九年级数学上册知识点---- 一元二次方程的根与系数的关系
- 格式:pdf
- 大小:406.07 KB
- 文档页数:23
一元二次方程第2节 根的判别式和根与系数的关系【知识梳理】1、一元二次方程根的判别式关于x 的一元二次方程)0(02≠=++a c bx ax ,用配方法可得222442a ac b a b x -=+)(ac b 42-=∆称为根的判别式0>∆,则方程有两个不相等的实数根 0<∆,则方程没有实数根0=∆,则方程有两个相等的实数根反过来也成立。
2、一元二次方程根与系数的关系如果21,x x 是方程)0(02≠=++a c bx ax 的两个根, 则acx x a b x x =-=+2121 【诊断自测】1.一元二次方程的两个根x 1、x 2和系数a 、b 、c 的关系:。
2.若方程3x 2−4x −4=0的两个实数根分别为x 1,x 2,则x 1+x 2=( ) A .−4B .3C .−43D .433.已知x 1、x 2是一元二次方程x 2−4x+1=0的两个根,则x 1•x 2等于( ) A .−4B .−1C .1D .44.已知x 1、x 2是一元二次方程3x 2=6−2x 的两根,则x 1−x 1x 2+x 2的值是( )A .B .83C .−83D 【考点突破】类型一:根的判别式常见题型1、已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).答案:见解析。
解析:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.例2、已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0(1)求证:无论k取何值,这个方程总有实数根;(2)若等腰三角形ABC的一边长a=4,另两边b、c恰好是这个方程的两个根,求△ABC的周长.答案:见解析解析:对于等腰三角形,需要讨论a是腰还是底边。
根与系数关系1、一元二次方程根与系数关系的推导及应用;2、熟练应用根与系数的关系.结论:【知识梳理】1、 一元二次方程)0(02≠=++a c bx ax 的求根公式为)04(2422≥--±-=ac b aac b b x 。
2、 一元二次方程)0(02≠=++a c bx ax 根的判别式为:ac b 42-=∆(1)有两个实数根。
(2)有两个正实数根。
(3)有一个正数根和一个负数根。
(4)两个根都小于2。
答案:(1) 253k ≤;(2) 2503k ≤<; (3) 0k <;(4) 无解。
变式训练1、已知关于x 的方程022=+-a ax x 。
(1)求证:方程必有两个不相等的实数根; (2)a 取何值时,方程有两个正根;(3)a 取何值时,方程有两异号根,且负根绝对值较大; (4)a 取何值时,方程到少有一根为零? 答案:(1) 证240b ac ->;(2) 0a >; (3) 0a <;(4) 0a = 知识点四:已知方程两个根满足某种关系,确定方程中字母系数的值.例4、已知关于x 的方程05)2(222=-+++m x m x 有两个实数根,并且这两个根的平方和比两个根的积大16,求m 的值。
变式训练1、已知关于x 的方程03)1(222=-++-m x m x (1)当m 取何值时,方程有两个不相等的实数根?(2)设1x 、2x 是方程的两根,且012)()(21221=-+-+x x x x ,求m 的值。
知识点五:综合运用例5、方程x 2-6x-k=1与x 2-kx-7=0有相同的根,求k 值及相同的根.例6、已知α、β是方程0522=-+x x 的两个实数根,则ααβα22++的值为_0__例7、求作一个一元二次方程使它的两根分别是1- 5 和1+ 5 。
答案:2240x x --=例8、已知两个数的和等于8,积等于7,求这两个数. 答案:1、7变式训练1.求一个一元二次方程使它的两个根是1、5. 答案:2650x x -+=2.已知αβ≠,则2370αα+-=,2370ββ+-=,试求11αβ+的值.答案:37。
()()()()()()()()208652243112123121212112212221++---+++x x x x x x x x x xx x x x 第七课时:一元二次方程的根与系数的关系【学习目标】1.了解一元二次方程的根与系数的关系,能运用它由已知一元二次方程的一个根求出另一个根及未知系数.2.在不解一元二次方程的情况下,会求直接(或变形后)含有两根与两根积的代数式的值,并从中体会整体代换的思想.【学习重点】一元二次方程的根与系数的关系.【学习难点】让学生从具体方面的根发现一元二次方程根与系数之间的关系.过程:(一)复习(1).一元二次方程20(0)ax bx c a ++=≠: 判别式ac b 42-=∆的符号判别根的情况(1)有: (2)没有 (3)等 (4)不等(2)一元二次方程的求根公式:(二)探究新知1.一元二次方程20(0)ax bx c a ++=≠的两根是12x 、x ,的根与系数的关系(韦达定理) 那么1212,b cx x x x a a +=-=推论:(1)21212120,,,x px q x x p x x q ++=+=-=如果方程的两个根是x 那么x ;(2)2121212,1()0x x x x x x x x -++=以两个数为根的一元二次方程(二次项系数为)是(二)练习巩固知识点1:由已知一根求另一根及待定系数例1.已知x =1是方程x 2+mx -3=0的一个根,则另一个根为 ,m = .知识点2:求两根代数式的值例2. 已知212,310x x x ++=是方程x 的两实数根,求下列各式的值。
识点3:由含两根的等式求参量的值例3. 当k 为何值时,方程2232(31)310x k x k -++-=(1)有一根为0? (2)有两个互为相反数的实数根?(3)两根互为倒数?(四)比一比,看谁更能干1.设m 是实数,求证方程2)2)(1(m x x =--有两个不相等的实数根。
一元二次方程的根与系数的关系(知识点考点一站到底)知识点☀笔记韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 考点☀梳理考点1:韦达定理必备知识点:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12b x x a +=-,12c x x a⋅= 解题指导:适用题型:(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)韦达定理拓展公式 ①x 12+x 22=(x 1+x 2)2−2x 1∙x 2②1x 1+1x 2=x 2+x 1x 1∙x 2x 2x 1+x1x 2=x 12+x 22x 1∙x 2=(x 1+x 2)2−2x 1∙x 2x 1∙x 2③(x 1−x 2)2=(x 1+x 2)2−4x 1∙x 2④|x 1−x 2|=√(x 1+x 2)2−4x 1∙x 2 ;(2)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则120x x ∆>⎧⎨⋅<⎩;(3)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。