泰勒(Taylor)公式
- 格式:pdf
- 大小:86.85 KB
- 文档页数:2
3.3泰勒(Taylor)公式泰勒公式的建立泰勒(Taylor) (英)1685-1731泰勒公式常用函数的麦克劳林公式多项式函数特点一、泰勒公式的建立简单函数复杂的函数近似表示:(1)易计算函数值;(2)导数仍为多项式;用怎样的多项式去逼近给定的函数误差又如何呢,)(0存在若x f 'xx x ∆+=0记xx f x f x x f ∆'≈-∆+)()()(000回想微分一次多项式在x 0附近有=)(x f ))(()()(000x x x f x f x f -'+≈,0时当x x →))(()(000x x x f x f -'+)(0x x o -+其误差是比(x –x 0)高阶的无穷小.需要解决的问题如何提高精度?如何估计误差?{不足 1. 精确度不高; 2. 误差不能定量的估计.))(()(000x x x f x f -'+)(x f ≈希望一次多项式在x 0附近用适当的高次多项式2问题(1)系数怎么定?(2)误差(如何估计)表达式是什么?nn n x x a x x a x x a a x P )()()()(002010-++-+-+= )(x f ≈nn n x x a x x a x x a a x P )()()()(0202010-++-+-+= ,)(00a x P n =f ')()(0)(0)(x f x P k k n=),(00x f a =),()(00x f x P n =又,)(10a x P n ='),()(x f x P '='又0000nk ,,2,1,0 =因为因为所以所以3.3 泰勒公式n 次多项式系数的确定),(101x a =⋅)(!202x f a ''=⋅, )(10)(x f a k k =得)(!0)(x f a n n n =⋅00n 同理代入P n (x )中得=)(x P n .)(0nx x -+ ),,2,1,0(n k =20)(x x -+)(0x f )(0x x -+)(0x f '!2)(0x f ''!)(0)(n x f n 能满足要求.有x x x f x x x f x f )(!2)())(()(200000-''+-'+阶内有在若)1(),()()(0+∈n b a x x f ,),(时则当b a x ∈二、泰勒公式导数,泰勒中值定理:nn x x n x f )(!)(00)(-++ )(x R n +10)1()()!1()()(++-+=n n n x x n f x R ξ其中).(0之间与在x x ξ的幂展开的按称为)()(0x x x f -n 阶泰勒公式.的幂展开的按称为)()(0x x x f -n 次泰勒多项式.拉格朗日型余项1.泰勒公式就是拉格朗日中值公式200000)(!2)())(()()(x x x f x x x f x f x f -''+-'+=).(0之间与在x x ξ10)1(00)()()!1()()(!)(++-++-++n n n n x x n f x x n xf ξ n 阶泰勒公式00000000时当.2. 在泰勒公式中,故之间介于则,,0x ξ),10(<<=θθξξx 可表为这时的泰勒公式, 按x 的幂(在零点)展开的泰勒公式;带有拉格朗日型余项的麦克劳林公式.,0=n ,00=x 若称为或称为f (x )的麦克劳林(Maclaurin)公式nn xn f x f x f f x f !)0(!2)0()0()0()()(2++''+'+= 1)1()!1()(++++n n x n x f θ)10(<<θ近似公式误差估计式为1||)!1(||++≤n n x n M R 带有拉格朗日型余项≈)(x f nn xn f x f x f f !)0(!2)0()0()0()(2++''+'+当不需要余项的精确表达式时,n 阶泰勒公式也可写成带有佩亚诺(Peano)0()[()]nn R x o x x =-佩亚诺型余项.的泰勒公式.称为!n 型余项0()()f x x x -称按为的幂展开的解,e )()()()(xn x f x f x f ===''=' x x e )(=的n 阶带有拉格朗日型余项麦克劳林公式.因为(P 142, 例1)三、常用函数的麦克劳林公式nn xn f x f x f f x f !)0(!2)0()0()0()()(2++''+'+= 1)1()!1()(++++n n x n x fθ)10(<<θn 阶带有拉格朗日型余项的麦克劳林公式1)0()0()0()0()(===''='=n ff f f .e )()1(xn x fθθ=+代入公式=xe ).10(,)!1(e !!2112<<+++++++θθn xnx n n x x x 所以得.!!21e 2n x x x nx++++≈ xe 有的近似表达公式这时产生的误差为1)!1(e ++=n xn x n R θ1e (1)!xn xn +<+)10()!1(e !!21e 12<<++++++=+θθn xn xx n n x x x 3.3 泰勒公式(01)θ<<时当1=x ,!1!2111e n ++++≈ 得到.)!1(3+<n 其误差n R )!1(e +<n ,8=n 若取其误差8R .!93<,718279.2e ≈可算出解),,2,1,0(2πsin )()( =⎪⎭⎫ ⎝⎛+=n n x x f n ,0)0(=f 例,1)0(='f ,0)0(=''f ,,1)0( -='''f 因为所以x x f sin )(=求的n 阶带有拉格朗日型余项麦克劳林公式.(P 143, 例2)=x sin ≈x sin .)!12()1(!5!3212153m m m R m x x x x +--+-+--- ,)!12()1(!5!312153--+-+---m x x x x m m 的麦克劳林公式为从而x sin 的多项式近似表达式为所以x sin=mR 2).10(,)!12(12<<+≤+θm xm mm m R m x x x 212153)!12()1(!5!3+--+-+--- ξ),,2,1,0(2πsin )()( =⎪⎭⎫ ⎝⎛+=n n x x f n x θ,3x≤12)!12(]2π)12(sin[++++m x m m ,1时当=m ,001.0要使误差小于,2时当=m ,001.0要使误差小于,sin x x ≈有.1817.0<x 必须2R 误差,!3sin 3x x x -≈有4R 误差.6544.0<x 必须6,1205x ≤xy =泰勒多项式逼近xsin xy sin =泰勒多项式逼近xsin mm 2)!12(!5!3-xy =xy sin =!33xx y -=o泰勒多项式逼近xsin mm 2)!12(!5!3-xy =xy sin =!33xx y -=o!5!353xx x y +-=泰勒多项式逼近xsin mm 2)!12(!5!3-xy =!7!5!3753xx x x y -+-=xy sin =!33xx y -=!5!353xx x y +-=o泰勒多项式逼近xsin mm 2)!12(!5!3-!11!9!7!5!3119753xx x x x x y -+-+-=xy sin =o类似地, 有)!2()1(!4!21cos 242m x x x x mm -+-+-= ]π)22(cos[++m x θ,)!22(222+++m x m ).10(<<θ例.()(1),(),0.f x x R x αα=+∈=()()(1)(1)(1),n nfx n x αααα-=--++ ()(0)(1)(1),n fn ααα=--+ 解2(1)(1)12!x x x αααα-+=+++(1)(1)().!nnn x o x n ααα--+++特别,有,n =α21(1)1)1.2!n n n n n x nx x nx x --+=+++++ (二项式展开公式1,α=-当时有2311(1)(),1n n n x x x x o x x=-+-++-++ 2311().1n n x x x x o x x =++++++-1253-=x x m ⎪⎩⎪⎨⎧+++++=!!21e 2n x x x n x 常用函数的麦克劳林公式带佩氏余项),0()(→x x o n 带拉氏余项,)!1(e 1++n x x n θ)10(<<θ(P 142--144))!12()1(!5!3sin 1--++---m x x x m ),0()(2→x x o m ⎪⎩⎪⎨⎧+带佩氏余项带拉氏余项,)!12(]2π)12(sin[12++++m x m m x θ)10(<<θ)!2()1(!6!4!21cos 2642m x x x x x m m -++-+-= ⎪⎩⎪⎨⎧+),0()(12→+x x o m 带佩氏余项带拉氏余项,)!22(]2π)22(cos[22++++m x m m x θ3.3 泰勒公式),0()(→x x o n )10(<<θnx x x x x n n 132)1(32)1ln(--+-+-=+ ⎪⎩⎪⎨⎧+带佩氏余项带拉氏余项,)1)(1()1(11++++-n n n x x n θ)10(<<θ带佩氏余项2(1)(1)12!(1)(1)!n x x x n x n ααααααα-+=+++--++ ),0()(→x x o n⎧3.3 泰勒公式带拉氏余项⎪⎩⎪⎨+11(1)(1)()(1),(1)!n n n n x x n αααααθ--+--+-++ )10(<<θ例解用间接展开的方法较简便.-x )(!!21e 2n nx x o n x x x +++++= 1112----+n n n x x xx 取代用-(带佩亚诺型余项).阶麦克劳林公式展开为把n x x f x-=e )(3.3 泰勒公式=e 两端同乘x , 得).()!1()1(!2e 132n n n x x o n x x x x x +--+-+-=-- )()!1()1(!21+--+-x o n x例.()30sin cos lim sin x x x x x →-利用带有佩亚诺型余项的麦克劳林公式求3.3 泰勒公式(P 144, 例3)解33sin ()3!x x x o x =-+22x 33x cos 1()2!x o x =-+()2!x o x =-+[]x x 注:两个比x 3高阶无穷小的代数和还是比x 3的高阶无穷小()30sin cos lim sin x x x x x →-则3330()3=lim x x o x x →+1=333()3x o x +=-x x x cos sin处的在求函数1423)(023-=+-+=x x x x x f 解5)1(-=-'f 8)1(=-f 263)(2-+='x x x f 一阶和三阶泰勒公式及相应的拉格朗日型余项.)()!)()(000)(x R x x k x f x f n k n k k +-=∑=3.3 泰勒公式66)(+=''x x f 6)(='''x f 0)1(=-''f 6)1(=-'''f )()1(58)(1x R x x f ++-=f (x )的一阶泰勒公式是!2)1)((21+''=x f R ξ2)1(!2)1(6++=x ξ其中.)1(之间与介于x -ξ三阶泰勒公式是.0)(3≡x R )()1()1(58)(33x R x x x f ++++-=)0)(()4(=x f 因。
高数极限计算泰勒公式
高数中的极限计算是指当一个函数的变量趋近于特定值或者无穷时,函数值接近于某一特定值的概念,极限计算用于求解一些模糊不定的函数表达式、不可解的不定积分及确定非线性微分方程的问题,极限计算的最经典方法就是泰勒公式。
泰勒公式(Taylor’s theorem)是一种可以用来求解复杂函数的极限计算方法,它是一种连续函数的一阶无穷近似,也就是可以将一个函数f(x)无穷近似等价于函数Rn(x),这个无穷近似的函数Rn(x)可以用如下方式来表示:
Rn(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-
a)^3/3!+....+f^(n)(a)(x-a)^n/n!
其中a为函数f(x)的某一点,Rn(x)是f(x)的后n项泰勒展开式,当n趋向无穷的时候,Rn(x)接近f(x)的极限,而这就可以用来求解复杂函数的极限。