第三章周期信号的傅里叶级数表
- 格式:ppt
- 大小:7.43 MB
- 文档页数:117
第3章周期信号的傅里叶级数表示基本题3.1 有一实值连续时间周期信号x(t),其基波周期了T=8,x(t)的非零傅里叶级数系数为a1=a-1=2,a3=a-3=4j。
试将x(t)表示成:解:3.2 有一实值离散时间周期信号x[n],其基波周期N=5,x[n]的非零傅里叶级数系数为,试将x[n]表示成:解:3.3 对下面连续时间周期信号求基波频率ω0和傅里叶级数系数a k,以表示成解:即非零的傅里叶级数系数为3.4 利用傅里叶级数分析式计算下连续时间周期信号(基波频率ω0=π)的系数a k:解:因ω0=π,故3.5 设x1(t)是一连续时间周期信号,其基波频率为叫ω1,傅里叶系数为a k,已知x2(t)=x1(1-t)十x1(t-1),问x2(t)的基波频率ω2与ω1是什么关系?求x2(t)的傅里叶级数系数b k与系数a k之间的关系。
解:x1(1-t)和x1(t-1)的基波频率都是ω1,则它们的基波周期都是T1=2π/π。
因为x2(t)是x1(1-t)和x1(t-1)的线性组合,所以x2(t)的基波周期,即ω2=ω1。
又故即3.6 有三个连续时间周期信号,其傅里叶级数表示如下:利用傅里叶级数性质回答下列问题:(a)三个信号中哪些是实值的?(b)哪些又是偶函数?解:(a)与式对照可知,对于x1(t),有由共轭对称性可知,若x1(t)为实信号,则有显然故x1(t)不是实信号。
同理,对于x2(t),对于x3(t),由于故可知x2(t)和x3(t)都是实信号。
(b)由于偶函数的傅里叶级数是偶函数,由上可知,只有x2(t)的a k是偶函数,故只有x2(t)是偶信号。
3.7 假定周期信号x(t)有基波周期为T,傅里叶系数为,的傅里叶级数系数为b k。
已知,试利用傅里叶级数的性质求a k用b k和T表达的表达式。
解:当k=0时,故3.8 现对一信号给出如下信息:(1)x(t)是实的且为奇函数;(2)x(t)是周期的,周期T=2,傅里叶级数为a k;(3)对|k|>1,a k=0;(4)试确定两个不同的信号都满足这些条件。