耳球从B管将溶液吸至G球的 1/2处,在此同时需将C管堵住,使其形成连通器,到了1/2处后,即可松开B、C管,当液面流经刻度a时,秒表开始记录时间,液面降至b时,停表,记录;2、需要做对比实验,用纯溶剂。
粘度法测定高聚物相对分子质量粘度法是一种常用的测定高聚物相对分子质量的方法。
高聚物的相对分子质量一般比较大,常用的测定方法包括光散射法、凝胶渗透色谱法和粘度法等。
其中,粘度法是一种简便易行、精确可靠的方法。
粘度是流体阻力的一种度量,取决于流体的黏性和流体流动状态。
对于高分子材料来说,粘度与高分子链的长度有直接关系,链越长,黏性越大,粘度也越大。
因此,通过测定高聚物溶液的粘度,可以间接测定高聚物的相对分子质量。
粘度法的基本原理是通过测量高聚物在溶剂中的粘度,根据聚合物链的段数和长度之间的关系,推算出高聚物的相对分子质量。
粘度法的主要工作原理有两个,一是根据等应变条件下物体在流体中受到的阻力与物体的形态和流体介质的粘性相关,二是流体的黏性与溶液中的高聚物浓度相关。
因此,通过测定不同浓度下高聚物溶液的黏度,可以求得相对分子质量。
粘度的测定实验一般需要借助粘度计进行,常用的粘度计有纳尺、离心旋转粘度计和球和杯式粘度计。
不同的粘度计适用于不同的测定条件,选择合适的粘度计对测定结果的准确性和可靠性具有重要意义。
具体实验操作中,首先根据实验需要选择合适的溶剂和浓度,并准备好相应浓度的高聚物溶液。
然后,将粘度计浸入溶液中,并保持恒定的温度和剪切速率。
对于纳尺式粘度计,通常是将溶液注入纳尺内,通过计时测量液面下降的时间,从而得到粘度数值。
对于离心旋转粘度计,通常是将溶液放入旋转杯中,然后通过旋转杯的旋转速度和测量稀释液注入的时间来计算粘度。
对于球和杯式粘度计,通常是将溶液放在杯状容器中,并通过测量特定体积的溶液流出所需的时间来计算粘度。
实验结束后,根据测得的粘度值,使用马尔科夫尼克方程(Mark-Houwink equation)等相关公式,通过测定条件和相对分子质量的关系,计算出高聚物的相对分子质量。
总之,粘度法是一种常用的测定高聚物相对分子质量的方法,具有简便易行、精确可靠的特点。
通过测定高聚物溶液的粘度,可以间接测定高聚物的相对分子质量。
本科学生综合性、设计性实验报告实验课程基础化学实验(Ⅲ)--物理化学实验实验项目粘度法测定聚乙烯醇的相对分子质量及其分子构型的确定专业班级学号姓名指导教师一、实验方案设计实验序号 1实验项目 粘度法测定高聚物的相对分子质量 实验时间5月29日实验室生化楼413小组成员汪培琳、邓颖1.实验目的⑴测定聚乙烯醇的相对平均分子质量;⑵掌握用乌氏粘度计测定溶液粘度的原理和方法。
2.实验原理单体分子经过加聚或缩聚反应后后形成高聚物。
由于其分子链长度远大于溶剂分子,在液体分子流动或相对流动时有内摩擦阻力,宏观表现为粘度, 这种流动过程中的内摩擦主要有:纯溶剂分子间的内摩擦,记作η0;高聚物分子与溶剂分子间的内摩擦;以及高聚物分子间的内摩擦。
这三种内摩擦的总和称为高聚物溶液的粘度,记作η。
实践证明,在相同温度下η > η0 ,为了比较这两种粘度,引入增比粘度的概念,以ηsp 表示:ηsp =(η -η0)/η0 =η/ η0 - 1 = ηr -1 式中,ηr 称为相对粘度,反映的仍是整个溶液的粘度行为,而ηsp 则是扣除了溶剂分子间的内摩擦以后仅仅是纯溶剂与高聚物分子间以及高聚物分子间的内摩擦之和。
高聚物溶液的ηsp 往往随质量浓度C 的增加而增加。
为了便于比较,定义单位浓度的增比粘度ηsp /C 为比浓粘度,定义ln ηr /C 为比浓对数粘度。
当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可以忽略,此时比浓粘度趋近于一个极限值,即:sp0ln limlim[]rc c ccηηη→→==式中[η]主要反映了无限稀释溶液中高聚物分子与溶剂分子之间的内摩擦作用,称为特性粘度,可以作为高聚物摩尔质量的度量。
由于ηsp 与ηr 均是无因次量,所以[η]的单位是浓度C 单位的倒数。
[η]的值取决于溶剂的性质及高聚物分子的大小和形态,可通过实验求得。
因为根据实验,在足够稀的高聚物溶液中有如下经验公式:图2-30-2 外推法求[η]c c2sp][][ηκηη+=c cr2][][ln ηβηη+= 式中,κ和β分别称为Huggins 和Kramer 常数,这是两根直线方程,因此我们获得[η]的方法如图2-30-2所示:一种方法是以ηSP /C 对C 作图,外推到C →0的截距值;另一种是以ln ηr /C 对C 作图,也外推到C →0的截距值,两根线应会合于一点,这也可校核实验的可靠性。
实验二 粘度法测定水溶性高聚物相对分子质量Ⅰ目的要求一 测定多糖聚合物—右旋糖苷的平均相对分子质量 二 掌握用乌贝路德粘度计测定粘度的原理和方法Ⅱ基本原理利用大分子溶液的粘度和其相对分子质量间的某种经验方程来测定和计算大分子化合物分子质量的方法,称为粘度法。
所测得的大分子化合物的相对分子质量为粘均相对分子质量。
将大分子化合物加入到纯溶剂中形成稀溶液,溶液的粘度η总是比纯溶剂大得多,若将η和0η进行不同的组合,可得到粘度的三种表示方法。
相对粘度:ηηη=r (2-1)表示溶液粘度与溶剂粘度的比值。
增比粘度:()100-=-=r r ηηηηη(2-2)表示溶液粘度比溶剂粘度增加的相对值。
比浓粘度:cspη (2-3)表示单位浓度的溶质对粘度的贡献。
特性粘度:[]ccrc spc ηηηln limlim→→==(2-4)表示溶液浓度无限稀释时的比浓粘度。
它是几种粘度中最能放映溶质分子本性的一种物理量,代表了在无限稀释的溶液中,单位浓度大分子化合物溶液粘度变化分数。
在溶液浓度很稀时,比浓粘度与溶液浓度C 的关系是[][]c K csp21ηηη+= (2-5)[][]c K cr21ln ηηη+= (2-6)根据这两个经验公式,处理实验数据并作图,从稀溶液向无限稀释处外推求[]η。
图2-1特性粘度和大分子化合物相对分子质量之间有如下的经验方程: []αηηM K = (2-7)式中, K 和 α:与M η : 大分子化合物的粘均相对分子质量右旋糖苷在37℃时,以水为溶剂时,K=0.141cm 3.g -1,α=0.46。
在测得溶液的[η]后,代入式(2-7)中,即可求得大分子化合物右旋糖苷的粘均相对分子质量。
乌式粘度计是常用的一种测定溶液粘度的玻璃仪器,如图2-2。
其测定粘度的方法,亦称毛细管法。
即在特定温度下,测定一定体积的某液体流过一定长度的毛细管所需要时间,可求得该液体的相对粘度。
实验三粘度法测高分子化合物相对分子量一、实验目的1、掌握用粘度法测定高分子化合物相对分子量的原理。
2、用乌氏粘度计测定聚乙烯醇溶液的特性粘度,计算其粘均相对分子量。
二、实验原理高分子化合物相对分子量对于高分子化合物溶液的性能影响很大,是个重要的基本参数。
一般高分子化合物是相对分子量大小不同的大分子的混合物,相对分子量常在103~107之间,所以通常所测高分子化合物相对分子量是平均相对分子量。
测定高分子化合物相对分子量的方法很多,不同方法所测得的平均相对分子量有所不同。
粘度法是常用的测定相对分子量的方法之一,粘度法测得的平均相对分子量称为粘均相对分子量。
高分子化合物溶液的粘度比一般较纯溶剂的粘度大得多,其粘度增加的分数称为增比粘度,其定义为:式中,称为相对粘度。
增比粘度随粘液中高分子化合物的浓度c增加而增加。
为了便于比较,定义单位浓度的增比粘度/c为比浓粘度,它随溶液浓度c改变而改变。
当浓度c趋于零时,比浓粘度的极限值为[],[]称为特性粘度,即:式中溶液浓度c习惯上取质量浓度(单位为或)。
特性粘度[η]可以作为高分子化合物的平均相对分子量的度量。
根据实验结果证明,任意浓度下比浓粘度与浓度的关系可以用经验公式表示如下:因此,利用/c对c作图,用外推法可求出[η]。
当c趋近于0时,(ln)/ c的极限值也等于[η],可以证明如下:当溶液浓度c很小时,忽略高次项,则得:当溶液浓度较小时,(ln)/c对c作图,也得一条直线,其截距也等于[η],[η]单位和数值,随溶液浓度的表示法不同而异,[η]的单位为浓度单位的倒数。
在一定温度和溶剂条件下,特性粘度[]与高聚物的相对分子质量M间关系通常用下列经验方程式表达:式中K和α 是与温度、溶剂及高聚物本性有关的常数。
通常对于每种高聚物溶液,要用已知平均相对分子量的高聚物求得K、α值。
然后,用此K、α值及同种待测高聚物溶液的特性粘度实验值,可求得此待测高聚物的粘均相对分子量。
粘度法测定水溶性高聚物的相对分子质量——杨兰森(20096842)一、实验目的1. 测定聚丙烯酰胺的相对分子质量。
2. 掌握乌贝路德粘度计测定高聚物分子量的基本原理。
二、实验原理分子量是表征化合物特性的基本参数之一。
但高聚物分子量大小不一,参差不齐,一般在103~107之间,所以通常所测高聚物的分子量是平均分子量,其中粘度法设备简单,操作方便,有相当好的实验精度,但粘度法不是测分子量的绝对方法,因为此法中所用的特性粘度与分子量的经验方程是要用其它方法来确定的,高聚物不同,溶剂不同,分子量范围不同,就要用不同的经验方程式。
高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。
纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η0,高聚物溶液的粘度则是高聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η0三者之和。
相对于溶剂,溶液粘度增加的分数称为增比粘度,记作ηsp,即ηsp=( η- η0)/ η0= η/ η0-1=ηr-1 (1)如果高聚物分子的分子量愈大,则它与溶剂间的接触表面也愈大,摩擦就大,表现出的特性粘度也大。
特性粘度和分子量之间的经验关系式为:(2)式中,M为平均分子量,K为比例常数,α是与分子形状有关的经验参数。
K和α值与温度、聚合物、溶剂性质有关,也和分子量大小有关。
K值受温度的影响较明显,而α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度,其数值介于0.5~1之间。
K与α的数值可通过其它绝对方法确定,例如渗透压法、光散射法等,从粘度法只能测得[η]。
在无限稀释条件下:(3)因此我们获得[η]的方法有二种:一种是以ηsp/C对C作图,外推到C→0的截距值;另一种是以lnηr/C对C作图,也外推到C→0的截距值,如右图所示,两根线应会合于一点,这也可校核实验的可靠性。
图1 外推法求[η]一般这两条直线的方程表达式为下列形式:(4)在(4)式的第一式中的k'和ηSP/C值与高聚物结构和形态有关,因此在特殊高聚物形态下实验结果可能会出现下图异常结果:而(4)式的第二式,其物理意义不太明确,因此出现异常现象时,以(4)式的第一式曲线即ηSP/C-C求[η]值。