第7章(离散变量的优化方法)
- 格式:ppt
- 大小:848.00 KB
- 文档页数:20
《机械优化设计》课程教学大纲一.课程基本信息开课单位:机械工程学院英文名称:Mechanical Optimize Design学时:总计48学时,其中理论授课36学时,实验(含上机)12学时学分:3.0学分面向对象:机械设计制造及其自动化,机械电子工程等本科专业先修课程:高等数学,线性代数,计算机程序设计,工程力学,机械原理,机械设计教材:《机械优化设计》,孙靖民主编,机械工业出版社,2012年第 5版主要教学参考书目或资料:1.《机械优化设计》,陈立周主编,上海科技出版社,1982年2.《机械优化设计基础》,高健主编,机械工业出版社,2000年3. 其它教学参考数目在课程教学工作实施前另行确定二.教学目的和任务优化设计是60年代以来发展起来的一门新学科,它是将最优化方法和计算机技术结合、应用于设计领域而产生的一种现代设计方法。
利用优化设计方法可以从众多的设计方案中寻找最佳方案,加快设计过程,缩短设计周期,从而大大提高设计效率和质量。
优化设计方法目前已经在机械工程、结构工程、控制工程、交通工程和经济管理等领域得到广泛应用。
在机械设计中采用最优化方法,可以加速产品的研发过程,提高产品质量,降低成本,从而达到增加经济效益的目的。
学生通过学习《机械优化设计》课程,可以掌握优化设计的基本原理和方法,熟悉建立最优化问题数学模型的基本过程,初步具备对工程中的优化设计问题进行建模、编程和计算的应用能力,为以后从事有关的工程技术工作和科学研究工作打下一定的基础。
三.教学目标与要求本门课程通过授课、计算机编程等教学环节,使学生了解优化设计的基本思想,优化设计在机械中的作用及其发展概况。
初步掌握建立数学模型的方法,掌握优化方法和使用MATLAB优化工具箱能力。
并具备一定的将机械工程问题转化为最优化问题并求解的应用能力四.教学内容、学时分配及其基本要求第一章优化设计概述(2学时)(一)教学内容1、课程的性质、优化的含义;优化方法的发展与应用;机械优化设计的内容及目的;机械优化设计的一般过程2、机械优化设计的基本概念和基本术语;优化设计的数学模型;优化问题的几何描述;优化设计的基本方法(二)基本要求机械优化设计的内容及目的。
最优化_第7章多目标及离散变量优化方法在实际问题中,往往存在多个相互关联的优化目标,这就引出了多目标优化问题。
与单目标优化问题相比,多目标优化问题更加复杂,需要综合考虑多个目标之间的平衡和权衡。
多目标优化方法可以分为基于加权法的方法和基于多目标遗传算法的方法。
其中,基于加权法的方法将多个目标函数转化为单一的综合目标函数,通过对综合目标函数的优化来求解多目标优化问题。
而基于多目标遗传算法的方法则直接将多目标函数进行优化,通过一系列的遗传算子(如选择、交叉和变异)来逐步逼近多目标的最优解。
在多目标优化问题中,离散变量的存在进一步增加了问题的复杂性。
离散变量是指变量的取值只能是有限个数中的一个,与连续变量不同。
针对离散变量的多目标优化问题,可以采用遗传算法、粒子群算法等进化计算方法进行求解。
这些算法通常会使用染色体编码来表示离散变量,采用相应的遗传算子对染色体进行进化操作。
在实际应用中,多目标及离散变量优化方法可以应用于多个领域。
举个例子,对于资源分配问题,可以将资源的分配方案和目标函数(如成本、效益、风险等)作为多个目标进行优化,得到最优的资源分配方案。
又比如,在工程设计中,可以将设计方案的多个目标(如性能、重量、成本等)作为优化目标,找到最优的设计方案。
总之,多目标及离散变量优化方法是解决实际问题中复杂优化问题的有效手段。
通过综合考虑多个目标和处理离散变量,可以得到更加全面和合理的最优解,提高问题的解决效果。
在实际应用中,需要选择合适的优化方法和算法,并针对具体问题进行适当的调整和改进,以获得更好的优化结果。
压缩机优化设计技术杨旭Email: yangzx@ 办公地点:东3楼甲322Design Optimization of Positive-DisplacementCompressors7 多目标与离散变量优化问题7.1 多目标优化数学模型7.2 多目标优化方法7.3 离散变量优化数学模型7.4 离散变量优化方法定义:多目标优化问题即为在满足相应约束条件下,同时达到两项及两项以上目标函数值的最优解。
【例子】现有现金70元,用于购买苹果和菠萝。
菠萝5元/kg ,苹果3元/kg ,要求总斤数不少于15kg ,菠萝不少于5kg 。
问题:购买多少斤菠萝和苹果,才能满足(1)花钱最少;(2)所买的水果重量最多。
(少花钱,多办事)数学模型:()()21122212121212min =53, max =, .. 5370 15 5 0f x x f x x s t x x x x x x +∈+∈+≤+≥≥≥x x x x ¡¡()1min f x 最优解:考虑[]()()T12=5 105515kgf f ==x x x ,¥()2max f x 最优解:考虑[]()()T12=5 157020kgf f ==x x x ,¥在多目标优化问题中,各分目标函数的最优解往往是相互矛盾的,有时甚至完全对立。
体现了多目标优化问题的复杂性、特殊性。
()()()[]()()T12T211min ,,,,,,.. 0, 1,2,, 0, 1,2,,p n u v f f f x x x D s t g u L h u M n⎡⎤-=⎣⎦=∈⊂≤===<V F(x)x x x x x x L L ?L L ⏹多目标优化问题数学模型一般表达式:向量目标函数⏹另一类多目标优化问题数学模型为:在共同的约束条件下,各目标函数按不同的优先层次先后进行优化,称之为:分层次多目标优化问题。
⏹多目标优化与单目标优化的本质区别:多目标优化是一个失量函数的优化。
吉林大学教师教案(20 07 ~2008 学年第二学期)课程名称:机械优化设计年级:20XX级01-09班教研室:机械设计及自动化任课教师:李风吉林大学教务处制教案等值线—等高线●等值线●等高线:●它是由许多具有相同目标函数值的设计点所构成的平面曲线。
课后小结1:人字架的优化数学模型2:数学模型的基本构成第二节机械优化问题示例第三节优化设计问题的数学模型2学时五、优化问题的几何解释●无约束优化问题就是在没有限制的条件下,对设计变量求目标函数的极小点。
在设计空间内,目标函数是以等值面的形式反映出来的,则无约束优化问题的极小点即为等值面的中心。
●约束优化问题是在可行域内对设计变量求目标函数的极小点,此极小点在可行域内或在可行域边界上。
课后小结1.机械优化设计数学模型的一般形式2:优化设计的数学基础,梯度的概念第四节优化设计问题的基本解法●求解优化问题:解析解法●数值的近似解法。
2学时●解析解法:把所研究的对象用数学方程(数学模型)描述出来,然后再用数学解析方法(如微分、变分方法等)求出优化解。
●数值解法:只能通过大量试验数据用插值或拟合方法构造一个近似函数式,再来求其优化解,这种方法是属于近似的、迭代性质的数值解法。
不仅可用于求复杂函数的优化解,也可以用于处理没有数学解析表达式的优化设计问题。
因此,它是实际问题中常用的方法。
●可以按照对函数导数计算的要求,把数值方法分为需要计算函数的二阶导数、一阶导数和零阶导数(即只要计算函数值而不须计算其导数)的方法。
●由于数值迭代是逐步逼近最优点而获得近似解的,所以要考虑优化问题解的收敛性及迭代过程的终止条。
收敛性是指某种迭代程序产生的序列收敛于第二章优化设计的数学基础第一节多元函数的方向导数与梯度二、二元函数的梯度考虑到二元函数具有鲜明的几何解释,并且可以象征性地把这种解释推广到多元函数中去,所以梯度概念的引入也先从二元函数人手。
等值线—等高线●等值线●等高线:●它是由许多具有相同目标函数值的设计点所构成的平面曲线。
离散优化算法
离散优化是指在一定约束条件下,寻找离散变量的最优解的问题。
为了解决这类问题,人们提出了很多离散优化算法。
其中,最著名的算法包括整数线性规划、整数规划、图论算法、动态规划算法等。
整数线性规划是指在一定限制条件下,求解规模有限且所有变量都为整数的线性方程组最优解的问题。
整数规划即将线性规划的变量限制为整数,从而让问题具有更高的可解性。
这两种方法常常被用于生产、布局和调度等领域的决策问题。
图论算法主要用于解决图的最优化问题,如最短路径问题、最小生成树问题等。
在实际应用中,图论算法被广泛应用于计划路线优化和电信网络优化等方面。
动态规划是解决离散优化的一种有效方法。
它通过把问题分解成许多类似的子问题,并利用子问题之间的关系求解原问题的方法。
动态规划算法通常被用于解决组合优化问题,如背包问题、序列模式匹配等。
除此之外,模拟退火算法、遗传算法、蚁群算法、人工神经网络等算法也被广泛应用于离散优化问题的求解中。
离散型随机变量的方差教案第一章:离散型随机变量的方差概念引入教学目标:1. 让学生理解离散型随机变量的概念。
2. 让学生了解方差的概念及其在概率论中的重要性。
3. 让学生掌握计算离散型随机变量方差的方法。
教学内容:1. 离散型随机变量的定义及其数学表达式。
2. 方差的定义及其数学表达式。
3. 离散型随机变量方差的计算方法。
教学过程:1. 引入离散型随机变量的概念,通过实例让学生理解离散型随机变量的含义。
2. 引入方差的概念,解释方差在概率论中的重要性。
3. 讲解离散型随机变量方差的计算方法,并通过例题让学生掌握计算方法。
教学评估:1. 通过课堂提问,检查学生对离散型随机变量概念的理解。
2. 通过练习题,检查学生对离散型随机变量方差计算方法的掌握。
第二章:离散型随机变量的期望值与方差教学目标:1. 让学生理解离散型随机变量的期望值的概念。
2. 让学生掌握计算离散型随机变量期望值的方法。
3. 让学生理解期望值与方差之间的关系。
教学内容:1. 离散型随机变量的期望值的定义及其数学表达式。
2. 离散型随机变量期望值的计算方法。
3. 期望值与方差之间的关系。
教学过程:1. 引入离散型随机变量的期望值的概念,通过实例让学生理解期望值的含义。
2. 讲解离散型随机变量期望值的计算方法,并通过例题让学生掌握计算方法。
3. 讲解期望值与方差之间的关系,并通过例题让学生理解两者之间的关系。
教学评估:1. 通过课堂提问,检查学生对离散型随机变量期望值概念的理解。
2. 通过练习题,检查学生对离散型随机变量期望值计算方法的掌握。
3. 通过练习题,检查学生对期望值与方差之间关系的理解。
第三章:离散型随机变量方差的性质教学目标:1. 让学生掌握离散型随机变量方差的性质。
2. 让学生能够运用方差的性质解决实际问题。
教学内容:1. 离散型随机变量方差的性质及其数学表达式。
2. 离散型随机变量方差的性质在实际问题中的应用。
教学过程:1. 讲解离散型随机变量方差的性质,并通过例题让学生理解方差的性质。