反应精馏技术
- 格式:ppt
- 大小:1.54 MB
- 文档页数:31
催化反应精馏实验报告
一、实验目的
1. 了解催化反应精馏的原理和应用。
2. 掌握催化反应精馏装置的操作方法。
3. 测定催化反应精馏的效率。
二、实验原理
催化反应精馏是一种将化学反应和精馏过程相结合的技术,它可以在一个设备中同时实现反应和分离。
在催化反应精馏中,催化剂被放置在精馏塔的适当位置,反应物在催化剂上进行反应,生成的产物随着精馏过程被分离出来。
三、实验步骤
1. 搭建催化反应精馏装置。
2. 加入反应物和催化剂。
3. 加热并调节回流比,使反应进行。
4. 收集产物,并测定其组成和产量。
四、实验结果与分析
1. 催化反应精馏的效率较高,可以在较短的时间内获得较高的转化率和选择性。
2. 催化剂的选择和用量对反应结果有较大的影响,需要根据具
体情况进行优化。
3. 回流比的调节对分离效果有较大的影响,需要根据产物的组成和要求进行调整。
五、实验结论
通过本次实验,我们了解了催化反应精馏的原理和应用,掌握了催化反应精馏装置的操作方法,并测定了催化反应精馏的效率。
实验结果表明,催化反应精馏是一种高效的反应分离技术,但在实际应用中需要根据具体情况进行优化和调整。
强耦合反应精馏成套技术及工业应用一、技术概述强耦合反应精馏成套技术是一种先进的化工技术,它将反应过程与精馏过程紧密结合,实现了在同一设备中同时完成化学反应和产物分离。
这种技术的优点在于能够提高生产效率、降低能耗和减少设备投资。
二、技术原理强耦合反应精馏技术的核心在于将反应釜与精馏塔合二为一,形成一个整体设备。
在设备中,化学反应与精馏分离过程相互促进,形成一个高效的耦合系统。
反应物在反应釜中发生化学反应,生成产物和副产物。
由于反应过程产生的热量和浓度梯度,可以同时为精馏过程提供所需的能量和驱动力。
三、技术特点1.高效性:强耦合反应精馏技术能够在同一设备中完成化学反应和产物分离,避免了传统工艺中的多次分离和能量回收过程,提高了生产效率。
2.低能耗:由于反应过程与精馏分离过程相互耦合,能量得以充分利用,降低了能耗。
与传统的分离技术相比,强耦合反应精馏技术能够节省大量的能源。
3.紧凑性:强耦合反应精馏成套技术使用的设备数量较少,占地面积小,降低了投资成本和运行费用。
4.灵活性:该技术可根据不同的化学反应和产物分离需求,进行工艺流程的调整和优化,具有很高的灵活性。
5.环保性:强耦合反应精馏技术能够减少废水和废弃物的产生,降低环境污染。
同时,由于该技术的能耗低,也减少了温室气体的排放。
四、工业应用强耦合反应精馏成套技术在许多化工领域都有广泛的应用,如石油化工、精细化工、制药等。
以下是一些具体的工业应用实例:1.石油化工:在石油化工行业中,强耦合反应精馏技术可用于生产燃料油、润滑油等产品。
通过该技术,可以实现烃类化合物的选择性氧化和水合反应,提高产品的质量和收率。
2.精细化工:在精细化工领域,强耦合反应精馏技术可用于生产高纯度化学品、功能性材料等。
例如,通过该技术可以生产高纯度醇类、酯类、醚类等化学品,以及功能性聚合物和复合材料。
3.制药:在制药领域,强耦合反应精馏技术可用于生产原料药、中间体和药物制剂等。
该技术可以用于实现药物的有效成分和杂质的分离纯化,提高药物的纯度和收率。
反应精馏名词解释
反应精馏是一种结合了化学反应和分离过程的工艺技术。
它是在进行化学反应的同时,利用精馏的方法将反应产物从反应混合物中分离出来。
反应精馏的主要目的是利用反应热来提供精馏所需的热量,以节约能源,同时提高反应的效率和产物的纯度。
在反应精馏中,化学反应和精馏操作相互促进。
一方面,通过精馏不断移走反应的生成物,可以促使化学反应向预期的方向进行,从而提高反应的转化率和收率。
另一方面,通过加入能与被分离组分发生可逆化学反应的第三组分,可以提高其相对挥发度,使精馏过程更容易进行。
以上内容仅供参考,如需更多专业信息,建议咨询化学工程或化工工艺专家或查阅相关文献资料。
反应精馏法制醋酸乙酯实验目的1.掌握反应精馏的原理及特点。
2.掌握反应精馏的操作。
3.学会塔操作过程分析。
一. 4.了解反应精馏与常规精馏的区别。
二. 5.掌握用气相色谱分析有机混合物料组成。
三. 实验原理精馏是化工生产过程中重要的单元操作, 是化工生产中不可缺少的手段, 反应精馏是精馏技术中的一个特殊领域。
在操作过程中, 化学反应与分离同时进行, 故能显著提高总体转化率。
此法在酯化、醚化、酯交换、水解等化工生产中得到应用, 而且越来越显示其优越性。
反应精馏过程不同于一般精馏, 它既有精馏的物理相变之传递现象, 又有物质变性的化学反应现象。
两者同时存在, 相互影响, 使过程更加复杂。
因此, 反应精馏对下列两种情况特别适用: (1)可逆反应。
一般情况下, 反应受平衡影响, 转化率只能维持在平衡转化的水平;但是, 若生成物中有低沸点或高沸点物存在, 则精馏过程可使其连续地从系统中排出, 结果超过平衡转化率, 大大提了效率。
(2)异构体混合物分离。
通常它们的沸点接近, 靠精馏方法不易分离提纯, 若异构体混合中某组分能发生化学反应并能生成沸点不同的物质, 这时可在反应过程中得以分离。
对醇-酸酯化反应来说, 适于第一种情况。
但该反应若无催化剂存在, 单独采用反应精馏操作也达不到高效分离的目的。
这是因为反应速度非常缓慢, 故一般都用催化反应方式, 酸是有效的催化剂, 常用硫酸。
反应随浓度增高而加快, 浓度在0.2~1.0%(wt )。
此外, 还可用离子交换树脂、重金属盐类和丝光沸石分子筛等固体催化剂。
反应精馏的催化剂用硫酸, 是由于其催化作用不受塔温度限制, 在全塔内都能进行催化反应, 而应用固体催化剂则由于存在一个最适宜的温度, 精馏塔本身难以达到此条件, 故很难实现最佳化操作。
本实验是以乙酸和乙醇为原料、在酸催化剂作用下生成乙酸乙酯的可逆反应。
反应的化学方程式为:O H H COOC CH OH H C COOH CH 2523SOH 52342+−−→←+ 实验的进料有两种方式: 一是直接从塔釜进料;另一种是在塔的某处进料。
1 反应精馏反应精馏作为一种新型特殊精馏,因其具有独特的优势而在化学工业中日益受到重视。
由于反应段固体催化剂的选择及装填方式对该工艺起关键作用,故国内外在注重工艺开发的同时,也需要在催化剂及填料上多做研究,以取得更大突破。
目前,反应精馏技术已在多个领域实现了产业化,对某些新领域的开发也取得了一定进展。
随着节能和环保要求日益提高,该技术与先进的计算机模拟软件相结合,在未来几十年将会发挥更大作用,同时会有更好的发展。
1.1 反应精馏技术基本原理反应精馏是在进行反应的同时用精馏方法分离出产物的过程。
其基本原理为;对于可逆反应,当某一产物的挥发度大于反应物时,如果将产物从液相中蒸出,则可破坏原有的平衡,使反应继续向生成物的方向进行,因而可提高单程转化率,在一定程度上变可逆反应为不可逆反应。
1.2 反应精馏技术特点(1) 反应和精馏在同一设备中进行,简化了流程,使设备费和操作费同时下降。
(2) 对于放热反应过程,反应热全部提供为精馏过程所需热量的一部分,节省了能耗。
(3) 对于可逆反应过程中,由于产物的不断分离,可使系统远离平衡状态,增大过程的转化率。
可使最终转化率大大超过平衡转化率,减轻后续分离工序的负荷。
(4) 对于目的产物具有关二次副反应的情形,通过某一反应物的不断分离,从而抑制了副反应,提高了选择性。
(5) 在反应精馏塔内,各反应物的浓度不同于进料浓度。
因此,进料可按反应配比要求,而塔板上造成某种反应物的过量,可使反应后期的反应速度大大提高、同时又达到完全反应;或造成主副反应速率的差异,达到较高的选择性。
这样,对于传统工艺中某些反应物过量从而需要分离回收的情况,能使原料消耗和能量消耗得到较大节省。
(6) 在反应精馏塔内,各组份的浓度分布主要由相对挥发度决定,与进料组成关系不大,因而反应精馏塔可采用低纯度的原料作为进料。
这一特点可使某些系统内循环物流不经分离提纯直接得到利用。
(7) 有时反应物的存在能改变系统各组份的相对挥发度,或绕过其共沸组成,实现沸点相近或具有恒沸组成的混合物之间的完全分离。
1 反应精馏反应精馏作为一种新型特殊精馏,因其具有独特的优势而在化学工业中日益受到重视。
由于反应段固体催化剂的选择及装填方式对该工艺起关键作用,故国内外在注重工艺开发的同时,也需要在催化剂及填料上多做研究,以取得更大突破。
目前,反应精馏技术已在多个领域实现了产业化,对某些新领域的开发也取得了一定进展。
随着节能和环保要求日益提高,该技术与先进的计算机模拟软件相结合,在未来几十年将会发挥更大作用,同时会有更好的发展。
1.1 反应精馏技术基本原理反应精馏是在进行反应的同时用精馏方法分离出产物的过程。
其基本原理为;对于可逆反应,当某一产物的挥发度大于反应物时,如果将产物从液相中蒸出,则可破坏原有的平衡,使反应继续向生成物的方向进行,因而可提高单程转化率,在一定程度上变可逆反应为不可逆反应。
1.2 反应精馏技术特点(1) 反应和精馏在同一设备中进行,简化了流程,使设备费和操作费同时下降。
(2) 对于放热反应过程,反应热全部提供为精馏过程所需热量的一部分,节省了能耗。
(3) 对于可逆反应过程中,由于产物的不断分离,可使系统远离平衡状态,增大过程的转化率。
可使最终转化率大大超过平衡转化率,减轻后续分离工序的负荷。
(4) 对于目的产物具有关二次副反应的情形,通过某一反应物的不断分离,从而抑制了副反应,提高了选择性。
(5) 在反应精馏塔内,各反应物的浓度不同于进料浓度。
因此,进料可按反应配比要求,而塔板上造成某种反应物的过量,可使反应后期的反应速度大大提高、同时又达到完全反应;或造成主副反应速率的差异,达到较高的选择性。
这样,对于传统工艺中某些反应物过量从而需要分离回收的情况,能使原料消耗和能量消耗得到较大节省。
(6) 在反应精馏塔内,各组份的浓度分布主要由相对挥发度决定,与进料组成关系不大,因而反应精馏塔可采用低纯度的原料作为进料。
这一特点可使某些系统内循环物流不经分离提纯直接得到利用。
(7) 有时反应物的存在能改变系统各组份的相对挥发度,或绕过其共沸组成,实现沸点相近或具有恒沸组成的混合物之间的完全分离。
化学工程实验之反应精馏一、反应精馏对于化工过程常见的可逆反应体系,可以通过将反应与蒸馏耦合在一个多功能的过程中而使其性能得到大大改进,这种藕合被称之为“反应蒸馏”。
与非反应蒸馏过程相比,这种组合的优点是可以打破反应平衡的限制,进而取得较高的反应物转化率,反应热可被蒸馏原位利用,避免使用辅助溶剂,共沸物或近沸点混合物可被较容易地分离;同时这种方法可直接提高过程的效率并降低设备投资及操作费用。
二、实验目的1.掌握在指定条件下,计算可逆反应平衡转化率的方法,巩固对反应热力学分析方法的学习结果;2.利用反应蒸馏塔合成高纯的乙酸甲酯产品,掌握相关的实验技能;3.掌握利用气相色谱仪分析样品组成的方法;4.通过利用分离手段强化反应过程的这一成功范例,启发利用反应与分离过程耦合开发新型反应过程,并深化对新型反应器的认识。
三、实验内容1.计算在指定反应条件,如进料配比、反应温度及微正压条件下利用甲醇与乙酸生成乙酸甲酯和水酯化反应的乙酸平衡转化率;2.反应蒸馏塔以接近化学计量比的甲醇和乙酸进料,在指定的反应温度及微正压条件下合成高纯的乙酸甲酯产品;3.利用配备有TCD检测器的气相色谱仪,对塔顶馏出的甲醇与水的混合物及塔底的高纯乙酸甲酯产品进行分析检测,并根据分析数据计算乙酸甲酯产品的收率;4.对比在相同条件下计算的乙酸甲酯平衡收率与实验测定的乙酸甲酯产品收率数据,分析利用反应蒸馏技术对甲醇与乙酸生成乙酸甲酯和水酯化反应过程的强化效果。
本次实验我们考察的是:进料位置对产品中各组分浓度的影响四、实验装置图1. 反应精馏装置示意图五、实验步骤5.1实验开始前准备1.检验装置所处的房间是否有良好的通风以及消防设施,确保在设备运行期间,房间内不存在易燃、易爆的气体,不得有其它明火、热源。
2.检验设备电源是否已正确连接上,检查各仪表显示是否正常。
3.进行气密性试验。
将塔釜、乙酸原料罐、乙醇原料罐、塔顶产品贮罐以及塔底产品贮罐等的进口、出口阀门全部关闭,放空安全阀均关闭。
反应精馏生产甲缩醛一、实验原理主反应: CH2O+2CH3OH(CH3-O-CH2-O-CH3+H2O 副反应: 2CH3OH→CH3-O-CH3+H2O主反应是可逆反应, 其平衡常数比较小, 为了增大反应物的转化率, 需要把产物及时地移出体系。
而反应精馏技术就是把反应和精馏两个过程耦合在一个体系中的工艺过程, 以精馏分离促进反应的进行, 有效解决了反应平衡常数小, 转化率低的问题。
由于反应器和分离设备的耦合, 既减少了设备投资, 又降低了反应、分离过程的能耗。
在这个反应体系中, 主反应在常压, 50到80℃, 强酸性离子交换树脂催化下即可进行。
而副反应活化能较高, 需要150℃下发生反应。
本体系可基本不考虑副反应对主反应的影响。
二、实验装置实验装置如图所示, 甲醛溶液从反应精馏塔反应段上部进料, 甲醇从反应段下部进料, 反应段为强酸性离子交换树脂, 经精馏后塔顶得到产品是甲缩醛, 塔底得到水。
三、实验步骤1.标定甲醛进料泵和甲醇进料泵的流量2.甲醇和甲醛摩尔配比为2.5: 1, 换算成体积比, 按得到数值进料3.为使甲醛转化更为彻底, 先往塔内加入适量甲醇, 使塔内甲醇和甲醛摩尔比远大于2。
4.再沸器中注入容积量的4/5的去离子水, 开启加热, 塔底温度设置为100℃。
5.当反应段上部温度大于90℃时, 打开冷凝, 同时开始进料。
6.控制回流比为2, 塔顶采出甲缩醛, 塔底出水。
7、待塔顶温度稳定在42℃时, 从反应区各段取样, 分析其组成, 并记录下各段温度。
8、实验结束后, 先关加热, 待塔温降下来之后关掉冷凝水。
四、实验数据处理五、注意事项1.甲醛易挥发, 且刺激性很强, 在甲醛进料时注意通风。
2、塔底温度不能过高, 否则气量太大, 容易引起液泛。
3.甲醇、甲醛的进料量和塔本身生产能力相匹配。
第4章特殊精馏技术了盐增强萃取精馏的作用,又克服了固体盐的回收和输送问题,目前已在工业上得到了应用。
工业应用实例有二:(1)醇一水物系的分离在乙醇、丙醇、丁醇等与水的混合液中,大多数存在着共沸物,采用加盐萃取精馏可实现预期的分离效果。
以乙醇一水共沸物体系作为研究对象,选用乙二醇作溶剂,在溶剂中加入氯化钙或乙酸钾等盐类,形成混合萃取剂制取无水乙醇,并进行了工业试验。
日产量达6~7t无水乙醇装置,以乙二醇加乙酸钾为混合萃取剂,与国外乙二醇萃取精馏方法比较,加盐后溶剂比减少为原来的1/4~1/5,节省了操作费用,减少了设备投资。
这种形式的加盐精馏流程示意图见图4—34。
目前工业上应用加盐萃取精馏分离乙醇一水抽取无水乙醇的规模为5000t/a,叔丁醇一水体系的分离已有3500t/a的中试装置。
(2)酯一水物系的分离图4—34加盐精馏流程示意图酯一水物系也是形成共沸物的系统。
传统的分离方法是共沸精馏。
近年来利用加盐萃取精馏提纯乙酸乙酯的研究已取得进展。
4.4反应精馏化工生产中,经常要遇到先进行化学反应而后将反应产物进行精馏分离的操作过程。
在反应器中为了使床层温度趋于等温并使反应向产物方向转移,就必须借助换热方式将反应热从床层中移动。
而精馏过程则又必须供给塔底物料一定的热量。
为了更好地利用反应热,传统的做法是将其用于精馏的再沸器中,使反应系统和精馏系统的能量得以部分平衡,以节约加热工程热负荷并同时减小冷却工程的冷负荷。
然而对于可逆反应,如果能利用精馏技术及时移去反应区的产物,就能使反应向产物方向移动,使反应放热与精馏的需热局部平衡,从而可达到产品分离及节能诸方面的效益。
反应精馏是进行反应的同时用精馏方法分离出产品的过程,当有催化剂存在时的反应精馏叫作催化精馏。
反应精馏进行的基本条件是化学反应的可逆性和物系有较大的相对挥发度,而且反应的温度压力条件应与精馏过程相近。
在反应精馏中,按照反应与精馏的关系可分为两种类型,一种是利用精馏促反应,另一种是利用反应促进精馏分离。
催化反应精馏法制乙酸乙酯精馏是化工生产中常用的分离方法。
它是利用气-液两相的传质和传热来达到分离的目的。
对于不同的分离对象,精馏方法也会有所差异。
反应精馏是精馏技术中的一个特殊领域。
在操作过程中,化学反应与分离同时进行,故能显著提高总体转化率,降低能耗。
此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。
一.实验目的1.了解反应精馏是既服从质量作用定律又服从相平衡规律的复杂过程,是反应和分离过程的复合,通过实验数据和结果,了解反应精馏技术比常规反应技术在成本和操作上的优越性。
2.了解玻璃精馏塔的构造和原理,学习反应精馏玻璃塔的使用和操作,掌握反应精馏操作的原理和步骤。
3.学习用反应工程原理和精馏塔原理,对精馏过程做全塔物料衡算和塔操作的过程分析。
4.了解反应精馏与常规精馏的区别,掌握反应精馏法是适宜的物系。
5.学习气相色谱的原理和使用方法,学会用气相色谱分析塔内物料的组成,了解气相色谱分析条件的选择和确定方法,并学习根据出峰情况来改变色谱条件。
6.学习用色谱分析,进行定量和定性的方法,学会求取液相分析物校正因子及计算含量的方法和步骤。
了解气相色谱仪以及热导池检测器的原理,了解分离条件的选择和确定。
二.实验原理1. 反应精馏原理反应精馏是随着精馏技术的不断发展与完善,而发展起来的一种新型分离技术。
通过对精馏塔进行特殊改造或设计后,采用不同形式的催化剂,可以使某些反应在精馏塔中进行,并同时进行产物和原料的精馏分离,是精馏技术中的一个特殊领域。
在反应精馏操作过程中,由于化学反应与分离同时进行,产物通常被分离到塔顶,从而使反应平衡被不断破坏,造成反应平衡中的原料浓度相对增加,使平衡向右移动,故能显著提高反应原料的总体转化率,降低能耗。
同时,由于产物与原料在反应中不断被精馏塔分离,也往往能得到较纯的产品,减少了后续分离和提纯工序的操作和能耗。
此法在酯化、醚化、酯交换、水解等化工生产中得到应用,而且越来越显示其优越性。