傅里叶变换(周期和非周期信号)
- 格式:ppt
- 大小:1.83 MB
- 文档页数:51
连续时间周期信号傅里叶级数:⎰=T dt t x Ta )(1⎰⎰--==T tTjkT tjk k dt et x Tdt et x Ta πω2)(1)(1离散时间周期信号傅里叶级数:[][]()∑∑=-=-==Nn nN jk Nn njkwk e n x Ne n x Na /2110π连续时间非周期信号的傅里叶变换:()⎰∞∞--=dt e t x jw Xjwt )(连续时间非周期信号的傅里叶反变换:()dw e jw X t x jwt ⎰∞∞-=π21)(连续时间周期信号傅里叶变换:∑+∞-∞=⎪⎪⎭⎫⎝⎛-=k k kw a jw X T 22)(πδπ连续时间周期信号傅里叶反变换:()dw e w w t x jwt ⎰∞∞--=0221)(πδπ离散时间非周期信号傅里叶变换:∑∞-∞=-=nnj e n x eX ωωj ][)(离散时间非周期信号傅里叶反变换:⎰=π2d e )(e π21][ωωωn j j X n x离散时间周期信号傅里叶变换:∑+∞-∞=-=kk k a X )(π2)e (0j ωωδω离散时间周期信号傅里叶反变换:[]ωωωδωd e n n j ⎰--=π20πl)2(π2π21][x拉普拉斯变换:()dt e t s Xst -∞∞-⎰=)(x拉普拉斯反变换:()()s j21t x j j d e s X st ⎰∞+∞-=σσπZ 变换:∑∞-∞=-=nnz n x X ][)z (Z 反变换: ⎰⎰-==z z z X r z X n x n nd )(πj21d )e ()(π21][1j π2ωω。
傅里叶变换的变换对对于N点序列{x[n ]} 0 ≤ n < N ,它的离散傅里叶变换(DFT)为? x [k ] = N - 1 Σ n = 0 e - i 2 π –––––N n k x[n ] k = 0,1, …,N-1. 其中e 是自然对数的底数,i 是虚数单位。
通常以符号F表示这一变换,即? x = Fx 离散傅里叶变换的逆变换(IDFT)为:x[n ] = 1 ––N N - 1 Σ k = 0 e i 2 π –––––N nk ? x [k ] n = 0,1, …,N-1. 可以记为:x = F -1 ? x 实际上,DFT和IDFT变换式中和式前面乘上的归一化系数并不重要。
在上面的定义中,DFT和IDFT前的系数分别为 1 和1/N。
有时会将这两个系数都改成1/ √ ––N ,这样就有x = FFx,即DFT成为酉变换。
从连续到离散连续时间信号x(t) 以及它的连续傅里叶变换(CT)? x ( ω) 都是连续的。
由于数字系统只能处理有限长的、离散的信号,因此必须将x 和? x 都离散化,并且建立对应于连续傅里叶变换的映射。
数字系统只能处理有限长的信号,为此假设x(t)时限于[0, L],再通过时域采样将x(t) 离散化,就可以得到有限长的离散信号。
设采样周期为T,则时域采样点数N=L/T。
x discrete (t) = x (t) N - 1 Σ n = 0 δ(t-nT) = N - 1 Σ n = 0 x (nT) δ(t-nT) 它的傅里叶变换为? x discrete ( ω) = N - 1 Σ n = 0 x (nT)F δ(t-nT) = 1 ––T N - 1 Σ n = 0 x (nT)e - i 2 π n ω T 这就是x(t)时域采样的连续傅里叶变换,也就是离散时间傅里叶变换,它在频域依然是连续的。
类似的,频域信号也应当在带限、离散化之后才能由数字系统处理。