道路平面线形设计方法
- 格式:doc
- 大小:28.50 KB
- 文档页数:9
第2章城市道路平面线形规划设计2.1城市道路平面规划设计的内容和要求道路线形指道路路幅中心线(又称中线)的立体形状,道路中线在平面上的投影形状称为平面线形。
城市道路平面线形规划可划分为总体规划、详细规划两个阶段。
总体规划阶段的城市道路平面线形规划主要是根据城市主要交通联系方向确定城市主要道路中心线的走向,并进一步确定城市路网;详细规划阶段的城市道路平面线形规划设计一般在上一层次已经确定的城市道路网规划基础上进行,需要进一步详细确定用地范围内各级道路主要特征点的坐标,曲线要素等内容,便于进一步的道路方案设计。
在城市道路规划设计中,经常会碰到山体、丘陵、河流和需要保留的建筑,有时还因地质条件差而需要避开不宜建设的地方,所以无论城市道路还是公路不可避免要发生转折,就需要在平面上设置曲线,所以平面线形由直线和曲线组合而成。
如果城市道路转折角度不大,可把转折点设在交叉口,使道路线形呈折线状,这样可以减少道路上的弯道,便于道路施工和管线埋设,也有利于道路两侧建筑的布置。
如果转折点必须设置在路段上,则需要根据车辆运行要求设置成曲线,曲线又可分为曲率半径为常数的圆曲线和曲率半径为变数的缓和曲线。
城市道路平面线形规划设计的主要任务为:根据道路网规划确定的道路走向、道路之间的方位关系,以道路中线为准,考虑地形、地物、城市建设用地的影响,根据行车技术要求确定道路用地范围内的平面线形,以及组成这些线形的直线、曲线和它们之间的衔接关系;对于小半径曲线,还应当考虑行车视距、路段的加宽和道路超高设置要求等。
在学习本章时,尽管公式较多,但道路平面线形设计的一些常用参数,往往是可以通过查阅规范取得的,只有在旧城改造中用地条件苛刻的情况下,才需要计算道路线形要素。
所以,掌握查阅设计规范、理解计算公式的基本原理和适用条件,将是学习本章的关键。
2.2 道路弯道平曲线规划设计2.2.1 曲线要素构成及基本作用在城市道路规划设计中,一般采用圆弧曲线连接直线路段,为了使线形平顺,连接方式必须是切点相连,道路圆曲线一般通过曲线要素来描述。
公路平面线形设计的五单元导线法丁建明李方【东南大学交通学院南京210096】摘要:本文以我国习用的导线法为基本思想,引进不完整回旋线和圆曲线为基本设计单元,吸取了三单元导线法及国外曲线形设计方法的精华,提出公路平面线形的五单元设计方法,该方法在高等级公路平面设计中,既保留习用导线设计法,又无限制地设计任意曲线组合线形,显示其设计的灵活性。
特别是采用单交点就能设计复曲线及卵型曲线,给设计人员提供很大的方便。
笔者根据设计方法的原理,编制了相应的计算机程序,能迅速获得曲线特征点及任意中心桩的坐标与方位角。
关键词:公路平面线形设计五单元导线法随着我国的经济快速发展,高等级公路的不断修建,对公路平面线形的要求越来越高,传统的直线为主的导线设计方法很难满足线形随地形、地物改变而变化。
特别是在立体交叉线形设计中显示出明显的不足。
在一些发达国家,高等级公路采用了以曲线为主的方法,而且一条公路中曲线长度所占的比例成为一项重要的评价指标。
在我国,曲线型设计方法在互通式立体交叉设计中已普遍采用,但由于我国的传统公路测量与导线设计方法的根深蒂固,使得曲线型设计方法在各级公路线形设计中还难以推广。
笔者研究的五单元导线法,以我国习用的导线法为基本思路,引进了曲线型设计方法的思想,使平面线形的设计显得非常灵活,借助于简单的计算机程序,能迅速地获得满意的线形及准确的中心桩坐标。
1 五单元导线法概念如图1,设I、J、K为某路线的导线交点,现以J为导线点设计平曲线,平曲线五单元组成:(1)不完整回旋曲线11(R1→R2,R1>R2,A1);(2)半径为R2的圆曲线L2;(3)不完整回旋曲线13(R2→R,R2>R3或R2<R3,A);(4)半径为的圆R3曲线14;(5)回旋线15(R3R4,R3<R4,A2);平曲线与导线相切于P、Q点。
若已知某些参数,可通过各单元起、终点的连线及切线与导线间的几何关系可求得一些待定参数及特征点与任意中桩的坐标。
道路工程平面线型设计在平面线型设计中,汽车形式轨迹的特性,道路平面线型的要素以及直线的特点与运用等等都是我们需要掌握的特点,如何设计出一条合理且优秀的线型,相信看完今天的内容大家都会有自己的答案。
一、道路平面线型概述一、路线道路:路基、路面、桥梁、涵洞、隧道和沿线设施构成的三维实体。
路线:是指道路中线的空间位置。
平面图:路线在水平面上的投影。
纵断面图:沿道路中线的竖向剖面图,再行展开。
横断面图:道路中线上任意一点的法向切面。
路线设计:确定路线空间位置和各部分几何尺寸。
分解成三步:路线平面设计:研究道路的基本走向及线形的过程。
路线纵断面设计:研究道路纵坡及坡长的过程。
路线横断面设计:研究路基断面形状与组成的过程。
二、汽车行驶轨迹与道路平面线形(一)汽车行驶轨迹行驶中汽车的轨迹的几何特征:(1)轨迹连续:连续和圆滑的,不出现错头和折转;(2)曲率连续:即轨迹上任一点不出现两个曲率的值。
(3)曲率变化连续:即轨迹上任一点不出现两个曲率变化率的值。
(二)平面线形要素行驶中汽车的导向轮与车身纵轴的关系:现代道路平面线形正是由上述三种基本线形构成的,称为平面线形三要素。
二、直线一、直线的特点1.优点:①距离短,直捷,通视条件好。
②汽车行驶受力简单,方向明确,驾驶操作简易。
③便于测设。
2.缺点①线形难于与地形相协调②过长的直线易使驾驶人感到单调、疲倦,难以目测车间距离。
③易超速二. 最大直线长度问题:《标准》规定:直线的最大与最小长度应有所限制。
德国:20V(m)。
美国:3mile(4.38km)我国:暂无强制规定景观有变化≧20V;<3KM景观单调≦ 20V公路线形设计不是在平面线形上尽量多采用直线,或者是必须由连续的曲线所构成,而是必须采用与自然地形相协调的线形。
采用长的直线应注意的问题:公路线形应与地形相适应,与景观相协调,直线的最大长度应有所限制,当采用长的直线线形时,为弥补景观单调的缺陷,应结合具体情况采取相应的技术措施。
Ch3 道路平面线形设计【本章主要内容】§3-1 平面线形概述§3-2 直线§3-3 圆曲线§3-4 缓和曲线(3h)§3-5 平面线形的组合与衔接§3-6 行车视距§3-7 道路平面设计成果【本章学习要求】掌握平面线型的基本组成要素:直线、圆曲线、缓和曲线的设计标准、影响因素及确定方法、要素计算;行车视距的种类及保证;平面设计的设计成果;了解平面线型的组合设计。
本章重点:缓和曲线设计与计算、平面设计注意事项,难点:缓和曲线。
§3-1 道路平面线形概述基本要求:掌握平面线形的概念,平面线形三要素,了解汽车行驶轨迹对道路线形的要求。
重点:平面线形的概念。
难点:平面线形三要素。
1 平面线形的概念平面线形—道路中线在平面上的水平投影,反映道路的走向。
2 平面线形三要素2.1 汽车行驶轨迹大量的观测和研究表明,行驶中的汽车,其导向抡旋转面与车身纵轴之间的关系对应的行驶轨迹为:1) 角度为0时,汽车的行驶轨迹为直线;2) 角度不变时,汽车的行驶轨迹为圆曲线;3) 角度匀速变化时,汽车的行驶轨迹为缓和曲线。
行驶中的汽车,其轨迹在几何性质上有以下特征:1)轨迹是连续和圆滑的;2)曲率是连续的;3)曲率的变化是连续的。
直线一圆曲线一直线符合第(1)条规律直一缓一圆一缓一直符合第(1)、(2)条规律整条高次抛物线可能符合全部规律,但计算困难,测设麻烦。
2.2平面线形要素直线、圆曲线、缓和曲线称为平面线形的三要素。
§3-2 直线基本要求:了解直线的使用特点和适用条件;掌握直线的设计标准及计算。
重点:直线的设计标准。
难点:路线方位角、转角的计算。
1 直线的特点1.1 以最短的矩离连接两目的地;1.2 线形简单,容易测绘;1.3 长直线,行车安全性差;1.4 山区、丘陵区难与地形与周围环境协调。
2 设计标准2.1直线最大长度1)限制理由2)直线最大长度:20V。
道路线形设计理论与方法1道路的发展前景随着我国经济的不断发展,道路建设也取得了一定的成就,那么道路线形设计标准也越来越高。
道路线形设计对于交通安全起着先决性作用,合理安全的线形设计不仅能提供清晰、醒目的行车方向,更符合驾驶员期望的设计效果。
为了适应汽车交通发展要求,现代道路建设非常重视线形设计。
随着绿色、可持续的发展理念发展到各行各业,所以道路线形设计也要遵循“创新、协调、绿色、开放、共享”的绿色公路发展理念,改变传统粗放式的公路发展模式,缓解资源压力,创新公路发展模式,实现道路建设健康和可持续发展。
2汽车的行驶轨迹与道路平面线形要素道路是服务于车辆的,汽车行驶理论时研究道路线形设计的基础,是制定道路线形设计标准的重要理论依据。
汽车在直线上行驶时不变动方向,车辆行驶轨迹为直线。
汽车在转弯时,通过转弯试验可以得出汽车的行驶轨迹是连续且光滑的,任一点不出现错头和波折,行驶轨迹的曲率是连续的,任一点不出现两个曲率值,还有行驶轨迹的曲率变化率是连续的。
由汽车转弯的行驶轨迹可以了解,在进行道路线形设计时,设计弯道的曲线应满足曲线连续、曲率连续、曲率的变化率连续。
实践证明:道路,特别是高等级道路,由于设置了缓和曲线,使平面线形在视觉上更加平顺,能能更好地引导驾驶员视线,路线更容易被驾驶员跟踪。
所以在进行道路设计时,应在直线与圆曲线之间插入一段缓和曲线,来保证车辆行驶舒适安全。
3 道路线形的平面设计要点道路线形设计分为道路平面线形设计、道路纵断面线性设计、道路立体线形设计。
其中道路平面线形设计分为传统道路线形设计和曲线型设计方法,一般在平原区采用传统道路线形设计,但是在山区道路、立交匝道等以曲线设计为主,曲线占比重的多的地方,为了提高线形设计的品质提出曲线型设计方法。
3.1传统道路平面线形设计传统道路平面线形设计一般包含三要素:直线、圆曲线、缓和曲线。
直线设计要点:出于行车的安全性和驾驶员心理不致疲劳,限制直线的最大长度在20v以内,同向圆曲线间直线最小长度不小于6v,反向圆曲线间直线最小长度不小于2v,避免断臂曲线。
浅谈道路平面线形设计方法摘要:道路平面设计是复杂而又系统的,随着城市化进程的加快发展以及机动化水平的提高,道路的交通构成发生了巨大变化,同时人们对精神生活的要求也越来越高,对道路也有了更高的人性化要求。
面对这些挑战,道路设计工作者们需要与时俱进不断思考,设计出更适合于行车曲线的平面线形。
关键词:平面线形设计直线型曲线型设计方法特点公路是自然界中的人工构造物,其位置确定不仅受地形、地质、生态等建设条件的影响,而且修建以后又反作用于自然,对自然的地形、生态等会造成或多或少的破坏,同时路线位置还会对运行安全产生长期深远的影响。
公路线形设计是公路设计的核心,最终决定了公路的空间位置和反馈于驾驶员的视觉形态。
线形质量的好坏,直接影响公路运营的安全、经济、舒适、快捷功能的发挥。
1 直线型设计1.1直线型设计原理及方法工程技术人员根据道路的等级、路线走向、控制条件和技术要求,首先在实地或图上采用一系列连续的导线来控制公路的走向和基本位置,然后在路线的转弯处,为适应行车和地形的要求,采用不同的曲线或曲线组合来完成导线折线处的合理过渡,从而形成整个路线的平面线形。
即所谓的直线型设计方法。
直线用以控制路线的走向和方位,在路线布置和设计过程中起主导作用。
直线型设计方法通常有纸上定线和实地定线两种。
在我国公路建设早期,由于技术和现实条件等原因,不可能采用高水平的线形指标。
因此,直线型设计得到了广泛的应用和推广。
为我国公路建设的发展起到了很大的推动作用。
1.2直线型设计的特点传统道路线形即为直线回旋线圆曲线的硬性组合。
简单的运用直线与大半径圆曲线相结合,没有与地形地物条件相协调。
以直线为主体、先定导线后定曲线,布线过程中导向线控制了路线走向,圆曲线、缓和曲线是直线的配角,线形单调,线形的均衡性和连续性较差。
随着科学技术的进步,传统的直线型设计方法已难以满足高等级公路平面线形设计的要求。
近年来,曲线型设计方法日益被人们接受、采用。
公路平面线型是由直线、圆曲线、缓和曲线构成,它们是公路平面线型的基本要素,我们称之为平面线型的单元。
一条复杂多变的公路平面线型是由若干个单元首尾相连而成的,一旦各个单元确定,平面线形就随之而定。
因此,只要对各个单元进行选择、组合和计算就可以了。
2 曲线型设计主要有曲直法、积木法、拟合法、综合法、弦切线法、闭合导线法、端点受限法等2.1曲直法曲直法设计的步骤:(1)根据路线走向、地形与地物约束条件和技术要求,在地形图上徒手绘制若干段直线和圆弧,控制路线的总体线位,形成线形基本骨架;(2)根据直线与圆弧、圆弧与圆弧间的相对位置关系,利用图解法或解析法配置合适的缓和曲线,确定参数a值并考察各种线形元素之间的协调性和均衡性;(3)判断曲线组合类型,按照曲线组合类型采用“缓和曲线+圆曲线”即“ls + ly ”线形组合形式输入数据,进行平面线形(曲线)的计算、敷设和调整。
曲直法既保留了传统直线型设计方法的基本特征,用直线控制路线的走向和总体方位,有采取了曲线控制具体线位,利用直曲组合形成线形的骨架并合理配置相应的缓和曲线。
这一方法与直线型设计方法相比较,计算简便灵活、直观,实际运用过程中具有明显的优越性。
2.2积木法又称作线元设计法,是将组合复杂的道路平面线形“化整为零”分解成若干个线形单元,在已知道路线形起点信息(如坐标、切线或法线方向、曲率半径等)的基础上,从起点处开始设置任一单元(可沿任何方向延伸),并据此推算出该单元的终点信息(如坐标、法线方位角或曲率半径等)的方法。
之后,再将此终点信息作为下一单元的起点信息加以利用,如此逐个单元往下推算,如同搭积木一样,将各单元首尾连接,构成一条连续完整的平面线形。
总之,积木法是一种比较典型的曲线设计方法,它完全摒弃了导线和交点,以构成公路平面线形的基本曲线单元(直线元、圆曲线元、缓和曲线元),将复杂多变的平面线型组合分解成逐个单元进行计算。
具有如下特点:1)曲线组合自由、灵活、多变,不受传统设计方法中线型组合形式的限制,常能直接表达设计人员的意图。
2)计算方法简捷、方便、明确,便于应用计算机进行辅助设计和计算。
3)积木法较适用于初步设计阶段和施工图设计阶段的平面线型设计,最适应于旋工放线测量计算,尤其是对互通匝道计算特别方便。
4)积木法最大缺点是平面线型中某一线元发生变化,将导致整条路线的位置都要发生变化,曲线需重新计算,因而不便于线型的修改。
2.3拟合法所谓“曲线拟合”,简单讲,就是如何将给定的一组数据(型值点)用一条光滑曲线连接起来的问题。
根据拟合曲线对型值点接近程度的不同,拟合问题可分为“插值”和“逼近”两种类型。
如果要求拟合曲线通过各型值点,则称为曲线“插值”;如果只要求拟合曲线以某种程度接近各型值点,则称为“逼近”。
常用的拟合曲线有:圆弧样条曲线、三次b样条曲线、局部坐标下三次样条曲线、三次参数样条曲线。
工程实践中所使用的拟合曲线,除应具有几何不变性质外,一般还需具有下列品质:①光滑性:一般要求拟合曲线至少具有二阶连续性;②凹凸性:根据型值点确定的曲线要素,应保持型值点所具有的凹凸状态;③精确性:由拟合构造出的曲线要通过或比较近地逼近所给定的型值点。
2.4综合法综合法是将拟合法和积木法的优点加以综合应用,扬长避短,实现由拟合线形向传统线形转化的一种曲线型设计方法。
其基本思路是:先对路线布设过程中确定的控制点进行样条曲线拟合设计,生成一条满足约束条件的光滑曲线,并沿路线前进方向求出一定间隔点处的曲率,生成拟合曲线的曲率图;由人工或计算机对拟合曲线曲率图进行“规则化”处理,得到与公路平面线形组合模式相一致的曲率图,据此推算出对应曲线单元的设计参数值;最后利用积木法进行曲线计算与敷设,绘制出公路平面线位图。
综合法将曲线拟合与线元设计有机结合起来,具有灵活、方便、易于控制的特点;这种设计方法的核心是两种曲线曲率图之间的转换;三次b样条拟合函数是逼近函数而不是插值函数,若要求生成的拟合曲线严格通过控制点或经济点,最好对输入的控制点作一些技巧上的处理或采用三次样条拟合;另外,曲线敷设和计算也可以采用前述积木法中的直线、缓和曲线、圆曲线单元进行;应用这种方法,曲线的拟合过程可用于路线或匝道的方案布线,而在此基础上进行的“ls+ly”线元计算过程又能很好地应用于路线施工图设计和施工放样,因此,对于公路路线设计而言,综合法具有较好的应用价值。
2.5弦切线法对于路线平面线形而言,其基本构成单元无外乎是圆曲线(直线)和缓和曲线。
一段圆曲线的终点,可认为事其弦长(弧长)在相应的方向上的延伸所构成的:一段缓和曲线的终点,课认为是由其方向和距离所构成的。
因此,在一段路线的起、终点坐标和切线方向固定的情况下,便能容易的求出坐标增量、方位增量的计算式,进而得出各曲线参数。
设计人员只需在地形图上根据线形技术标准要求、地形和地物及环境约束情况,确定构成路线或匝道线形单元的弦线、半径等,并计算切线长度,确定曲线单元位置。
这种当导线确定后,如何取舍放坡点,形成路线导线和交点,并使导线长度满足相应技术要求的方法即为弦切线法。
特点:弦切线法采用一系列的直线构筑路线的具体走向和方位,总体上给人以直观明了的印象,设计人员操作简单方便;各种曲线类型已知参数值(如曲率半径等)可以在地形图上初步拟定;终点或中间点的控制条件会影响到整条路线的几何布置,;整条路线线位合理与否,关键取决于各弦线长度、位置及各弦线之间的相互关系,而这些在线形布置和曲线敷设之前都带有一定的盲目性。
2.6闭合导线法在公路平面设计时,常常会遇到一些特殊的设计问题,如一些立交匝道、道路中间带、居民区道路线形设计,需采用曲线的复杂组合连接两条主线。
针对上述情况,可将两条主线、匝道当成一个封闭的线路分析。
根据闭合导线边长及角度之间的内在几何关系,设计出组合复杂的平面线形,即为闭合导线法。
闭合导线法具有通用性、简洁性及易于程序操作计算的特点,容易被技术人员接受,而成为公路工程及测量工作的一种有用的工具;闭合导线法尽管借助导线来进行计算,但就其路线几何布置方式和计算方法而言,仍然是工程师们在图纸上直接拟定圆弧参数及其组合形式,因而是一种典型的曲线型的设计方法;由于闭合导线法不适用于带缓和曲线的平面曲线组合,因此,这种方法仅能作为公路平面线形设计的一种辅助方法加以运用。
2.7端点受限法顾名思义,端点受限是指组合形式已知的某段平面线形的起、终点的位置坐标(x,y)、方位角和曲率半径r给定或受到限制。
端点受限法完全摆脱了导线模式和繁杂的几何推导,其数学模型简洁、精确、统一和通用;同时解决了线形参数自动求解计算和线形自动定位计算这两类主要设计计算问题,便于应用和交互式图形cad软件开发,而不必关心所设计线形的组合形式的复杂性,从而提高了设计的自动化水平。
3 其他曲线型设计方法主要有bp神经网络法、cbr法和圆弧移动法。
这三种方法目前应用较少,笔者也不甚了解,只做初步的特点说明。
3.1 bp神经网络法bp神经网络能很好地逼近和模拟线位约束条件与线形参数之间的依存关系,由输出结果所得到的线形可很好地逼近所给的控制点位。
因此,bp神经网络方法是一种用于平面布线的快速、有效的辅助方法。
当然,应用这种方法的前提和关键是选取合适的样本集来训练bp网络。
3.2 cbr法cbr方法体现了人工智能原理和方法,将别人的设计经验以样本集或事例库的形式保存下来,以便于指导相似的设计,减少甚至避免人工多次试探和调整,从而提高设计的自动化和智能水平。
3.3 圆弧移动法圆弧移动方法作为曲线型设计方法的有效辅助手段,易于在交互式图形cad软件系统中实现,充分发挥交互式图形设计功能,以辅助各种曲线型设计方法的应用,减少设计中的盲目性,从而提高设计效率。
4 结束语采用不同类型的平面线形设计方法进行公路选线、设计,都要处理好线形与地形、环境及行车要求的关系。
应根据直线基本型和曲线型(曲直法、拟合法、积木法、综合法、弦切线法、闭合导线法、端点受限法、bp神经网络法、cbr法、圆弧移动法)等不同线型设计方法的特点合理采用不同方法,提高道路平面线形设计的质量。
本文分析了道路平面设计方法的原理及特点,这些方法的提出,为设计人员在选线过程中合理协调各种影响因素、解决设计主要矛盾提供了有益的参考。
参考文献:[1]吴国雄.公路平面线形曲线型设计方法[m].北京:人民交通出版社,1999.11.[2]杨轶.山区公路平面线形设计方法综述[j].山西建筑,2009,35(13):255-256.[3]宋清峻.浅析公路线形设计方案选择[j].工程科技,2011,11,245.[4]焦银禾.公路平面线形设计[j].现代公路,2008,10(34):85.。