主动红外与被动红外的区别及应用
- 格式:doc
- 大小:178.50 KB
- 文档页数:3
被动红外报警探测器在室温条件下,任何物品均有辐射。
温度越高的物体,红外辐射越强。
人是恒温动物,红外辐射也最为稳定。
我们之所以称为被动红外,即探测器本身不发射任何能量而只被动接收、探测来自环境的红外辐射。
探测器安装后数秒种已适应环境,在无人或动物进入探测区域时,现场的红外辐射稳定不变,一旦有人体红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报。
被动红外入侵探测器形成的警戒线一般可以达到数十米。
被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部分组成。
其核心是不见是红外探测器件,通过关学系统的配合作用可以探测到某个立体防范空间内的热辐射的变化。
红外传感器的探测波长范围是8~14μm,人体辐射的红外峰值波长约为10μm,正好在范围以内被动式红外探测器(Passive Infared Detector,PIR)根据其结构不同、警戒范围及探测距离也有所不同,大致可以分为单波束型和多波束型两种。
单波束PIR采用反射聚焦式光学系统,利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上。
这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。
因此又称为直线远距离控制型被动红探测器,适合保护狭长的走廊、通道以及封锁门窗和围墙。
多波束型采用透镜聚焦式光学系统,目前大都采用红外塑料透镜——多层光束结构的菲涅尔透镜。
这种透镜是用特殊塑料一次成型,若干个小透镜排列在一个弧面上。
警戒范围在不同方向呈多个单波束状态,组成立体扇形感热区域,构成立体警戒。
菲涅尔透镜自上而下分为几排,上面透镜较多,下边较少。
因为人脸部、膝部、手臂红外辐射较强,正好对着上边的透镜。
下边透镜较少,一是因为人体下部红外辐射较弱,二是为防止地面小动物红外辐射干扰。
多波束型PIR的警戒视场角比单波束型大得多,水平可以大于90°,垂直视场角最大也可以达到90°,但作用距离较近。
红外探测器原理安防2007-10-16 10:17:07 阅读888 评论3 字号:大中小订阅被动红外探测器凡是温度超过绝对0℃的物体都能产生热辐射,而温度低于1725℃的物体产生的热辐射光谱集中在红外光区域,因此自然界的所有物体都能向外辐射红外热。
而任何物体由于本身的物理和化学性质的不同、本身温度不同所产生的红外辐射的波长和距离也不尽相同,通常分为三个波段。
近红外:波长范围0.75~3μm中红外:波长范围3~25μm远红外:波长范围25~1000μm人体辐射的红外光波长3~50μm,其中8~14μm占46%,峰值波长在9.5μm。
㈠被动红外报警探测器在室温条件下,任何物品均有辐射。
温度越高的物体,红外辐射越强。
人是恒温动物,红外辐射也最为稳定。
我们之所以称为被动红外,即探测器本身不发射任何能量而只被动接收、探测来自环境的红外辐射。
探测器安装后数秒种已适应环境,在无人或动物进入探测区域时,现场的红外辐射稳定不变,一旦有人体红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报。
被动红外入侵探测器形成的警戒线一般可以达到数十米。
被动式红外探测器主要由光学系统、热传感器(或称为红外传感器)及报警控制器等部分组成。
其核心是不见是红外探测器件,通过关学系统的配合作用可以探测到某个立体防范空间内的热辐射的变化。
红外传感器的探测波长范围是8~14μm,人体辐射的红外峰值波长约为10μm,正好在范围以内.被动式红外探测器(Passive Infared Detector,PIR)根据其结构不同、警戒范围及探测距离也有所不同,大致可以分为单波束型和多波束型两种。
单波束PIR采用反射聚焦式光学系统,利用曲面反射镜将来自目标的红外辐射汇聚在红外传感器上。
这种方式的探测器境界视场角较窄,一般在5°以下,但作用距离较远,可长达百米。
因此又称为直线远距离控制型被动红探测器,适合保护狭长的走廊、通道以及封锁门窗和围墙。
主动红外和被动红外的区别●主动红外技术一般使用在周界红外对射系统中,有多种距离规格的。
而被动红外探测器,又可分双鉴、三鉴等等!多使用在室内报警系统中。
红外对射系统是由发射和接收设备构成,发射端主动发射红外波,在接收端接收!被动红外是被动感应人体所发出的红外波!也就是说:能发射红外信号的称为主动红外,本身不发射红外信号而是探测人体或物体的红外波成为被动红外。
从施工来说,应该要求是一致的,主动红外尽量避开阻挡物,避免强光直射等!被动红外也应避免强光、不要被气流直吹、和温度变化比较大的地方等等!主动红外多用于室外周界报警系统中(如多光束红外对射、红外对射栅栏等)!被动红外多使用于室内家居报警系统(如红外探测器、幕帘探测器等)。
●被动红外探测器按探测范围分以下几类:广角式(空间式)、幕帘式、方向式外观都差不多家庭用还行●装一套红外线防盗报警器要多少钱,如果多加一个感应头呢?又是多少钱?答:红外是一种感应探头,一般的一套普通的家用商用主机里面配套的是一套主机,一个门磁,一个红外,两个遥控器,加上电源(一般都是可充电源,断电以后24小时还可以正常工作),市场价格一般在200到400之间,当然地区不同,价格也不同。
我在个说的是大概的。
加一个红外感应探头一般在50块左右。
2、多少米范围内有效果,这个红外线是走直线还是有折射的功能,比如小偷躲在角落里还有效吗?答:红外分广角的和幕帘的。
广角一般是装在墙上的,探测角度是水平120度,厚度为30厘米。
幕帘的看名字就知道是防窗户的,角度是和广角相反的。
探测范围应该是个扇形的形状。
探测这个范围的温度,如果冒个物体破坏范围内的问题,大幅度提高或降低,探头就会触警报警。
因为是扇形,所以有一定的死角。
幕帘也有主动和被动之分。
主动的,自己发射红外信号,对扇型空间扫描,接收端一般不加菲涅尔透镜。
只要有物体进入扫面范围,就有红外反射,接收到后就报警。
被动的一般按有菲涅尔透镜,同时菲涅尔透镜在制作上限制了红外的透射角度,达到幕帘的效果。
红外遥感技术在军事方面的运用摘要:目前国际军事形势总体上趋于缓和,但天下并不太平,展望21世纪,国际关系错综复杂,世界各种力量不断分化组合。
交流与合作,斗争与竞赛交织在一起,将是21世纪国际安全环境和军事形势的基本形态。
而随着高科技技术在军事领域的广泛应用,现代战争已进入了高技术阶段,由于战争中高级技术武器装备的大量使用和新的作战理论的先导作用,引起了战争形态的重大变革。
从而导致了战争规模,样式和进程的变化。
战争已由简单的身体对抗化为智慧的较量。
正文:遥感技术是指安装与平台上的传感器,以电磁波为信息传播媒介,从遥远的地方感知地球表面和一定空间范围内的对象,从而识别地面物体的全过程,他是与航空遥感,在20世纪60年代发展起来的移民新型的综合性的边缘学科,从70年代以来,随着新的航天遥感平台的不断升空,新型传感器的研制,航天遥感技术的发展。
应用领域从军事应用发展到一地球环境和资源的监测和研究为目标的尖端技术。
在现代化战争中,军事侦察,监视与制导已完全离不开遥感技术。
一、红外线的起源与发展1800年,英国天文学家F.W.赫歇耳发现了红外线。
红外技术在军事上的实际应用始于第二次世界大战期间。
当时,德国研制和使用了一些红外技术装备,其中有红外通信设备和红外夜视仪,它们都属于主动式红外系统。
战后,由于红外光子探测器和透红外光学材料的迅速发展,红外技术的应用引起军事部门的重视。
此后,红外技术的发展方向集中在被动式系统上。
50年代,红外点源制导系统应用于战术导弹上。
60年代,红外技术的军事应用已相当广泛,如已应用于制导、火控、瞄准、侦察和监视等。
60年代中期,出现了光机扫描的红外成像技术。
70年代,红外成像技术获得迅速发展,热成像系统和电荷耦合器件的应用是这一时期的重要成果。
80年代,红外技术进入研制镶嵌焦面阵列(CCD阵列)系统的新时期。
二、红外线的基本概念自然界中, 一切温度高于绝对零度摄氏-273.16 的物体都不断地辐射着红外线, 这种现象称为热辐射。
主动红外与被动红外探测器的区别及应用主动红外入侵探测器是由发射机和接收机组成,发射机是由电源、发光源和光学系统组成,接收机是由光学系统、光电传感器、放大器、信号处理器等部分组成。
主动红外探测器是一种红外线光束遮挡型报警器,发射机中的红外发光二极管在电源的激发下,发出一束经过调制的红外光束(此光束的波长约在0.8~0.95微米之间),经过光学系统的作用变成平行光发射出去。
此光束被接收机接收,由接收机中的红外光电传感器把光信号转换成信号,经过电路处理后传给报警控制器。
由发射机发射出的红外线经过防范区到达接收机,构成了一条警戒线。
正常情况下,接收机收到的是一个稳定的光信号,当有人入侵该警戒线时,红外光束被遮挡,接收机收到的红外信号发生变化,提取这一变化,经放大和适当处理,控制器发出的报警信号。
目前此类探测器有二光束、三光束还有多光束的红外栅栏等。
一般应用在周界防范居多,最大的优点就是防范距离远,能达到被动红外的十倍以上探测距离。
被动红外探测器主要是根据外界红外能量的变化来判断是否有人在移动。
人体的红外能量与环境有差别,当人通过探测区域时,探测器收集到的这个不同的红外能量的位置变化,进而通过分析发出报警。
但外界环境是:不但人体会发出红外能量,许多物体在一定的条件下都会散发红外能量,而在可见光中这种能量尤其突出,所以任何被动红外探测器的抗白光干扰就成了一个重要的指标。
在室内光线稳定、红外能量比较恒定的情况下,这种探测方式表现非常好。
但室外情况就不同了,长期以来被动红外红外探测在室外只有极少数厂家才能做到。
正所谓室内室外一小步,科技含量三大步。
主动红外探测器设备选择1.根据防范现场最低、最高温度及其持续时间,选择工作温度与之适合的主动红外入侵探测器;若环境温度过低可使用专用加热器以保证探测器的正常工作。
2.主动红外入侵探测器受雾影响严重,室外使用时均应选择具有自动增益功能的设备(此类设备当气候变化时灵敏度会自动调节);另外,所选设备的探测距离实际警戒距离留出20%以上的余量,以减少气候变化引起系统的误报警。
主动红外热成像技术和被动红外热成像技术主动红外热成像技术和被动红外热成像技术是两种常见的红外热成像技术。
它们在不同的应用领域中发挥着重要的作用。
主动红外热成像技术是指通过主动辐射红外光源,利用物体对红外辐射的反射或散射来获取热图像。
这种技术可以在完全黑暗的环境下工作,并且对于远距离目标的探测具有较好的效果。
主动红外热成像技术广泛应用于军事、安防、消防等领域。
例如,在军事领域,主动红外热成像技术可以用于探测敌方目标,提供战场情报,指导作战决策。
在安防领域,主动红外热成像技术可以用于夜间监控,提高安全性。
在消防领域,主动红外热成像技术可以用于探测火灾,帮助消防人员快速定位火源,提高灭火效率。
被动红外热成像技术是指利用物体自身的红外辐射来获取热图像。
物体的温度越高,辐射的红外能量越强,因此可以通过测量物体的红外辐射来获取其温度分布。
被动红外热成像技术广泛应用于医学、工业、建筑等领域。
例如,在医学领域,被动红外热成像技术可以用于检测人体的体温分布,帮助医生诊断疾病。
在工业领域,被动红外热成像技术可以用于检测设备的热量分布,及时发现故障,提高生产效率。
在建筑领域,被动红外热成像技术可以用于检测建筑物的热漏点,提高能源利用效率。
主动红外热成像技术和被动红外热成像技术各有其优势和适用场景。
主动红外热成像技术可以主动辐射红外光源,适用于远距离目标的探测;而被动红外热成像技术则可以利用物体自身的红外辐射,适用于近距离目标的探测。
此外,主动红外热成像技术对环境光的依赖较小,适用于黑暗环境;而被动红外热成像技术对环境光的依赖较大,适用于光照充足的环境。
总之,主动红外热成像技术和被动红外热成像技术在不同的应用领域中发挥着重要的作用。
它们通过获取物体的红外辐射来获取热图像,帮助人们了解物体的温度分布,提供有价值的信息。
随着科技的不断进步,这两种技术将会得到更广泛的应用,并在各个领域中发挥更大的作用。
红外探测原理及其应用红外探测是一种通过检测物体散发的红外辐射来实现目标探测和识别的技术。
红外辐射位于可见光和微波之间,波长范围为0.75微米至1000微米。
红外探测原理基于红外辐射与物体的热状态之间的关系,主要有热辐射法、被动红外探测法和主动红外探测法。
热辐射法是通过测量物体产生的热能来实现红外探测。
物体温度越高,辐射能量越大。
使用红外相机或热成像仪可以将物体的红外辐射转换为电信号,并根据信号的强弱和红外辐射的分布特征来判断物体的存在、位置和温度。
被动红外探测法是通过检测物体吸收或反射入射红外辐射来实现红外探测。
这种方法广泛应用于安防系统中,如红外线防盗系统和红外对射系统。
当有人或物体进入红外探测器的监测范围时,会导致红外辐射发生变化,从而触发报警。
主动红外探测法是通过发射红外辐射,再接收其反射或散射信号来实现红外探测。
常见的主动红外探测方法有红外测距和红外成像雷达。
红外测距利用红外激光或红外光束的发射和接收时间差来测量距离。
红外成像雷达则通过扫描探测区域并分析接收到的红外辐射信号,实现对目标的探测和成像。
红外探测技术在许多领域有广泛的应用。
在军事上,红外探测广泛应用于导弹制导、战机导航、舰船和边境监测等领域。
在医疗上,红外热成像技术可以用于检测和诊断疾病,如乳腺癌、皮肤癌和中风等。
在安防领域,红外探测技术可以用于监控摄像、入侵报警和人脸识别等。
此外,红外探测技术还可以应用于气象观测、地质勘探、工业制程监测和环境保护等领域。
例如,红外气象卫星可以监测大气中的云、雾和温度等参数,为天气预报和气候研究提供数据支持。
红外探测仪器也可以用于探测地下矿藏、油气田和地质灾害等。
总的来说,红外探测技术能够通过感测目标辐射的红外辐射来实现目标探测和识别。
凭借其非接触、高效、隐蔽等优势,红外探测技术在军事、医疗、安防和环境等领域具有广泛的应用前景。
简述红外视觉传感器的工作原理及特点红外视觉传感器是一种能够检测红外辐射并将其转化为可见光或电信号的设备。
它的工作原理基于红外辐射波长范围内物体的热能辐射和热传导过程。
红外辐射是一种波长长于可见光的电磁辐射,它是由物体的热能产生的,与物体的温度成正比。
红外视觉传感器通过使用敏感的红外探测器,例如红外焦平面阵列(IRFPA),来接收和测量红外辐射。
当红外辐射进入传感器时,红外探测器会将其转化为电信号,进而经过信号处理后,转化为可见光图像或红外光谱图。
红外视觉传感器的工作原理可以分为两种类型:主动式和被动式。
主动式红外视觉传感器会发射红外光源,然后测量反射回来的红外辐射,用于探测物体的存在和距离。
被动式红外视觉传感器则仅接收来自物体的自然红外辐射,用于检测物体的热能分布和温度变化。
红外视觉传感器具有一些独特的特点,使其在许多应用领域中得到广泛应用。
首先,红外辐射是不可见的,因此红外视觉传感器可以在完全黑暗或低照度环境下工作,不受光照强度的限制。
其次,红外辐射能够穿透某些材料,例如烟雾、雾气或雨水,使红外视觉传感器在恶劣的天气条件下也能正常工作。
此外,红外辐射与物体的温度有关,因此红外视觉传感器可以用于温度测量和热成像。
最后,红外视觉传感器具有高效和快速的响应速度,适用于实时监测和控制。
红外视觉传感器在许多领域中得到广泛应用,包括安防监控、无人机导航、自动
驾驶汽车、医疗诊断、工业生产等。
通过利用红外辐射的特点,红外视觉传感器能够提供更丰富和准确的信息,为各种应用场景提供有效的解决方案。
红外传感器的工作原理红外传感器是一种能够感知并测量红外辐射的设备,广泛应用于电子产品、自动化控制和安防系统等领域。
它的工作原理基于物体在热能上的差异,通过捕捉和解析物体发出的红外辐射来实现检测功能。
本文将详细介绍红外传感器的工作原理及其应用。
一、红外辐射的特点红外辐射是一种电磁辐射,其波长范围在0.75微米至1000微米之间,超出了人类眼睛可见光的波长范围。
物体产生红外辐射的原因是其温度超过了绝对零度,即使是室温下的物体也会具有一定的红外辐射能量。
红外辐射的强弱与物体温度成正比,温度越高辐射能量越大。
二、红外传感器的构成红外传感器主要由发射器、接收器和信号处理电路组成。
发射器产生红外辐射,接收器接收来自目标物体的红外辐射,并将其转化为电信号,信号处理电路对接收到的信号进行放大、滤波和解析等操作。
三、红外传感器的工作原理红外传感器的工作原理主要基于两种技术:被动红外(PIR)和主动红外(PA)。
下面将分别介绍这两种工作原理。
1. 被动红外(PIR)被动红外技术是基于物体的热能差异来进行检测的。
被动红外传感器包含一个或多个热敏元件,通常是红外感应器。
当有物体靠近传感器时,物体的红外辐射会改变传感器的温度分布,从而产生一个由电流变化所引起的电信号。
传感器会检测到这个变化并作出相应的响应,例如触发警报或控制其他设备。
2. 主动红外(PA)主动红外技术是通过系统主动发射红外辐射来进行检测的。
主动红外传感器一般包含发射器和接收器两部分。
发射器发射红外辐射,接收器接收从目标物体反射回来的红外辐射。
当目标物体接近传感器时,接收器接收到的反射红外辐射会发生变化。
传感器通过检测反射红外辐射的强度和频率变化来判断目标物体的位置和状态。
四、红外传感器的应用红外传感器在各个领域都有广泛的应用。
1. 安防系统红外传感器被广泛用于安防系统中,例如入侵报警系统和监控摄像机。
通过安装红外传感器,可以及时检测到人体或其他物体的活动或入侵行为。
红外发射管的工作原理为,红外发射管发射的的红外光束被空气中的烟尘粒子散射,当然散射光的强弱与烟的浓度成正比,所以光敏管接收到的红外光束的强弱会发生变化,转化为点信号,最后转化成报警信号。
报警器对烟雾感应主要由光学迷宫完成,迷宫内有一组红外发射、接收光电管,对射角度为135度。
当环境中无烟雾时,接收管接收不到红外发射管发出的红外光,后续采样电路无电信号变化;当环境中有烟雾时,烟雾颗粒进入迷宫内使发射管发出的红外光发生散射,散射的红外光的强度与烟雾浓度有一定线性关系,后续采样电路发生变化,通过报警器内置的主控芯片判断这些变化量来确认是否发生火警,一旦确认火警,报警器发出火警信号,火灾指示灯(红色)点亮,并启动蜂鸣器报警。
红外报警器分为主动红外报警和被动红外报警,下面我们来介绍一下这两种报警器的差别和各自的特点。
主动红外入侵探测器是由发射机和接收机组成,发射机是由电源、发光源和光学系统组成,接收机是由光学系统、光电传感器、放大器、信号处理器等部分组成。
主动红外探测器是一种红外线光束遮挡型报警器,发射机中的红外发光二极管在电源的激发下,发出一束经过调制的红外光束(此光束的波长约在0.8~0.95微米之间),经过光学系统的作用变成平行光发射出去。
此光束被接收机接收,由接收机中的红外光电传感器把光信号转换成信号,经过电路处理后传给报警控制器。
由发射机发射出的红外线经过防范区到达接收机,构成了一条警戒线。
正常情况下,接收机收到的是一个稳定的光信号,当有人入侵该警戒线时,红外光束被遮挡,接收机收到的红外信号发生变化,提取这一变化,经放大和适当处理,控制器发出的报警信号。
目前此类探测器有二光束、三光束还有多光束的红外栅栏等。
一般应用在周界防范居多,最大的优点就是防范距离远,能达到被动红外的十倍以上探测距离[1] 。
主动红外探测器:
采用主动红外方式,以达到安保报警功能的探测器。
主动红外探测器由红外发射机、红外接收机和报警控制器组成。
分别置于收、发端的光学系统一般采用的是光学透镜,起到将红外光束聚焦成较细的平行光束的作用,以使红外光的能量能够集中传送。
红外光在人眼看不见的光谱范围,有人经过这条无形的封锁线,必然全部或部分遮挡红外光束。
接收端输出的电信号的强度会因此产生变化,从而启动报警控制器发出报警信号。
被动红外探测器:
PIR(Passive infrared detectors)采用被动红外方式,已达到安保报
警功能的探测器。
被动式红外探测器主要由光学系统、热释电传感器(或称为红外传感器)及报警控制器等部分组成。
探测器本身不发射任何能量而只被动接收、探测来自环境的红外辐射。
一旦有人体红外线辐射进来,经光学系统聚焦就使热释电器件产生突变电信号,而发出警报。
被动红外探测器主要是根据外界红外能量的变化来判断是否有人在移动。
人体的红外能量与环境有差别,当人通过探测区域时,探测器收集到的这个不同的红外能量的位置变化,进而通过分析发出报警。
被动红外报警器是以探测人体辐射为目标的,所以热释电元件对波长为10μm左右的红外辐射必须非常敏感。
为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲涅尔滤光片,使环境的干扰受到明显的控制作用。
其传感器包含两个互相串联或并联的热释电元件。
而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是报警器无信号输出。
一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同不能抵消,经信号处理而报警。
但外界环境是:不但人体会发出红外能量,许多物体在一定的条件下都会散发红外能量,而在可见光中这种能量尤其突出,所以任何被动红外探测器的抗白光干扰就成了一个重要的指标。
在室内光线稳定、红外能量比较恒定的情况下,这种探测方式表现非常好。
但室外情况就不同了,长期以来被动红外红外探测在室外只有极少数厂家才能做到。
正所谓室内室外一小步,科技含量三大步。
主动红外探测器设备选择
1.根据防范现场最低、最高温度及其持续时间,选择工作温度与之适合的主动红外入侵探测器;若环境温度过低可使用专用加热器以保证探测器的正常工作。
2.主动红外入侵探测器受雾影响严重,室外使用时均应选择具有自动增益功能的设备(此类设备当气候变化时灵敏度会自动调节);另外,所选设备的探测距离实际警戒距离留出20%以上的余量,以减少气候变化引起系统的误报警。
3.在室外使用时一定要选用双光束或3光束主动红外入侵探测器,以减少小鸟、落叶等引起系统的误报警。
4.主动红外入侵探测器中所用红外发光二极管波长分别在0.85μm 和0.95μm附近。
前者有红曝现象产生,其隐蔽性不如后者好。
5.多雾地区、环境脏乱风沙较大地区的室外不宜使用主动红外入侵测器。
6.在空旷地带或在围墙上、屋顶上使用主动红外入侵探测器时,应选择具有避雷功能的设备。
7.遇有折墙,且距离又较近时,可选用反射器件,以减少探测器使用数量。
8.室外使用主动红外入侵探测器的最大射束距离应是制造厂商规定的探测距离的6倍以上。