泰勒公式(泰勒中值定理)
- 格式:ppt
- 大小:1.58 MB
- 文档页数:25
泰勒公式展开泰勒公式也称为泰勒中值定理,是高等数学中的一个重要定理,也是考研数学中的一个重要考点,常用于函数极限的计算、中值问题和不等式的证明以及函数的无穷级数展开式中,因此大家应该理解并熟练掌握其应用。
f(x)=f(x0)+f′(x0)1!⋅(x−x0)+f′′(x0)2!⋅(x−x0)2+...+f(n)(x0)n!⋅(x−x0)n+Rn(x)f(x)=f(x0)+f′(x0)1!⋅(x−x0)+f″(x0)2!⋅(x−x0)2+...+f(n)(x0)n!⋅(x−x0)n+Rn(x) 即:f(x)=f(x0)+∑i=1nf(i)(x0)i!⋅(x−x0)i+Rn(x)即:f(x)=f(x0)+∑i=1nf(i)(x0)i!⋅(x−x0)i+Rn(x)其中Rn(x)Rn(x)表示泰勒公式的余项,可以估算近似的误差,相当于无穷小将其中的x0x0带入00就可以得到麦克劳林展开,即f(x)=f(0)+f′(0)1!⋅x+f′′(0)2!⋅x2+...+fn(0)n!⋅xnf(x)=f(0)+f′(0)1!⋅x+f″(0)2!⋅x2+...+fn(0)n!⋅xn 然后虽然我们知道了这两个公式,还是不会用诶(当然大佬可能都是知道怎么用的..然而我确是一脸懵233)..下面说两个实例展开y=sin(x)y=sin(x)和y=cos(x)y=cos(x)用y=sin(x)y=sin(x)来说:前置知识:fn(x)=sin(x+nπ2)fn(x)=sin(x+nπ2)(推一下x=1、2、3...x=1、2、3...即可找到公式)然后我们需要求出f(0)f(0)的nn阶导,推一下发现f1(0)f3(0)f5(0)f7(0)=1=−1=1=−1f2(0)=0f4(0)=0f6(0)=0f8(0)=0f1(0)=1f2(0)=0f3(0)=−1f4(0)=0f5(0)=1f6(0)=0f7(0)=−1f8(0)=0也就是f2n−1(0)=(−1)n−1f2n−1(0)=(−1)n−1,f2n(0)=0f2n(0)=0 通过麦克劳林展开可以得到sin(x)=x1!−x33!+x55!−...+(−1)n−1x2n−1(2n−1)!sin(x)=x1!−x33!+x55!−...+(−1)n−1x2n−1(2n−1)!同理可以得到cos(x)=1−x22!+x44!−...+(−1)nx2n(2n)!cos(x)=1−x22!+x44!−...+(−1)nx2n(2n)!计算近似值前置知识:e=limx→0(1+x)1xe=limx→0(1+x)1x即e=limx→∞(1+1x)xe=limx→∞(1+1x)x因此令f(x)=exf(x)=ex通过麦克劳林展开可以得到ex=f(x)=e0+e01!⋅x+e02!⋅x2+...+e0n!⋅xn+Rn=1+x1!+x22!+x33!+...+xnn!+Rnex=f(x)=e0+e01!⋅x+e02!⋅x2+...+e0n!⋅xn+Rn=1+x1!+x22!+x33!+...+xnn!+Rn忽略余项得到ex≈1+x1!+x22!+x33!+...+xnn!+Rnex≈1+x1!+x22!+x33!+...+xnn! +Rn带入x=1x=1,e≈1+11!+12!+13!+...+1n!。
泰勒中值定理一、泰勒中值定理若)(x f 在含有0x 的某个区间I 内具有直到1n +阶导数,则当x I ∈时,有()20000000()()()()'()()()()()2!!n n n f x f x f x f x f x x x x x x x R x n ''=+-+-++-+ ,其中拉格朗日型余项(1)0()()(),(1)!n n n f R x x x n ξξ+=-+位于0x 与x 之间.当0n =时,泰勒中值定理就是拉格朗日中值定理.取00x =,()(1)2(0)(0)()()(0)'(0),2!!(1)!n n n nf f f f x f f x x x x x n n ξξθ+''=+++++=+ 位于0与x 之间,(0,1)θ∈,其为n 阶麦克劳林公式.二、基本函数的高阶导数公式⎪⎩⎪⎨⎧<=>=-mn x A m n n m n x n m n mn m !0)()( 1)()(!)1(1+±-=⎪⎭⎫ ⎝⎛±n n m a x n a x , nn n a x n a x )()!1()1()][ln(1)(±--=±-,a a a nx n x ln )()(=, )2sin()(sin )(πn ax a ax n n +=,)2cos()(cos )(πn ax a ax n n +=;()()()()()()12120[()()]()(),[()()][()][()]nn n n n kn k k n k k u x k v x k u x k v x u x v x C u x v x -=+=+=⋅∑; 三、基本函数的麦克劳林展开式(1)2(1)(1)(1)(1)12!!mnm m m m m n x mx x x n ---++=+++++ ,1x < (2) ++-++-+-=++1)1(432)1ln(1432n x x x x x x n n )11(≤<-x (3) ++++++=!!3!2!1132n x x x x e n x)(+∞<<-∞x (4) +--+-+-=--)!12()1(!5!3sin 12153n x x x x x n n )(+∞<<-∞x (5) +-+-+-=)!2()1(!4!21cos 242n x x x x n n )(+∞<<-∞x 当0x →时,有233(1)(1)(2)(1)1()2!3!mm m m m m x mx x x o x ---+=++++12332111(1)1()2816x x x x o x +=+-++,233ln(1)()23x x x x o x +=-++2331()1!2!3!x x x x e o x =++++,23233ln ln ln 1()1!2!3!xa a a a x x x o x =++++355sin ()3!5!x x x x o x =-++,244cos 1()2!4!x x x o x =-++,3552tan ()315x x x x o x =+++3553arcsin ()640x x x x o x =+++,355arctan ()35x x x x o x =-++例1、求下列高阶导数)()(x yn(1)设502)54(+=x y ,则!100450)100(⋅=y .(2)设232+-=x x x y ,求)(n y . 解: ])2(2)1(1[!)1()21(2)11(11)()()(++-++⋅-=-++=n n n n n n x x n x x y. (3)设x y x y=-,则1(2,1)1!(1),2!()n n n n n n z n x z n y y x y ++∂∂=-=⋅∂-∂ (3)设x x y 44cos sin +=,则)24cos(4)4(cos 41)43()1()()()(πn x x y n n n n +=+=-.(4)设n n x x x y )4(cos )2(2π-+=,求)()(x f n ,)1()(n f .解:()()()0()[(1)][(2)(cos )]4nn k n k nn n k n k x f x C x x π-==-+∑ 21)(2!3|)4(cos)2(!)1(n n x nnnnn n xx n C f=+==π.(5)设函数2()sin f x x x =,求 (2009)(0)f.解:321221sin [(1)]3!(21)!n n x x x x x x n --=-++-+- 52131(1)3!(21)!n n x x x n +-=-++-+- 则(2009)(0)12009!2007!f =,故(2009)(0)20082009f=⨯. 注(1): 若01()nn f x a a x a x =++++ ,则()(0)()(0)(0)!n n f f x f f x x n '=++++ ,于是()(0)!n n f a n =,故()(0)!n n f n a =. 注(2):若求(2009)()4fπ,则只能用莱布尼兹公式完成.例2、计算下列极限(1)4301sin sinlim tan x x x x x x →-+;(2)20(1)ln(1)lim 1x x x x x e →-++-;(3)21lim ln(1)x x x x →∞⎡⎤-+⎢⎥⎣⎦; (1)解:原式33303033000tan ~()sin 113!lim lim sin lim 6x x x x x x o x x x x x x x →→→+-=+==. (2)解:原式22222200(1)[()]()122lim lim 2x x x xx x x o x o x x x →→-+-+-+===-. (3)解:原式21222()ln(1)12lim lim 2x t x x t o x t t t t =∞-∞→∞→∞+-+=== 或(泰勒)2221111lim (())22x x x o x x x →∞⎡⎤=--+=⎢⎥⎣⎦.例3、设lim )0x ax b →+∞-=,求b a ,.解:10lim )lim x tx t bt aax b t =→+∞→--=3021001(2)()1()223lim lim 0333a t t t t o t bt o t t b b t t =→→++-⎡⎤==++-=-=⎢⎥⎣⎦∴ 32,1==b a . 例4、当0→x 时,x x33tan -是关于x 的k 阶无穷小,则3=k .解:(一)tan tan 00003331(tan )ln 3lim lim lim3limx x x x xk k kx x x x x x x x x -→→→→---== 3330()ln 33ln 3lim 3k k x x x o x x x =→++-==故3=k . 解:(二)tan 0000333(tan )tan lim ln 3lim ln 3lim lim3x x k k k x x x x x x x x x xξξξ→→→→---== 33300()tan ln 33ln 3lim ln 3lim 3k k k x x xx o x x x x x x =→→++--==,故3=k . 例5、设函数)(x f 在0=x 的某邻域内具有一阶连续导数,且,0)0(,0)0(≠'≠f f 若)0()2()(f h bf h af -+在0→h 时是比h 高阶的无穷小,试确定b a ,的值.解: 由条件可知),()0()0()(h h f f h f ο+'+=).()0(2)0()2(h h f f h f ο+'+= 所以)0()2()(f h bf h af -+=).()0()2()0()1(h h f b a f b a ο+'++-+从而⎩⎨⎧=+=-+0201b a b a ,可得⎩⎨⎧-==12b a .注(1):设函数)(x f 在0=x 的某邻域内具有n 阶导数,则当0x →时,有 ()(0)()(0)(0)()!n n n f f x f f x x x n ο'=++++ .证明:()0(0)()[(0)(0)]!lim n nn x f f x f f x x n x→'-+++ ()1'10(0)'()(0)''(0)(1)!lim n n L Hn x f f x f f x x n nx --→'-----= ()2'20(0)''()''(0)(2)!lim (1)n n L Hn x f f x f x n n n x--→----=- (1)(1)()'0()(0)(0)lim !n n n L Hx f x f f x n x --→--== (1)(1)()01()(0)[lim (0)]0!n n n x f x f f n x--→-=-=.注(2):设函数)(x f 在0=x 的某邻域内具有(1)n +阶导数,利用注(1)的结论,则有()(1)10(0)()(0)(0)(0)!lim (1)!n nn n x f f x f f x xf n x n ++→'---=+ .例6、设()f x 在0x =处具有二阶导数,且有42260()ln(1)2lim 3x x f x x x x →++-=, 求(0),'(0),''(0)f f f .解:当0x →时,22''(0)()(0)(0)()2!f f x f f x x x ο'=+++46226ln(1)()23x x x x o x +=-++于是,422602()ln(1)lim 3x x f x x x x →++-=4566601''(0)1[(0)](0)[]()22!3lim x f f x f x x x x ο→'-++++= 201[(0)](0)''(0)12lim []2!3x f f xf x →'-+=++故有1(0),2f ='(0)0f =,而''(0)122!33f +=,即2''(0)3f =.例7、设函数)(x f 在(1,1)-内任意阶可导, ()(0)0n f ≠,1,2,n = ,且满足泰勒公式 (1)()1(0)()()(0)'(0),(1)!!n n n nf f x f x f f x x x n n θ--=++++- (0,1)θ∈,求0lim x θ→.解:()()(1)0()(0)lim (0)0n n n x f x f f xθθ+→-=≠(1)()1()()100(0)(0)()(0)'(0)()(0)(1)!!lim !limn n n nn n n x x f f f x f f x x xf x f n n n x x θ--+→→-------= (1)(1)(0)(0)!(1)!1n n f f n n n ++==++则01lim 1x n θ→=+. 例8、设()f x 在(0,)+∞内满足''()1f x ≤,且lim ()x f x →+∞存在,求证:lim '()0x f x →+∞=.解:当(0,)x ∈+∞时,任取0ε>,有2'()()()'(),(,)2f f x f x f x x x ξεεεξε+=++∈+则()()''()()()''()'()22f x f x f f x f x f f x εξεξεεεε+-+-=-≤+ 1()()2f x f x εεε≤+-+ 注意到lim ()x f x →+∞存在,有1lim '()lim[()()]22x x f x f x f x εεεε→+∞→+∞≤+-+=于是00lim '()lim lim '()lim 02x x f x f x εεε++→+∞→+∞→→=≤=故lim '()0x f x →+∞=.练习题1、设xx x f +-=11)(,则nn n x n x f )1(!2)1()()(+⋅⋅-=. 2、设函数)1ln()(2x x x f +=,则当3≥n ,2!)1()0(1)(--=-n n fn n . 3、设222xy x y=-,则(2,1)n nz y ∂=∂ 1(1)![1]3nn n +-+.4、设函数()(1)sin f x x x x =-,则(2010)(0)f =2010-.5、计算下列极限(1)0x →=14-(2)0x x →=1(3)30arctan lim ln(12)x x x x →-=+16- (4)0tan 22tan lim sin 33sin x x x x x →-=-12-(5)22201cos lim()sin x x x x →-=43(6)30sin(sin )sin[sin(sin )]lim sin x x x x →-=166、若0)(6sin lim 30=⎥⎦⎤⎢⎣⎡+→x x xf x x ,则206()lim x f x x →+=36. 7、设2)()1l n (lim 220=+-+→x bx ax x x ,则------------------------------------------AA 25,1-==b aB 2,0-==b aC 25,0-==b a D 2,1-==b a8、当0,1cos cos 2cos3x x x x →-对于无穷小x 的阶数为2.9、设当)1(,02++-→bx ax e x x 是比2x 高阶的无穷小,则-------------------------AA 1,21==b aB 1,1==b aC 1,21=-=b a D 1,1=-=b a10、当230,(1)1()x x e ax bx cx o x →++=++是比2x 高阶的无穷小,试确定,,a b c .121,,633a b c ==-=11、当0,()ln(1)1xx f x ax bx→=-++关于无穷小x 的阶数最高,试确定,a b .11,2a b ==-12、设)(x f 在0=x 的某邻域内具有二阶连续导数,且0)0(≠f ,0)0(≠'f ,(0)0f ''≠, 求证: 存在惟一的一组实数321,,λλλ,使得当0→h 时,)0()3()2()(321f h f h f h f -++λλλ是比2h 高阶的无穷小.。