高一物理必修一追及与相遇问题
- 格式:pptx
- 大小:327.23 KB
- 文档页数:29
高一物理追及相遇问题追及和相遇是高一物理中常见的运动学问题,这类问题涉及到两个或多个物体在同一时间或不同时间运动的情况。
解决这类问题的关键是掌握运动学的基本公式和定理,理解物体之间的相对运动关系,并运用数学工具进行计算和分析。
一、追及问题追及问题通常是指两个物体在同一时间开始运动,其中一个物体追赶另一个物体,直到追上或超过被追物体。
解决追及问题的关键是找出两个物体之间的位移差、速度差和时间关系。
定义变量设被追物体为A,追赶物体为B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 = v1t + 1/2at^2(匀加速运动)(2) x2 = v2t(匀速运动)(3) 当A、B速度相等时,有v1 = v2 + at求解方程解方程组(1)(2)(3),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
二、相遇问题相遇问题是指两个物体在同一地点开始运动,其中一个物体迎向另一个物体,直到两个物体相遇或相离。
解决相遇问题的关键是找出两个物体之间的位移和速度关系。
定义变量设相遇的两个物体分别为A、B。
设t时刻A、B的位移分别为x1、x2,速度分别为v1、v2。
建立数学方程根据运动学公式,我们可以建立以下方程:(1) x1 + x2 = v1t + v2t(相对速度)(2) v1 - v2 = at(相对加速度)求解方程解方程组(1)(2),可以求出t、x1、x2的值。
分析结果根据求出的t、x1、x2的值,可以判断A、B是否能够相遇,相遇时A、B的位移和速度关系。
如果A、B不能相遇,还可以求出它们之间的距离。
高一物理追击和相遇问题两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。
一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。
若甲的速度小于乙的速度,则两者之间的距离。
若一段时间内两者速度相等,则两者之间的距离。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即。
⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
3、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。
⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
【典型例题】例1.在十字路口,汽车以3米每二次方秒的加速度从停车线启动做匀加速运动,恰好有一辆自行车以6米每秒的速度匀速驶过停车线与汽车同方向行驶,求:(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【针对训练】1、为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速v =120km/h.假设前方车辆突然停止,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s.刹车时汽车的加速度为a=4m/s2.该高速公路上汽车间的距离s至少应为多少?(取重力加速度g=10m/s2.)2、客车以20m/s的速度行驶,突然发现同轨前方120m处有一列货车正以6m/s的速度同向匀速前进,于是客车紧急刹车,刹车引起的加速度大小为0.8m/s2,问两车是否相撞?3、如图,A、B两物体相距S=7米,A正以V1=4米/秒的速度向右做匀速直线运动,而物体B此时速度V2=10米/秒,方向向右,做匀减速直线运动(不能返回),加速度大小a=2米/秒2,从图示位置开始计时,经多少时间A追上B.4、某人在室内以窗户为背景摄影时,恰好把窗外从高处落下的一小石子摄在照片中。
四、运动的图象运动的相遇和追及问题1、图象:(1) x—t图象①物理意义:反映了做直线运动的物体的位移随时间变化的规律。
②图线斜率的意义A.图线上某点切线的斜率的大小表示物体速度的大小.B.图线上某点切线的斜率的正负表示物体方向.③两种特殊的x-t图象(1)匀速直线运动的x-t图象是一条过原点的直线.(2)若x-t图象是一条平行于时间轴的直线,则表示物体处于静止状态纵坐标表示物体运动的位移,横坐标表示时间Array图像意义:表示物体位移随时间的变化规律①表示物体做静止;②表示物体做匀速直线运动;③表示物体做匀速直线运动;①②③交点的纵坐标表示三个运动物体相遇时的位移相同。
(2)v—t图象①物理意义:反映了做直线运动的物体的速度随时间变化的规律.②图线斜率的意义a图线上某点切线的斜率的大小表示物体运动的加速度的大小.b图线上某点切线的斜率的正负表示加速度的方向.③图象与坐标轴围成的“面积”的意义a图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。
b若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时间轴的下方,表示这段时间内的位移方向为负方向.③常见的两种图象形式(1)匀速直线运动的v-t图象是与横轴平行的直线.(2)匀变速直线运动的v-t图象是一条倾斜的直线.纵坐标表示物体运动的速度,横坐标表示时间图像意义:表示物体速度随时间的变化规律①表示物体做匀速直线运动;②表示物体做匀加速直线运动;③表示物体做匀减速直线运动;①②③交点的纵坐标表示三个运动物体的速度相等;图中阴影部分面积表示0~t1时间内②的位移【习题1】在下面的图像中描述匀加速直线运动的有()A.甲、乙 B.乙、丁 C.甲、丁 D.丙、丁【习题2】(双选)甲、乙、丙、丁四个物体在沿同一条直线上运动,规定统一的正方向,建立统一的X坐标轴,分别画出四个物体的位移图像或速度图像,如图所示,以下说法正确的是()A.甲与乙的初位置一定不同,丙与丁的初位置可能相同B.在t1时刻,甲与乙相遇,丙与丁相遇C.甲与丙的运动方向相同D.若丙与丁的初位置相同,则在t1时刻丙在丁的前面11【习题3】(双选)图为P、Q两物体沿同一直线作直线运动的s-t图,下列说法中正确的有A. t1前,P在Q的前面B. 0~t1,Q的路程比P的大C. 0~t1,P、Q的平均速度大小相等,方向相同D. P做匀变速直线运动,Q做非匀变速直线运动【习题4】(双选)如图为一物体沿直线运动的速度图象,由此可知A. 2s末物体返回出发点B. 4s末物体运动方向改变C. 3s末与5s末的加速度大小相等,方向相反D. 8s内物体的位移为零【习题5】(双选)如图是某物体做直线运动的v-t图象,由图象可得到的正确结果是A. t=1s时物体的加速度大小为1.0 m/s2B. t=5s时物体的加速度大小为0.75 m/s2C. 第3s内物体的位移为1.5 mD. 物体在加速过程的位移比减速过程的位移小【习题6】t=0时,甲乙两汽车从相距80 km的两地开始相向行驶,它们的v-t图象如图所示.忽略汽车掉头所需时间.下列对汽车运动状况的描述正确的是A、在第1小时末,乙车改变运动方向B、在第2小时末,甲乙两车相距20 kmC、在前4小时内,乙车运动加速度的大小总比甲车的大D、在第4小时末,甲乙两车相遇2、相遇和追及问题:(1) 追击问题的分析方法:A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程;⎭⎬⎫;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定D.联立议程求解.说明:追击问题中常用的临界条件:⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离;⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上.【习题7】 一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?【习题8】 汽车正以10m/s 的速度在平直公路上前进,发现正前方有一辆自行车以4m/s 的速度同方向做匀速直线运动,汽车应在距离自行车多远时关闭油门,做加速度为6m/s 2的匀减速运动,汽车才不至于撞上自行车?(2) 相遇问题的分析方法:A. 根据两物体的运动性质,列出两物体的运动位移方程;B. 找出两个物体的运动时间之间的关系;C. 利用两个物体相遇时必须处于同一位置,找出两个物体位移之间的关系;D. 联立方程求解.【习题9】从同一抛点以30m/s初速度先后竖直上抛两物体,抛出时刻相差2s,不计空气阻力,取g=10m/s2,两个物体何时何处相遇?易错现象:1、混淆x—t图象和v-t图象,不能区分它们的物理意义2、不能正确计算图线的斜率、面积3、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退五、力重力弹力摩擦力1、力:力是物体之间的相互作用,有力必有施力物体和受力物体。
高一物理必修1 追击和相遇问题[学习目标]1、掌握追及及相遇问题的特点2、能熟练解决追及及相遇问题[自主学习]两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。
因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。
一、 追及问题1、追及问题中两者速度大小与两者距离变化的关系。
甲物体追赶前方的乙物体,假设甲的速度大于乙的速度,那么两者之间的距离。
假设甲的速度小于乙的速度,那么两者之间的距离。
假设一段时间内两者速度相等,那么两者之间的距离。
2、追及问题的特征及处理方法:“追及〞主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴ 初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即v v =乙甲。
⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①假设甲乙速度相等时,甲的位置在乙的后方,那么追不上,此时两者之间的距离最小。
②假设甲乙速度相等时,甲的位置在乙的前方,那么追上。
③假设甲乙速度相等时,甲乙处于同一位置,那么恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
3、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。
两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。
⑵假设被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t -图象的应用。
二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。
⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
相遇和追及问题【学习目标】1、掌握追及和相遇问题的特点2、能熟练解决追及和相遇问题【要点梳理】要点一、机动车的行驶安全问题:要点诠释:1、反应时间:人从发现情况到采取相应措施经过的时间为反应时间。
2、反应距离:在反应时间内机动车仍然以原来的速度v匀速行驶的距离。
3、刹车距离:从刹车开始,到机动车完全停下来,做匀减速运动所通过的距离。
4、停车距离与安全距离:反应距离和刹车距离之和为停车距离。
停车距离的长短由反应距离和刹车距离共同决定。
安全距离大于一定情况下的停车距离。
要点二、追及与相遇问题的概述要点诠释:1、追及与相遇问题的成因当两个物体在同一直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距越来越大或越来越小,这时就会涉及追及、相遇或避免碰撞等问题.2、追及问题的两类情况(1)速度小者追速度大者(2)速度大者追速度小者说明:①表中的Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x 0是开始追及以前两物体之间的距离;③t 2-t 0=t 0-t 1;④v 1是前面物体的速度,v 2是后面物体的速度. 特点归类:(1)若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度. (2)若后者追不上前者,则当后者的速度与前者相等时,两者相距最近. 3、 相遇问题的常见情况(1) 同向运动的两物体的相遇问题,即追及问题.(2) 相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了. 要点三、追及、相遇问题的解题思路 要点诠释:追及、相遇问题最基本的特征相同,都是在运动过程中两物体处在同一位置. ①根据对两物体运动过程的分析,画出物体运动情况的示意草图.②根据两物体的运动性质,分别列出两个物体的位移方程,注意要将两个物体运动时间的关系反映在方程中;③根据运动草图,结合实际运动情况,找出两个物体的位移关系; ④将以上方程联立为方程组求解,必要时,要对结果进行分析讨论. 要点四、分析追及相遇问题应注意的两个问题 要点诠释:分析这类问题应注意的两个问题:(1)一个条件:即两个物体的速度所满足的临界条件,例如两个物体距离最大或距离最小、后面的物体恰好追上前面的物体或恰好追不上前面的物体等情况下,速度所满足的条件.常见的情形有三种:一是做初速度为零的匀加速直线运动的物体甲,追赶同方向的做匀速直线运动的物体乙,这种情况一定能追上,在追上之前,两物体的速度相等(即v v =甲乙)时,两者之间的距离最大;二是做匀速直线运动的物体甲,追赶同方向的做匀加速直线运动的物体乙,这种情况不一定能追上,若能追上,则在相遇位置满足v v ≥甲乙;若追不上,则两者之间有个最小距离,当两物体的速度相等时,距离最小;三是做匀减速直线运动的物体追赶做匀速直线运动的物体,情况和第二种情况相似.(2)两个关系:即两个运动物体的时间关系和位移关系.其中通过画草图找到两个物体位移之间的数值关系是解决问题的突破口.要点五、追及、相遇问题的处理方法方法一:临界条件法(物理法):当追者与被追者到达同一位置,两者速度相同,则恰能追上或恰追不上(也是二者避免碰撞的临界条件)方法二:判断法(数学方法):若追者甲和被追者乙最初相距d 0令两者在t 时相遇,则有0x x d -=甲乙,得到关于时间t 的一元二次方程:当2b 4ac 0∆=->时,两者相撞或相遇两次;当2b 4ac 0∆=-=时,两者恰好相遇或相撞;2b 4ac 0∆=-<时,两者不会相撞或相遇.方法三:图象法.利用速度时间图像可以直观形象的描述两物体的运动情况,通过分析图像,可以较方便的解决这类问题。
高一物理追击相遇问题知识点总
结
1. 当两个物体在同一条直线上运动时,由于两物体的运动情况不同,所以两物体之间的距离会不断发生变化,两物体间距越来越大或越来越小时,就会涉及追及、相遇或避免碰撞等问题。
2. 追及问题的两类情况
(1) 若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度。
(2) 若后者追不上前者,则当后者的速度与前者速度相等时,两者相距最近。
3.相遇问题的常见情况
(1)两个同向运动的物体追上时相遇。
(2)相向运动的两物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。
4.追及相遇问题中的两个关系和一个条件
(1)两个关系:即时间关系和位移关系,这两个关系可通过画草图得到。
(2)一个条件:即两者速度相等,它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
5.追及相遇问题常见的情况
物体a追物体b,开始时,两个物体相距s。
(1)a追上b时,必有s=s a-s b且v a≥v b;
(2)要使两物体恰好不相撞,必有s=s a-s b且v a≥v b;;
(3)若使物体肯定不相撞,则由v a=v b;时s a-s b≤s,且之后
v a≤v b。
三总结提升
速度小者追速度大者
速度大者追速度小者
说明:
(1)表中的δx是开始追赶以后,后面物体因速度大而比前面物体多运动的位移;
(2)x0是开始追赶以前两物体之间的距离;
(3)t2-t0=t0-t1
(4)v1是前面物体的速度,v2是后面物体的速度。
专题进阶课三追及相遇问题核心归纳1.几种追及相遇问题的图像比较:类型图像说明匀加速追匀速(1)t =t 0以前,后面物体与前面物体间距逐渐增大;(2)t =t 0时,v 1=v 2,两物体间距最大,为x 0+Δx ;(3)t =t 0以后,后面物体与前面物体间距逐渐减小;(4)能追上且只能相遇一次匀速追匀减速匀加速追匀减速匀减速追匀速开始时,后面物体与前面物体间的距离在逐渐减小,当两物体速度相等时,即t =t 0时刻:(1)若Δx =x 0,则恰能追上,两物体只能相遇一次,这也是避免相撞的临界条件;(2)若Δx <x 0,则不能追上,此时两物体有最小距离,为x 0-Δx ;(3)若Δx >x 0,则相遇两次,设t 1时刻Δx =x 0,两物体第一次相遇,则必有匀速追匀加速匀减速追匀加速t2时刻两物体第二次相遇,且t2-t0=t0-t1注意:(1)v1是前面物体的速度,v2是后面物体的速度;(2)x0为开始时两物体之间的距离;(3)Δx为从开始追赶到两者速度相等时,前面或后面的物体多发生的位移2.追及相遇问题情况概述:(1)追及问题①若后者能追上前者,则追上时,两者处于同一位置,后者的速度一定不小于前者的速度。
②若后者追不上前者,则当后者的速度与前者相等时,两者相距最近。
(2)相遇问题①同向运动的两物体追及即相遇。
②相向运动的两物体,当各自发生的位移大小之和等于开始时两物体的距离时即相遇。
提醒:(1)若被追赶的物体做匀减速直线运动,一定要注意判断被追上前该物体是否已经停止运动。
(2)仔细审题,注意抓住题目中的关键字眼(如“刚好”“恰好”“最多”“至少”等),充分挖掘题目中的隐含条件。
3.解题思路:(1)根据对两物体运动过程的分析,画出两物体运动的示意图或v-t图像,找到临界状态和临界条件。
(2)根据两物体的运动性质,分别列出两物体的位移方程,注意要将两物体运动时间的关系反映在方程中。
(3)由运动示意图找出两物体位移间的关联方程,这是解题关键。
高一物理必修1 追及和相遇”问题两个物体同时在同一条直线上(或互相平行的直线上)做直线运动,可能相遇或碰撞,这一类问题称为“追及和相遇”问题。
(1)分析“追及”“相遇”问题时,一定要抓住一个条件,两个关系:①一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小、恰好追上或恰好追不上等.②两个关系是时间关系和位移关系,其中通过画草图找到两物体位移之间的数量关系,是解题的突破口.(2)若被追赶的物体做匀减速运动,一定要注意追上前该物体是否停止运动.(3)仔细审题,应注意抓住题目中的关键字眼,充分挖掘题目中的隐含条件,如“刚好”“恰好”“最多”“至少”等,往往对应一个临界状态,满足相应的临界条件.“追及和相遇”问题的特点:(1)有两个相关联的物体同时在运动。
(2)“追上”或“相遇”时两物体同时到达空间同一位置。
“追及和相遇”问题解题的关键是:准确分析两个物体的运动过程,找出两个物体运动的三个关系:(1)时间关系(大多数情况下,两个物体的运动时间相同,有时运动时间也有先后)。
(2)位移关系。
(3)速度关系。
在“追及和相遇”问题中,要抓住临界状态:速度相同....。
速度相同时,两物体间距离最小或最大。
如果开始前面物体速度大,后面物体速度小,则两个物体间距离越来越大,当速度相同时,距离最大;如果开始前面物体速度小,后面物体速度大,则两个物体间距离越来越小,当速度相同时,距离最小。
图象法解析追及、相遇问题[例1]:一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始加速行驶,恰在这时一辆自行车以6m/s的速度匀速驶来,从后边超过汽车。
试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析]:[方法一]:临界状态法汽车在追击自行车的过程中,由于汽车的速度小于自行车的速度,汽车与自行车之间的距离越来越大;当汽车的速度大于自行车的速度以后,汽车与自行车之间的距离便开始缩小,很显然,当汽车的速度与自行车的速度相等时,两车之间的距离最大。