第二讲 双变量回归模型及其估计问题
- 格式:ppt
- 大小:1.09 MB
- 文档页数:45
第二讲 双变量回归模型及其估计问题双变量回归分析基本概念四、 正态性假定:经典正态线性回归模型 五、 双变量回归的区间估计七、 回归分析的应用:预测问题 八、 双变量线性回归模型的延伸回归分析的基本性质三、 双变量回归分析估计问题六、 双变量回归的假设检验 4、第一节回归分析的性质•、回归释义回归分析是关于研究一个叫应变量的变量对另一个或几个中解释变量的变量的依赖关系,其目的在于通过后者的已知值或设定值去估计和预测前者的数值。
二、统计关系与确定关系统计关系处理的是随机变量,而确定关系处理的是确定性的变量。
三、回归与因果关系回归分析研究的是一个变量对另一个或几个称为解释变量的依赖关系,却不一定是因果关系。
四、回归与相关相关分析的主要目的在于研究变量之间统计线性关联的程度,将变量均视为随机变量。
回归分析的主要目的在于研究变量之间统计关联的形式,目的在于揭示被解释变量如何依赖解释变量的变化而变化的规律,将解释变量视为确定性的,而将被解释变量视为随机变量。
第二节双变量回归分析的基本概念(1)•、一个人为的例子例:假定一个总体由60户家庭组成。
为了研 究每周家庭消费支出Y 与每周税后可支配收入 X 的关系,将他们划分为10组。
第二节二、总体回归函数(PRF)E(Y\X)=f(X)E(Y\X) = + 卩?X三、线性的含义对变量为线性E(Y\X) = fij + fi2X对参数为线性E(Y\X) = /3j + /32lnX1、总体回归函数的随机设定u = y-E(KIX)Y=E(Y\X)+ u系统变化部分非系统变化部分四、随机干扰项的意义干扰项“是从模型中省略下来的而又集体地影响着F的全部变量的替代物。
1.理论的含糊性 5.糟糕的替代变量2.数据的欠缺 6.节省原则3.核心变量与周边变量7.错误的函数形式4.人为行为的内在随机性五、样本回归函数(SRF)E(YIX)二Q + QX/V /v /VY =氏+卩字Y 仝 +£I =B\+B/+狂i i残差第三节双变量回归模型的估计问题•、普通最小二乘法通过样本数据按照残差平方和最小的原则来估计总体回归模型中的参数的方法叫普通最小二乘法,又称最小平方法。
第三部分初计量经济(13周)经典单方程计量经济模型:一元线形回归模型经典单方程计量经济模型:多元线形回归模型经典单方程计量经济模型:放宽基本假定模型第一章一元线性回归(双变量)(1)回归分析的基本概念(2)前提建设(3)参数估计:OLS的参数估计ML的参数估计(4)统计检验(5)预测(6)时间案例与操作(7)思考与作业§1经典正态线性回归模型(CNLRM)1、一个例子注x 表示收入,y 表示支出。
5010015020050100150200250300XYY vs. X5010015020050100150200250300XY 1Y1 vs. X条件分布:以X 取定值为条件的Y 的条件分布 条件概率:给定X 的Y 的概率,记为P (Y |X)。
例如,P (Y=55|X=80)=1/5;P (Y=150|X=260)=1/7。
条件期望(conditionalExpectation ):给定X 的Y 的期望值,记为E(Y|X )。
例如,E (Y |X=80)=55×1/5+60×1/5+65×1/5+70×1/5+75×1/5=65总体回归曲线(Popular RegressionCurve )(总体回归曲线的几何意义):当解释变量给定值时因变量的条件期望值的轨迹。
总结总体:总体函数:总体方程:样本:样本函数:样本方程:2、3、总体回归函数(PRF)E(Y|X i)=f(X i)当PRF的函数形式为线性函数,则有,E(Y|X i)=β1+β2X i其中β1和β2为未知而固定的参数,称为回归系数。
β1和β2也分别称为截距和斜率系数。
上述方程也称为线性总体回归函数.4、P RF的随机设定将个别的Y I围绕其期望值的离差(Deviation)表述如下:u i=Y i-E(Y|X i)或Y i=E(Y|X i)+u i5、其中u i是一个不可观测的可正可负的随机变量,称为随机扰动项或随机误差项.6、“线性”的含义“线性”可作两种解释:对变量为线性,对参数为线性。
[计量经济学] 第二章:双变量线性回归分析§1 经典正态线性回归模型(CNLRM)一、一些基本概念1、一个例子条件分布:以X取定值为条件的Y的条件分布条件概率:给定X的Y的概率,记为P(Y|X)。
例如,P(Y=55|X=80)=1/5;P(Y=150|X=260)=1/7。
条件期望(conditional Expectation):给定X的Y的期望值,记为E(Y|X)。
例如,E(Y|X=80)=55×1/5+60×1/5+65×1/5+70×1/5+75×1/5=65总体回归曲线(Popular Regression Curve)(总体回归曲线的几何意义):当解释变量给定值时因变量的条件期望值的轨迹。
2、总体回归函数(PRF)E(Y|X i)=f(X i)当PRF的函数形式为线性函数,则有,E(Y|X i)=β1+β2X i其中β1和β2为未知而固定的参数,称为回归系数。
β1和β2也分别称为截距和斜率系数。
上述方程也称为线性总体回归函数。
3、PRF的随机设定将个别的Y I围绕其期望值的离差(Deviation)表述如下:u i=Y i-E(Y|X i)或Y i=E(Y|X i)+u i其中u i是一个不可观测的可正可负的随机变量,称为随机扰动项或随机误差项。
4、“线性”的含义“线性”可作两种解释:对变量为线性,对参数为线性。
本课“线性”回归一词总是指对参数β为线性的一种回归(即参数只以它的1次方出现)。
模型对参数为线性?模型对变量为线性?是不是是LRM LRM不是NLRM NLRM注:LRM=线性回归模型;NLRM=非线性回归模型。
5、随机干扰项的意义随机扰动项是从模型中省略下来的而又集体地影响着Y 的全部变量的替代物。
显然的问题是:为什么不把这些变量明显地引进到模型中来?换句话说,为什么不构造一个含有尽可能多个变量的复回归模型呢?理由是多方面的: (1)理论的含糊性 (2)数据的欠缺(3)核心变量与周边变量 (4)内在随机性 (5)替代变量 (6)省略原则(7)错误的函数形式6、样本回归函数(SRF ) (1)样本回归函数iY ˆ=1ˆβ+2ˆβi X 其中Y ˆ=E(Y|X i )的估计量;1ˆβ=1β的估计量;2ˆβ=2β的估计量。