变化规律。
[方法三] 二次函数极值法
设经过时间t汽车和自
x汽
行车之间的距离x, 则:
x
xv自 t1 2a2t6t2 3t2
x自
当t 2(63) 2s时
xm
62 4(3)
6m
2
2
[方法三] 二次函数极值法
设经过时间t汽车和自
x汽
行车之间的距离x, 则:
x
xv自 t1 2a2t6t2 3t2
x自
当t 2(63) 2s时
(2)相遇
两相向运动的物体,当各自位移大小 之和等于开始时两物体的距离,即相遇。 也可以是两物体同向运动到达同一位置。
一、解题思路
讨论追及、相遇的问题,其实质就是分 析讨论两物体在相同时间内能否到达相同的 空间位置的问题。
一、解题思路
讨论追及、相遇的问题,其实质就是分 析讨论两物体在相同时间内能否到达相同的 空间位置的问题。
xm
62 4(3)
6m
2
2
那么,汽车经过多少时间能追上自行车?此时
汽车的速度是多大?汽车运动的位移又是多大?
[方法三] 二次函数极值法
设经过时间t汽车和自
x汽
行车之间的距离x, 则:
x
xv自 t1 2a2t6t2 3t2
x自
当t 2(63) 2s时
xm
62 4(3)
6m
2
2
那么,汽车经过多少时间能追上自行车?此时
v自T
1 2
aT2
T 2v自 4s a
[方法一] 公式法
当汽车的速度与自行 车的速度相等时,两车之 间的距离最大。设经时间t 两车之间的距离最大。则:
x汽
x x自