第六章高等代数练习及答案
- 格式:doc
- 大小:311.00 KB
- 文档页数:4
1、R n 中分量满足下列条件的全体向量1(,,)n x x 的集合,是否构成R n的子空间?①10n x x ++= ;②120n x x x ⋅⋅⋅= ;③2211n x x ++= 。
解:①是,设(){}111,,|0nnV x x x x=++= ,显然V 1≠∅,1,,,a b F V ξη∀∈∀∈,设1212(,,),(,,)x x y y ξη== ,则()()()1111,,,,,,n n n n a b a x x b y y ax by ax by ξη+=+=++ ,而 1111()()()()000n n n n ax by ax by a x x b y y a b ++++=+++++=+=所以1a b V ξη+∈,所以V 1是R n 的子空间;②不是,取(1,0,,0),(0,1,,1)αβ== ,则(){}11,,,|0nnV x x x xαβ∈=⋅⋅= ,但(1,1,,1)V αβ+=∉ ,所以V 不是R n 的子空间;③不是,取(1,0,,0),(0,1,0,,0)αβ== ,则(){}2211,,,|1nn V x x xx αβ∈=++= ,但(1,1,0,,0)V αβ+=∉ ,所以V 不是R n 的子空间。
2、子集{}1|,,V X AX XB A B n ==为已知的阶矩阵是否是()n M F 的子集?解:是()n M F 的子集;证:显然1V ≠∅,1,,,X Y V a b F ∀∈∈,有()()A aX bY aAX bAY aXB bYB aX bY B +=+=+=+,所以1aX bY V +∈,所以1V 是()n M F 的子集。
3、设12(1,0,1,0),(1,1,2,0)αα==-,求含12,αα的R 4的一组基。
解:因为101010101010112001100010⎛⎫⎛⎫⎛⎫→→⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭, 取34(0,0,1,0),(0,0,0,1)αα==,所以{}1234,,,αααα为R 4的一组基。
高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
习 题 六A 组1.填空题(1)已知向量[]TT(1,2,3),(4,,6),,7t =-=-=a b a b ,则t = . 解72. (2)设04=x ,A 为正交矩阵,则0=Ax . 解 4.(3)设P 为n 阶可逆矩阵,12130000,00n a a a -⎛⎫⎪⎪= ⎪⎪ ⎪⎝⎭A B =P A P,则B 的特征值为 .解 33312,,,na a a . (4)已知3阶方阵A 的特征值分别为1,1,2-,则矩阵322=-B A A 的特征值是 ,=B .解 1,3,0;0--.(5)如果n 阶矩阵A 的元素全为1,那么A 的n 个特征值是 . 解 ,0,0,,0n .(6)矩阵022222222--⎛⎫⎪- ⎪ ⎪--⎝⎭的非零特征值是 . 解 4.(7)设010100001-⎛⎫ ⎪= ⎪ ⎪-⎝⎭A ,1-=B P AP ,其中P 为三阶可逆矩阵, 则200422-=B A . 解 300030001⎛⎫ ⎪ ⎪ ⎪-⎝⎭.(8) 设()33ija ⨯=A 是实正交矩阵,且111=a ,T (1,0,0)=b ,则线性方程组Ax =b 的解是 .解 T (1,0,0).(9)二次型22121212(,)24f x x x x x x =+-的矩阵是 .解 1222-⎛⎫ ⎪-⎝⎭.(10)二次型222123112213233(,,)2222f x x x x x x x x x x x x =-+-++的秩是 . 解 2.(11)二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . 解 2.(12)二次型T f =x Ax 是正定的充分必要条件是实对称矩阵A 的特征值都是 . 解 正数. 2.选择题(1)已知[]1,2,,1===a b a b ,则向量a 与b 的夹角为 . (A )0; (B )4π; (C )3π; (D )2π. 解 (C ).(2)n 阶方阵A 的两个不同的特征值所对应的特征向量 . (A )线性相关; (B )线性无关; (C )正交; (D )内积为1. 解 (B ).(3)设P 为三阶可逆矩阵,123894765⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,123,,λλλ是1-=B P AP 的三个特征值,则123λλλ++的值为 .(A )1; (B )10; (C )15; (D )19. 解 (C ).(4)设P 为可逆矩阵,λ=≠Ax x 0,11--=B P A P ,则矩阵B 的特征值和特征向量分别是 .(A )λ和x ; (B )1λ-和x ; (C )1λ-和1-P x ; (D )λ和Px .解 (C ).(5)设A 是n 阶实对陈矩阵,P 是n 阶可逆矩阵.已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵()T1-P AP属于特征值λ的特征向量是 .(A )1-P α; (B )TP α; (C )P α; (D )()T1-Pα.解 (B ).(6)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是 .(A )01≠λ; (B )02≠λ; (C )01=λ; (D )02=λ. 解 (B ).(7)设A ,B 为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则下列命题正确的是 . (A )λλ-=-E A E B ; (B )A 与B 有相同的特征值与特征向量; (C )A 与B 都相似于一个对角矩阵; (D )对任意常数t ,t -E A 与t -E B 相似.解 (D ).(8)n 阶方阵A 具有n 个不同的特征值是A 与对角矩阵相似的 . (A )充分必要条件; (B )充分非必要条件;(C )必要非充分条件; (D )既非充分也非必要条件. 解 (B ).(9)设矩阵001010100⎛⎫⎪= ⎪ ⎪⎝⎭B ,已知矩阵A 相似于B ,则(2)R -A E 与()R -A E 之和等于 .(A )2; (B )3; (C )4; (D )5. 解 (C ).(10)设1111111111111111⎛⎫ ⎪⎪⎪⎪⎝⎭A =,400000000000000⎛⎫ ⎪⎪⎪ ⎪⎝⎭B =,则A 与B . (A )合同且相似; (B )合同但不相似; (C)不合同但相似; (D)不合同且不相似. 解 (A ).(11)二次型222123123121323(,,)()444f x x x a x x x x x x x x x =+++++经正交变换=x Py 可以化成标准形216f y =,则a 的值是 .(A )1; (B )2; (C )3; (D )无法确定. 解 (B ).3.利用Schimidt 正交化方法将下列向量组规范正交化. (1) TTT123(1,2,1),(1,3,1),(4,1,0)=-=-=-a a a ; 解 先正交化T 11(1,2,1)==-b a ,[][]12T 22111,5(1,1,1),3=-=-b a b a b b b ,[][][][]1323T 33121122,,(2,0,2),,=--=b a b a b a b b b b b b , 再单位化得T T 1212122,1),1,1,1),==-==-b b e e bb T 3330,1)==b e b . (2) 矩阵111011101110-⎛⎫⎪-⎪ ⎪- ⎪ ⎪⎝⎭的列向量组. 解 先正交化,111011⎛⎫⎪ ⎪==⎪- ⎪ ⎪⎝⎭b a , [][]1222111111103,21012,33111⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b a b a b b b ,[][][][]13233312112211111033,,2211123,,31550114--⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪=--=++= ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭b a b a b a b b b b b b .再单位化得1212121103,1211⎛⎫⎛⎫ ⎪⎪-⎪⎪====⎪⎪-⎪⎪⎪⎪⎝⎭⎝⎭b b e e b b ,3331334-⎛⎫ ⎪⎪==⎪⎪⎪⎝⎭b e b . 4.设向量T 1(1,1,1)=a ,求非零向量2a ,3a ,使得1a ,2a ,3a 是正交向量组.解 根据题意,2a ,3a 应满足方程T10=x a ,即0x y z ++=.解得基础解系为T1(1,1,0)=-ξ和T 2(1,0,1)=-ξ.正交化得到T21(1,1,0),==-a ξ [][]22T 32122,1(1,1,2),2=-=--ξa a ξξa a . 5.求下列矩阵的特征值和特征向量.(1)1124-⎛⎫ ⎪⎝⎭; (2)110430102-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (3)123213336⎛⎫⎪⎪ ⎪⎝⎭.解 (1)特征多项式为11(3)(2)24λλλλ--=---,得到特征值为122,3λλ==.对于12λ=,解齐次线性方程组11110220x x --⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得基础解系11⎛⎫⎪-⎝⎭,对应的特征向量可取1111,01k k ⎛⎫=≠ ⎪-⎝⎭p .对于23λ=,解齐次线性方程组11210210x x --⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得基础解系12-⎛⎫⎪⎝⎭,对应的特征向量可取2221,02k k -⎛⎫=≠ ⎪⎝⎭p .(2)特征多项式为2110430(2)(1)12λλλλλλ---=--=---A E , 得到特征值为值1231,2λλλ===.对于121λλ==,解齐次线性方程组123210042001010x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 得基础解系121⎛⎫ ⎪⎪ ⎪-⎝⎭,对应的特征向量可取11112,01k k ⎛⎫⎪=≠ ⎪ ⎪-⎝⎭p .对于32λ=,解齐次线性方程组123310*********x x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,得基础解系001⎛⎫⎪⎪ ⎪⎝⎭,对应的特征向量可取2220001k k ⎛⎫⎪=≠ ⎪ ⎪⎝⎭p .(3)特征多项式为(1)(9)λλλλ-=+-A E ,得到特征值为1230,1,9λλλ==-=.对于10λ=,解齐次线性方程组(0)-=A E x 0,得基础解系1111-⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,特征向量为1111,01k k -⎛⎫ ⎪-≠ ⎪ ⎪⎝⎭.对于21λ=-,解齐次线性方程组()+=A E x 0,得基础解系2110-⎛⎫⎪= ⎪ ⎪⎝⎭ξ,特征向量为2211,00k k -⎛⎫ ⎪≠ ⎪ ⎪⎝⎭. 对于39λ=,解齐次线性方程组(9)-=A E x 0,得基础解系3112⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,特征向量为3311,02k k ⎛⎫ ⎪≠ ⎪ ⎪⎝⎭.6.设3111-⎛⎫=⎪⎝⎭A ,234()16842ϕ=++++A E A A A A ,求()ϕA 的特征值和特征向量.解 A 的特征多项式为231(2)11λλλλ---==--A E ,得到A 的特征值为122λλ==.对于122λλ==,解齐次线性方程组110110x y -⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,得特征向量11⎛⎫= ⎪⎝⎭ξ.因为2是A 的特征值,所以(2)80ϕ=是()ϕA 的特征值,11k k ⎛⎫= ⎪⎝⎭ξ为()ϕA 的全部特征向量()0k ≠.7.证明(1)若n 阶方阵A 满足2=A A ,则A 的特征值为0或1;(2)若n 阶方阵A 满足k=A E ,则A 的特征值λ满足1kλ=.证明 (1)设≠x 0满足λ=Ax x ,λ是A 的特征值,则22λ=A x x , 故22λλ===x Ax A x x ,得(1)λλ-=x 0,因为≠x 0,所以0λ=或1λ=.(2)设≠x 0满足λ=Ax x ,则k k λ===x A x Ex x .因此(1)kλ-=x 0,而≠x 0,故1k λ=.8.设11111a a b b ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 与000010002⎛⎫ ⎪= ⎪ ⎪⎝⎭Λ相似,求a ,b .解 由于A 的特征值与Λ的特征值相同,也是0,1,2,因此()20120,20,b a ab ⎧=--=⨯⨯=⎪⎨-==⎪⎩A A E 得0a b ==.9.设方阵12422421x --⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A 与54y ⎛⎫⎪=⎪ ⎪-⎝⎭Λ相似,求,x y .解 由A 与Λ相似可知,A 的特征值为1235,,4y λλλ===-,于是1154,52442429360,425x y x x ++=+-⎧⎪--⎪⎨+=-+-=-=⎪⎪--⎩A E 得4x =,5y =.10.设A 与B 均为n 阶方阵,0≠A ,证明AB 与BA 相似.证明 由0≠A 知1-A 存在,于是11()()--==A AB A A A BA BA ,因此AB 与BA 相似.11.若A 与B 相似,C 与D 相似,则分块矩阵⎛⎫ ⎪⎝⎭A 00C 与⎛⎫⎪⎝⎭B00D 相似. 证明 由条件可知,存在可逆矩阵1P ,2P ,使得111122,--==P AP B P CP D ,于是111111111111222222------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭P 0P 0B 0A 0P AP 0P A 0P 00P 0P 0D 0C 0P CP 0P C 0P 11122-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭P0P 0A 00P 0P 0C , 所以⎛⎫ ⎪⎝⎭A 00C 与⎛⎫⎪⎝⎭B 00D 相似.12.已知3阶矩阵A 与三维向量x ,使得向量组x ,Ax ,2A x 线性无关,且满足3232=-A x Ax A x .(1)记()2,,P =x Ax A x ,求三阶矩阵B ,使1-=A PBP ; (2)计算行列式+A E .解 (1)设123123123a a a b b b c c c ⎛⎫⎪⎪ ⎪⎝⎭B =,则由=AP PB 得 ()()123232123123a a a ,,,,b b b c c c ⎛⎫ ⎪= ⎪ ⎪⎝⎭Ax A x A x x Ax A x . 上式可写为2111a b c Ax =x +Ax +A x , 22222a b c A x =x +Ax +A x , 32333a b c A x =x +Ax +A x .将3232=-A x Ax A x 代入得2233332a b c -Ax A x =x +Ax +A x .由于x ,Ax ,2A x 线性无关,故1110,1a c b ===; 2220,1a b c ===; 3330,3,2a b c ===-,从而000103012⎛⎫ ⎪⎪ ⎪-⎝⎭B =.(2)由(1)知A 与B 相似,故+A E 与+B E 相似,从而1001134011+=+==--A E B E .13.求下列矩阵多项式.(1)设3223-⎛⎫=⎪-⎝⎭A ,求109()5ϕ=-A A A ;(2)212122221⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,求1098()65ϕ=-+A A A A .解 (1)由(1)(5)0λλλ-=--=A E 得特征值为121,5λλ==.对于11λ=,解方程组()-=A E x 0得特征向量111⎛⎫= ⎪⎝⎭ξ,取111⎛⎫= ⎪⎝⎭p .对于25λ=,解方程组(5)-=A E x 0得特征向量211-⎛⎫=⎪⎝⎭ξ,取211-⎛⎫= ⎪⎝⎭p . 令1211(,)11-⎛⎫==⎪⎝⎭P p p ,则115-⎛⎫== ⎪⎝⎭P AP Λ,于是9999199911111151511,11511221515--⎛⎫+-⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭A P P Λ 10101010110101515121515-⎛⎫+-== ⎪-+⎝⎭A P P Λ,10911()5211ϕ⎛⎫=-=- ⎪⎝⎭A A A .(2)由(1)(5)(1)0λλλλ-=-+--=A E 求得特征值1231,1,5λλλ=-==.对于11λ=-,解方程组()+=A E x 0,得1112⎛⎫⎪= ⎪ ⎪-⎝⎭p .对于21λ=,解方程组()-=A E x 0,得2110⎛⎫ ⎪=- ⎪ ⎪⎝⎭p .对于15λ=,解方程组(5)-=A E x 0,得3111⎛⎫ ⎪= ⎪ ⎪⎝⎭p .因此,123111(,,)111201⎛⎫ ⎪==- ⎪ ⎪-⎝⎭P p p p ,且1115--⎛⎫ ⎪==⎪ ⎪⎝⎭P AP Λ, 888888188888888111(1)112251515111111330152515632015222151525-⎛⎫⎛⎫--+-+-+⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==--=-++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+-++⎝⎭⎝⎭⎝⎭⎝⎭A P P Λ, 10988888888888888888888()65()(5)2515151123121152515112132315152522022425151522411525152243151525448ϕ=-+=--⎛⎫+-+-+-⎛⎫⎛⎫⎪ ⎪⎪=-++-+- ⎪ ⎪⎪⎪⎪ ⎪-+-++-⎝⎭⎝⎭⎝⎭⎛⎫+-+-+-⎛⎫⎪ =-++-+- ⎪ ⎪-+-++--⎝⎝⎭A A A A A A E A E 1122112.224⎪⎪⎪⎭-⎛⎫⎪=- ⎪ ⎪--⎝⎭14.求一个正交相似变换矩阵,把下列对称矩阵化为对角矩阵.(1)220212020-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ; (2)222254245-⎛⎫⎪- ⎪ ⎪--⎝⎭A =. 解 (1)由(1)(4)(2)0λλλλ-=--+=A E ,得到A 的特征值为1232,1,4λλλ=-==,对于12λ=-,解齐次线性方程组(2)+=A E x 0得特征向量1122⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得111232⎛⎫⎪= ⎪ ⎪⎝⎭p .对于21λ=,解齐次线性方程组()-=A E x 0得特征向量2212⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得221231⎛⎫⎪=- ⎪ ⎪⎝⎭p .对于34λ=,解齐次线性方程组(4)-=A E x 0得特征向量3221⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得121231⎛⎫⎪=- ⎪ ⎪⎝⎭p .写出正交矩阵12212123221⎛⎫ ⎪=- ⎪ ⎪-⎝⎭P ,则1214--⎛⎫⎪= ⎪ ⎪⎝⎭P AP . (2)由2(1)(10)0λλλ-=--=A E ,得到A 的特征值为12310,1λλλ===.对于110λ=,解齐次线性方程组(10)-=A E x 0得特征向量1122⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ,单位化得111232⎛⎫⎪= ⎪ ⎪-⎝⎭p .对于221λλ==时,解齐次线性方程组()-=A E x 0得特征向量23221,221-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ.123,,ξξξ是正交向量组,将23,ξξ单位化得2322111,23321-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .取正交矩阵12212123221-⎛⎫ ⎪= ⎪ ⎪-⎝⎭P ,则有11011-⎛⎫⎪= ⎪ ⎪⎝⎭P AP .15.设三阶实对称矩阵A 的特征值为6,3,3,与特征值6对应的特征向量为T 1(1,1,1)=p ,求矩阵A . 解 设123,,p p p 分别是对应于特征值6,3,3的特征向量,则23,p p 应与1p 正交,即满足方程1230++=x x x ,解得23111,001--⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p ,于是123111(,,)110101--⎛⎫ ⎪== ⎪ ⎪⎝⎭P p p p ,1633-⎛⎫⎪= ⎪ ⎪⎝⎭P AP ,因此,1641131413114-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A P P .16.设A ,B 为同阶方阵,(1)如果A ,B 相似,试证A ,B 的特征多项式相等;(2)举一个二阶方阵的例子说明(1)的逆命题不成立; (3)当A ,B 均为实对称矩阵时,试证(1)的逆命题成立. 解 (1)若A ,B 相似,则存在可逆矩阵P ,使1-=P AP B ,故()()11111.λλλλλλ------=-=-=-=-=-E B P EP P AP P E A PP E A P P E A P E A(2)令0100⎛⎫⎪⎝⎭A =,0000⎛⎫ ⎪⎝⎭B =,则2λλλ-=-=E A E B ,但A 与B 不相似.否则由1-=P AP B =0得A =0,矛盾.(3)A ,B 均为实对称矩阵时, A ,B 均相似于对角阵. 若A ,B 的特征多项式相等,则特征值相等,记为12,,,n λλλ ,有A 相似于1n λλ⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,B 也相似于1n λλ⎛⎫⎪⎪ ⎪⎝⎭ ,存在可逆矩阵P ,Q 使得111n λλ--⎛⎫⎪= ⎪⎪⎝⎭P AP =Q BQ ,于是()()111---=PQ A PQ B ,由1-PQ 可逆知A ,B 相似. 17.设三阶实对称矩阵A 的秩为2,126λλ==是A 的二重特征值.若T 1(1,1,0)=α,T 2(2,1,1)=α,T 3(1,2,3)=--α, 都是A 的属于特征值6的特征向量.(1)求A 的另一特征值和对应的特征向量;(2)求矩阵A .解 (1)因为126λλ==是A 的二重特征值,故A 的属于特征值6的线性无关的特征向量有2个.由题设知T 1(1,1,0)=α,T 2(2,1,1)=α为A 的属于特征值6的线性无关特征向量.又A 的秩为2,于是||0=A ,所以A 的另一特征值30λ=.设30λ=所对应的特征向量为T 123(,,)x x x =α,则有T 10=αα,T 20=αα,即121230,20.x x x x x +=⎧⎨++=⎩解得基础解系为T (1,1,1)=-α,故A 的属于特征值30λ=全部特征向量为T (1,1,1)k k =-α,其中k 为任意不为零的常数.(2) 令矩阵12(,,)=P ααα,则1660-⎛⎫ ⎪= ⎪ ⎪⎝⎭P AP ,所以 1011612164221126111624233300110224111333-⎛⎫- ⎪-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪⎪==-=- ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪- ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪- ⎪⎝⎭A P P .18.用矩阵表示下列二次型.(1)222(,,)2846f x y z x y z xy yz =+--+;(2)22221234123412131424(,,,)532468f x x x x x x x x x x x x x x x x =+-++-++.解 (1)120(,,)(,,)223038x f x y z x y z y z -⎛⎫⎛⎫⎪⎪=- ⎪⎪ ⎪⎪-⎝⎭⎝⎭. (2)1212343451231304(,,,)20103401x x f x x x x x x -⎛⎫⎛⎫ ⎪⎪ ⎪⎪= ⎪ ⎪-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭. 19.用正交变换法将下列二次型化为标准型.(1)22212312313(,,)2628f x x x x x x x x =+++; (2)22212312323(,,)2334f x x x x x x x x =+++;(3)2222123412341214(,,,)22f x x x x x x x x x x x x =++++-233422x x x x -+.解 (1)二次型的矩阵为204060402⎛⎫⎪= ⎪ ⎪⎝⎭A ,由0λ-=A E 求得A 的特征值为1232,6λλλ=-==.对于12λ=-,解(2)+=A E x 0得特征向量1101⎛⎫⎪= ⎪ ⎪-⎝⎭p .对于236λλ==,解(6)-=A E x 0得特征向量23011,001⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .123,,p p p 是正交的,单位化后并写成正交矩阵10100101⎛⎫⎪=⎪⎪-⎭P . 令=x Py ,这一正交变换把原二次型化为标准形222123266f y y y =-++.(2)二次型的矩阵为200032023⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,由(2)(1)(5)0λλλλ-=---=A E 求得A 的特征值为1231,2,5λλλ===.对于11λ=,解方程组()-=A E x 0得特征向量1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭ξ,单位化得1011⎛⎫⎪=-⎪⎪⎭p . 对于22λ=,解方程组(2)-=A E x 0得特征向量2100⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得2100⎛⎫⎪= ⎪ ⎪⎝⎭p .对于35λ=,解方程组(5)-=A E x 0得特征向量3011⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得3011⎛⎫⎪=⎪⎪⎭p .于是正交矩阵123010(,,)00⎛⎫ ⎪ ⎪== ⎝P p p p ,在正交变换=x Py 下,22212325f y y y =++. (3)二次型的矩阵为1101111001111011-⎛⎫ ⎪-⎪= ⎪- ⎪ ⎪-⎝⎭A . 由2(1)(1)(3)0λλλλ-=+--=A E 得A 的特征值12341,1,3λλλλ=-===.对于11λ=-,解方程组()+=A E x 0得特征向量11111⎛⎫ ⎪- ⎪= ⎪- ⎪ ⎪⎝⎭ξ,单位化得1111121⎛⎫⎪- ⎪= ⎪- ⎪ ⎪⎝⎭p .对于231λλ==,解方程组()-=A E x 0得A 的特征向量231001,1001⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ξξ,23,ξξ是正交的,只需单位化得231001,1001⎛⎫⎛⎫ ⎪ ⎪⎪⎪==⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭p p . 对于43λ=,解方程组(3)-=A E x 0得特征向量41111-⎛⎫ ⎪- ⎪= ⎪ ⎪ ⎪⎝⎭ξ,单位化得4111121-⎛⎫⎪- ⎪= ⎪ ⎪ ⎪⎝⎭p .写出正交矩阵11022110221102211022⎛⎫-⎪ ⎪ --= ⎪- ⎪ ⎪ ⎝P , 在正交变换=x Py 下,222212343f y y y y =-+++. 20.用配方法化下列二次型为标准形,并写出变换矩阵.222123123121323(,,)2224f x x x x x x x x x x x x =+++++.解222222123123233123(,,)()(),f x x x x x x x x x y y y =++++-=+-其中,112322333,,,y x x x y x x y x =++⎧⎪=+⎨⎪=⎩ 即 11222333,,,x y y x y y x y =-⎧⎪=-⎨⎪=⎩ 故所用的变换矩阵为110011001-⎛⎫⎪- ⎪ ⎪⎝⎭. 21.判定下列二次型的正定性.(1)2221231231223(,,)56444f x x x x x x x x x x =++--;(2)222123123121323(,,)10282428f x x x x x x x x x x x x =++++-.解 (1) 二次型的矩阵为520262024-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A , 因为 525250,260,26284026024-->=>--=>--,所以f 正定.(2) 二次型的矩阵为10412421412141⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,因为 10412104100,0,421404212141>>-<-,所以f 非正定,也非负定.22.确定t 的取值范围,使得下列的二次型为正定.(1)222123123121323(,,)5422f x x x x x tx x x x x x x =+++--; (2)222123123121323(,,)5224f x x x tx x x tx x x x x x =++--+.解 (1)二次型的矩阵为52121111t -⎛⎫⎪=- ⎪ ⎪--⎝⎭A .要使f 正定,就要求A 的顺序主子式都大于零,即 50>,521021=>,5212112011t t--=->--, 得2t >.即当2t >时,f 是正定的.(2)二次型的矩阵为112125t t t--⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A .要使f 正定,就要求A 的顺序主子式都大于零,即 0t >,(1)01t tt t t -=->-,21125510125t t tt t ---=-+->-,t <<t <<时,f 是正定的. 23.设A 是可逆实矩阵,证明T A A 是正定矩阵.证明 由T T T ()=A A A A 知,T A A 是对称矩阵.对任意的≠x 0,有≠Ax 0,所以()()()2TT T 0==>x A A x Ax Ax Ax ,从而T A A 是正定矩阵.24.设A 是三阶实对称矩阵,已知A 的秩()2R =A ,且满足条件22+A A =0, (1)求A 的全部特征值;(2)当k 为何值时,矩阵k A+E 为正定矩阵,其中E 为三阶单位矩阵.解 (1)设λ为A 的一个特征值,对应的特征向量为α,则()λ=≠A 0ααα,22λ=A αα,于是()()2222λλ+=+AA αα.由条件22+A A =0得()22λλ+=0α.又≠0α,所以220λλ+=,即2λ=-或0λ=.因为实对称矩阵A 必可对角化,又()2R =A ,所以A 与对角矩阵220-⎛⎫ ⎪- ⎪ ⎪⎝⎭相似.因此,矩阵A 的全部特征值为1232,0.λλλ==-=(2)矩阵k A+E 仍为实对称矩阵,由(1)知k A +E 的全部特征值为2,2,.k k k -+-+于是,当2k >时,k A+E 的全部特征值大于零,从而矩阵k A+E 为正定矩阵.B 组1.已知向量T (1,,1)k =a 是矩阵211121112⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的逆矩阵1-A 的特征向量,求常数k 的值.解 设1-A 的特征向量T (1,,1)k =a 对应的特征值为λ,则有1λ-=A a a ,λ=a Aa ,即1211112111121k k λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 解得2k =-或1.2.若矩阵22082006a ⎛⎫⎪= ⎪ ⎪⎝⎭A 相似于对角阵Λ,试确定常数a 的值;并求可逆矩阵P 使1.-=P AP Λ解 矩阵A 的特征多项式为2222082(6)(2)16(6)(2)06a λλλλλλλλ--⎡⎤-=---=---=-+⎣⎦-E A , 故A 的特征值为.2,6321-===λλλ由于A 相似于对角矩阵Λ,故621==λλ应有两个线性无关的特征向量,即3(6)2R --=E A ,于是有(6)1R -=E A .由42021068400000000a a --⎛⎫⎛⎫ ⎪ ⎪-=--→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭E A知0a =.因此,对应于621==λλ的两个线性无关的特征向量可取为1001⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ, 2120⎛⎫⎪= ⎪ ⎪⎝⎭ξ.当23-=λ时,4202102840001008000--⎛⎫⎛⎫ ⎪⎪--=--→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭E A ,解方程组12320,0,x x x +=⎧⎨=⎩得对应于23-=λ的特征向量3120⎛⎫⎪=- ⎪ ⎪⎝⎭ξ.令011022100⎛⎫ ⎪=- ⎪ ⎪⎝⎭P ,则P 可逆,并有1-=P AP Λ.3.设矩阵1322010232,101,223001-*⎛⎫⎛⎫⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A PB P A P ,求2+B E 的特征值和特征向量.解 计算出1011100001--⎛⎫ ⎪= ⎪ ⎪⎝⎭P , 522252225*--⎛⎫⎪=-- ⎪ ⎪--⎝⎭A1700254223-*⎛⎫ ⎪==-- ⎪ ⎪--⎝⎭B P A P , 9002274225⎛⎫ ⎪+=-- ⎪ ⎪--⎝⎭B E .由22(3)(9)0λλλ+-=--=B E E 得2+B E 的特征值为1239,3λλλ===.对于129λλ==,由()λ-=A E x 0求得对应的线性无关特征向量为12121,001--⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .因此,对应于129λλ==的全部特征向量为1122k k +p p ,12,k k 不同时为零.对于33λ=,由()λ-=A E x 0求得特征向量为3011⎛⎫⎪= ⎪ ⎪⎝⎭p .因此,对应于33λ=的全部特征向量为33k p ,3k 不为零.4.设,A B 相似,且111200242,0203300a b -⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B , (1)求,a b 的值;(2)求可逆矩阵P ,使1-=P AP B .解 (1)由于,A B 相似,所以,A B 有相同的特征值,即1232,b λλλ===.由于2是A 的二重特征值,所以2是2(2)(3)3(1)0a a λλλλ⎡⎤-=--++-=⎣⎦A E 的二重根,解得5a =.由22(2)(812)(2)(6)λλλλλλ-=--+=--A E 得到36b λ==.(2)对于122λλ==,解方程组(2)-=A E x 0得基础解系12111,001⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .对于36λ=,解方程组(6)-=A E x 0得基础解系3123⎛⎫⎪=- ⎪ ⎪⎝⎭p .令123111(,,)102013⎛⎫ ⎪==-- ⎪ ⎪⎝⎭P p p p ,有1-=P AP B .5.已知111⎛⎫ ⎪= ⎪ ⎪-⎝⎭p 是矩阵2125312a b -⎛⎫⎪= ⎪ ⎪--⎝⎭A 的一个特征向量, (1)求,a b 的值和特征向量p 对应的特征值; (2)问A 是否可对角化?说明理由.解 (1)由2121()531121a bλλλλ--⎛⎫⎛⎫⎪⎪-=-= ⎪⎪ ⎪⎪----⎝⎭⎝⎭A E p 0得2120,530,120.a b λλλ---=⎧⎪+--=⎨⎪-+++=⎩解得3,0,1a b λ=-==-.(2)因为212533102-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭A ,所以3(1)λλ-=-+A E ,1λ=-是三重根.但()2R +=A E ,从而1λ=-对应的线性无关的特征向量只有一个,故A 不能对角化.6.设矩阵21112111a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 可逆,向量11b ⎛⎫ ⎪= ⎪ ⎪⎝⎭α是矩阵*A 的一个特征向量,λ是α对应的特征值,其中*A 是矩阵A 的伴随矩阵.试求a ,b 和λ的值.解 矩阵*A 属于特征值λ的特征向量为α,由于矩阵A 可逆,故*A 可逆.于是0≠λ,0≠A ,且*λ=A αα.两边同时左乘矩阵A ,得*λ=AA A αα,λ=AA αα,即211111211111b b a λ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭A . 由此,得方程组3,22,1.b b b a b λλλ⎧+=⎪⎪⎪+=⎨⎪⎪++=⎪⎩AA A 由第一、二个方程解得1=b ,或2-=b .由第一、三个方程解得2a =.由于 21112132411a a==-=A ,故特征向量α所对应的特征值433b bλ==++A .所以,当1=b 时1=λ; 当2-=b 时4λ=.7.设矩阵12314315a -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.解 A 的特征多项式为21232(2)01431431515110(2)143(2)(8183).15a a a a λλλλλλλλλλλλλλ------=-=--------=--=--++---E A当2=λ是特征方程的二重根时,则有,03181622=++-a 解得2a =-.当2a =-时,A 的特征值为2,2,6, 矩阵2-E A 123123123-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18316a +=,解得23a =-.当32-=a 时,A 的特征值为2,4,4,矩阵32341032113⎛⎫- ⎪ ⎪⎪- ⎪ ⎪⎪-- ⎪⎝⎭E A =的秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.8.设n 阶矩阵111b b b b b b ⎛⎫⎪⎪= ⎪⎪⎪⎝⎭A ,(1)求A 的特征值和特征向量;(2)求可逆矩阵P , 使得1-P AP 为对角矩阵. 解 (1)① 当0≠b 时,[][]111||1(1)(1)1n b b b b n b b b b λλλλλλ--------==-------- E A .得A 的特征值为11(1)n b λ=+-,21n b λλ===- . 对于11(1)n b λ=+-,1(1)(1)11(1)1(1)1(1)11(1)11111111111111111111111100000000n bb b n b n b b n b b n b n n n n n n n λ------⎛⎫⎛⎫ ⎪ ⎪------ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭-----⎛⎫⎛ ⎪ -------- ⎪ ⎪ →→ ⎪ -------- ⎪ ⎪⎝⎭⎝E A 11111001000101.00001100000000n n n n n ⎫⎪⎪⎪⎪⎪⎪⎭--⎛⎫⎛⎫⎪ ⎪-- ⎪ ⎪⎪ ⎪→→⎪ ⎪-- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭可解得T1(1,1,1,,1)= ξ,所以A 的属于1λ的全部特征向量为T1(1,1,1,,1)k k = ξ,其中k 为任意不为零的常数.对于21b λ=-,有2111000000b b b b b b b b b λ---⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪-=→ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭E A .可解得T 2(1,1,0,,0)=- ξ,T 3(1,0,1,,0)=- ξ, ,T (1,0,0,,1)n =- ξ.故A 的属于2λ的全部特征向量为2233n n k k k +++ ξξξ,其中n k k k ,,,32 是不全为零的常数.②当0=b 时,100010||(1)001n λλλλλ---==-- E A .因此特征值为11n λλ=== ,任意非零列向量均为特征向量.(2)①当0≠b 时,A 有n 个线性无关的特征向量,令12(,,,)n = P ξξξ,则11(1)11n b b b -+-⎛⎫ ⎪-⎪= ⎪ ⎪ ⎪-⎝⎭P AP . ②当0=b 时,=A E ,对任意可逆矩阵P , 均有1-=P AP E .9.设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足1123=++A αααα,2232=+A ααα,32323=+A ααα.(1)求矩阵B , 使得()()123123,,,,=A B αααααα;(2)求矩阵A 的特征值;(3)求可逆矩阵P , 使得1-P AP 为对角矩阵.解 (1)由123123100(,,)(,,)122113⎛⎫ ⎪= ⎪ ⎪⎝⎭A αααααα可知,100122113⎛⎫ ⎪= ⎪ ⎪⎝⎭B .(2)因为123,,ααα是线性无关的三维列向量,可知矩阵()123,,=C ααα可逆,所以1-=C AC B ,即矩阵A 与B 相似,由此可得矩阵A 与B 有相同的特征值.由2100122(1)(4)0113λλλλλλ--=---=--=---E B , 得矩阵B 的特征值,也即矩阵A 的特征值1231,4λλλ===.(3)对应于121==λλ,解齐次线性方程组()-E B x =0,得基础解系T 1(1,1,0)=-ξ,T 2(2,0,1)=-ξ.对应于43=λ,解齐次线性方程组()4-E B x =0,得基础解系()T30,1,1=ξ.令矩阵()123120,,101011--⎛⎫ ⎪== ⎪ ⎪⎝⎭Q ξξξ,则 1100010004-⎛⎫ ⎪= ⎪ ⎪⎝⎭Q BQ .因 ()()1111----==Q BQ Q C ACQ CQ A CQ ,记矩阵()()123121323120,,101,2,011--⎛⎫⎪===-+-++ ⎪ ⎪⎝⎭P CQ ααααααααα,P 即为所求的可逆矩阵.10.设实对称矩阵111111aa a ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,求可逆矩阵P ,使1-P AP 为对角矩阵,并计算-A E .解 由2(1)(2)0a a λλλ-=----+=A E ,得到A 的特征值1231,2a a λλλ==+=-.对于121a λλ==+,由()λ-=A E x 0,求得两个线性无关的特征向量12111,001⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .对于32a λ=-,由()λ-=A E x 0,求得对应的特征向量3111-⎛⎫⎪= ⎪ ⎪⎝⎭p .令123111(,,)101011-⎛⎫ ⎪== ⎪ ⎪⎝⎭P p p p ,则1112a a a -+⎛⎫ ⎪==+ ⎪ ⎪-⎝⎭P AP Λ.并且,1112(3)a a ----=-=-=-=-A E P P PP P E P E ΛΛΛ.11.设11111,1112a a a ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A β,线性方程组=Ax β有解但不惟一,(1)求a 的值;(2)求正交矩阵Q ,使得T Q AQ 是对角矩阵.解 (1)因为线性方程组=Ax β有解但不惟一,所以21111(1)(2)011aa a a a ==--+=A .当1a =时,()()R R ≠A A β,方程组无解.当2a =-时,()()R R =A A β,方程组有解但不惟一.因此,2a =-.(2)可计算出112121211-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,于是由(3)(3)0λλλλ-=-+=A E ,得到13λ=,23λ=-,30λ=.由()λ-=A E x 0求得对应的特征向量分别为1231110,2,1111⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭p p p .单位化后(已是正交的)得到正交矩阵0⎛ =⎝Q . 于是,T330⎛⎫ ⎪=- ⎪ ⎪⎝⎭Q AQ . 12.已知二次型222123232332(0)f x x x ax x a =+++>可以通过正交变换化成标准形22212325f y y y =++,求参数a 及所用的正交变换. 解 二次型的矩阵为2000303a a ⎛⎫⎪= ⎪ ⎪⎝⎭A .由题意知A 的特征值为1231,2,5λλλ===.将11λ=代入22(2)(69)0a λλλλ-=--+-=A E ,0a >,得2a =.于是200032023⎛⎫⎪= ⎪ ⎪⎝⎭A .对于11λ=,解方程组()-=A E x 0得特征向量1011⎛⎫⎪= ⎪ ⎪-⎝⎭ξ,单位化得1011⎛⎫⎪=⎪⎪-⎭p . 对于22λ=,解方程组(2)-=A E x 0得特征向量2100⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,取2100⎛⎫⎪= ⎪ ⎪⎝⎭p .对于35λ=,解方程组(5)-=A E x 0得特征向量3011⎛⎫ ⎪= ⎪ ⎪⎝⎭ξ,单位化得3011⎛⎫⎪=⎪⎪⎭p .故所用的正交变换矩阵为01000⎛⎫⎪ ⎪ =⎝P . 13.判断二次型12111n n i i i i i f x x x-+===+∑∑是否正定.解 二次型的矩阵为110000211102210100021000102110001221000012⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭A . 计算得到A 的任意k 阶顺序主子式1(1)02kk k ⎛⎫=+> ⎪⎝⎭A ,因此,二次型是正定的. 14.设二次型22212313222(0)f ax x x bx x b =+-+>,其中二次型的矩阵A 的特征值之和为1,特征值之积为12-.(1)求,a b 的值;(2)利用正交变换把二次型f 化为标准形,并写出所用的正交变换和对应的正交矩阵.解 (1)二次型对应的矩阵为002002a b b ⎛⎫⎪= ⎪ ⎪-⎝⎭A .设A 的特征值为123,,λλλ,则 123221a λλλ++=+-=,21230020421202a ba b b λλλ==--=--. 解得1,2a b ==.(2)由102020202⎛⎫⎪= ⎪ ⎪-⎝⎭A ,得2(2)(3)λλλ-=--+A E ,于是A 的特征值为1232,3λλλ===-. 对于122λλ==,由(2)-=A E x 0,求得两个线性无关的特征向量12200,110⎛⎫⎛⎫⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭p p .对于33λ=-,由(3)+=A E x 0,求得特征向量3102⎛⎫ ⎪= ⎪ ⎪-⎝⎭p .由于123,,p p p 已是正交,单位化后得到正交矩阵0100⎫⎪⎪=⎪ ⎪Q .于是有T223⎛⎫ ⎪= ⎪ ⎪-⎝⎭Q AQ .在正交变换=x Qy 下,有 222123223f y y y =+-. 15.证明二次型T f =x Ax 在1=x 时的最大(小)值为矩阵A 的最大(小)特征值. 证明 设存在正交变换=x Py ,将T f =x Ax 化为标准形2221122n n f y y y λλλ=+++ .不妨设1λ是A 的特征值中的最大值,则2222221122112()n n n f y y y y y y λλλλ=+++≤+++ .由于正交变换不改变向量的长度,而1=x ,所以1=y ,故22222211221121()n n n f y y y y y y λλλλλ=+++≤+++= .并且,f 可以达到上限1λ,只要取121,0n y y y ==== 即可.故二次型T f =x Ax 在1=x 时的最大值为矩阵A 的最大特征值.最小值的情形同理可证.16.设U 为可逆矩阵,T=A U U ,证明Tf =x Ax 是正定二次型.证明 设≠x 0,由U 为可逆矩阵知≠Ux 0,于是2T T T T ()0f ====>x Ax x U Ux Ux Ux Ux,故Tf =x Ax 是正定二次型.17.设对称矩阵A 为正定矩阵,证明存在可逆矩阵U ,使得T=A U U .证明 若A 为正定阵,则存在正交矩阵P ,使得121n λλλ-⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭ P AP Λ, 其中,每个0i λ>.而T⎫⎪ ⎪⎪=⎪⎪⎝QQ Λ, 1T T T ()()-===A P P PQQ P PQ PQ Λ.令()T=U PQ ,则T =A U U .而,P Q 均可逆,所以U 可逆.18.设,A B 都是n 阶正定矩阵,证明+A B 也是n 阶正定矩阵. 证明 由于T T ,==A A B B ,所以T T T ()+=+=+A B A B A B ,即+A B 是对称矩阵.又,A B 都是n 阶正定矩阵,即对任意的非零向量x ,有T T 0,0>>x Ax x Bx ,因此T T T ()0+=+>x A B x x Ax x Bx ,故+A B 是n 阶正定矩阵.19.设12,p p 分别是矩阵A 的属于特征值12,λλ的特征向量,且12λλ≠,试证12+p p 不可能是A 的特征向量.证明 由条件有111222,λλ==Ap p Ap p .设12+p p 是A 的某个特征值0λ的特征向量,则12012()()λ+=+A p p p p .另一方面,12121122()λλ+=+=+A p p Ap Ap p p .因此,101202()()λλλλ-+-=p p 0.由于12,p p 线性无关,故102λλλ==,矛盾.故12+p p 不可能是A 的特征向量.20. 已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2. (1)求a 的值;(2)求正交变换=x Qy ,把),,(321x x x f 化成标准形; (3)求方程123(,,)0f x x x =的解. 解 (1)二次型对应矩阵为110110002a a a a -+⎛⎫ ⎪=+- ⎪ ⎪⎝⎭A .由二次型的秩为2知,1101100002a a a a-+=+-=A ,得0a =. (2)这里110110002⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,可求出其特征值为0,2321===λλλ.由(2)-=E A x 0,求得特征向量12101,001⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα.由(0)-=E A x 0,求得特征向量3110⎛⎫⎪=- ⎪ ⎪⎝⎭α.由于12,αα已经正交,直接将12,αα,3α单位化,得1231011,0,1010⎛⎫⎛⎫⎛⎫⎪ ⎪⎪===-⎪ ⎪⎪⎪ ⎪⎪⎭⎝⎭⎭ηηη. 令()123,,=Q ηηη,即为所求的正交变换矩阵.由=x Qy ,可化原二次型为标准形2212312(,,)22f x x x y y =+. (3)由),,(321x x x f ==+222122y y 0,得1230,0,y y y k ===(k 为任意常数).从而所求解为 ()12330,,00c k c k ⎛⎫⎛⎫⎪ ⎪====- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭x Qy ηηηη,其中c 为任意常数.21.设A 是n 阶实对称矩阵,且2=A A ,证明存在正交矩阵P 使得1r-⎛⎫=⎪⎝⎭E P AP 0.证明 根据定理,对于n 阶实对称矩阵,存在正交矩阵1P 使得12111n λλλ-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P AP ,其中12,,,n λλλ 是A 的n 个特征值.由于2=A A ,故A 的特征值满足2λλ=,即0,1λ=.设()R r =A ,则12,,,n λλλ 这n 个数中有r 个1,n r -个0.调整12,,,n λλλ 的顺序使得前r 个数为1,后n r -个为0,相应地调整1P 的列,得到P ,P 仍为正交矩阵,且1r-⎛⎫= ⎪⎝⎭E P AP 0. 22.设A 是n 阶实对称矩阵,且2=A E ,证明存在正交矩阵P 使得1rn r --⎛⎫= ⎪-⎝⎭E P AP E . 证明 根据定理,对于n 阶实对称矩阵,存在正交矩阵1P 使得12111n λλλ-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭P AP ,其中12,,,n λλλ 是A 的n 个特征值.由于2=A E ,故A 的特征值满足21λ=,即1,1λ=-.设()R r =A ,则12,,,n λλλ 这n 个数中有r 个1,n r -个1-.调整12,,,n λλλ 的顺序使得前r 个数为1,后n r -个为1-,相应地,调整1P 的列得到P ,P 仍为正交矩阵,且1rn r --⎛⎫= ⎪-⎝⎭E P AP E . 23.设A 是一个n 阶实对称矩阵,若对于任一n 维列向量都有T 0=x Ax ,则=A 0.证明 设T f =x Ax ,取T(0,,0,1,0,,0)i = x (i x 的第i 个坐标为1,其余都是0),则有 T 0i i ii f a ===x Ax , 1,2,,i n = .再取(,)T (0,,0,1,0,,0,1,0,,0)i j = x ((,)i j x 的第,i j 个坐标为1,其余都是0,i j ≠),则有 (,)T (,)0()2i j i j ii jj ij f a a a ===++x Ax ,所以0ij a =.综合可得=A 0.24. 设T ⎛⎫= ⎪⎝⎭AC D C B 为正定矩阵,其中A ,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (1)计算T P DP ,其中1m n -⎛⎫-= ⎪⎝⎭E A C P O E ; (2)利用(1)的结果判断矩阵T 1--B C A C 是否为正定矩阵,并证明你的结论.解 (1)由T 1m T n -⎛⎫= ⎪-⎝⎭E O P C A E ,有 1T1T T 1m m T n n ---⎛⎫-⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭E O A C A O E A C P DP =C A E C B O B C A C O E . (2)矩阵T 1--B C A C 是正定矩阵.由(1)的结果可知,矩阵D 合同于矩阵T 1-⎛⎫ ⎪-⎝⎭A O M =OBC A C . 由D 为正定矩阵可知,矩阵M 为正定矩阵.因矩阵M 为对称矩阵,故T 1--B C A C 为对称矩阵.对T (0,0,,0)= x 及任意的T 12(,,,)n y y y =≠ y 0,有()T TT T 1T 1,()0--⎛⎫⎛⎫=-> ⎪⎪-⎝⎭⎝⎭A 0x x y y B C A C y 0B C A C y ,故T 1--B C A C 为正定矩阵.。
第六章 线性空间 自测题一.填空题(20分)1.若n ααα,,,21 是线性空间V 的一个基,则满足条件(1)n ααα,,,21 是 ; (2)对V 中任意向量β, .2.数域P 上的线性空间V 的非空子集W 是V 的子空间的充要条件为 .3.已知12,W W 为线性空间V 的子空间, 12W W +为直和的充要条件为 .4.设V 和W 是数域P 上两个线性空间,V 到W 的一个同构映射f 满足如下三个条件: (1)f 是V 到W 的 ; (2)对V ∈∀βα,,有 ; (3)对,V k P α∀∈∈,有 .5.向量空间V 的基12,n ααα,,到基11,,,n n ααα-,的过渡矩阵为_______ .6.复数域作为实数域上的向量空间,则dim =_____,它的一个基为__ __. 复数域作为复数域上的向量空间,则dim=__ __,它的一个基为__ _ _.二.选择题(10分)1.若21,W W 均为线性空间V 的子空间,则下列等式成立的是( ) (A )21211)(W W W W W =+; (B )21211)(W W W W W +=+ ; (C )1211)(W W W W =+ ; (D )2211)(W W W W =+2.按通常矩阵的加法与数乘运算,下列集合不构成P 上线性空间的是:( ) (A ){}1n n W A P A A ⨯'=∈=; (B ){}2()0n n W A P tr A ⨯=∈=;(C ){}30n nW A PA ⨯=∈=; (D ){}4n n W A P A A ⨯'=∈=-.3.数域P 上线性空间V 的维数为V r n ∈ααα,,,,21 ,且任意V 中向量可由n ααα,,,21 线性表出,则下列结论成立的是:( )(A )n r =; (B )n r ≤; (C )n r <; (D )n r >4.设1324[],[]W P x W P x ==则=+)dim(21W W ( ) (A )2; (B )3; (C )4; (D )55.设线性空间{}R a a a a W ∈=)3,2,(,则W 的基为:( )(A ))3,2,1(; (B )),,(a a a ; (C ))3,2,(a a a ;(D ))3,0,0()0,2,0()0,0,1(三.(10分) 在线性空间4P 中求由线性方程组:⎪⎩⎪⎨⎧=+-+=-+-=+-+0111353033304523432143214321x x x x x x x x x x x x 所确定的4P 的子空间W 的基和维数.四.(15分)设3中的两个基分别为()1101α=,()2010α=,()3122α=,()()()123100,110,111βββ===.(1)求由基321321,,,,βββααα到基的过渡矩阵.(2)已知向量α在基321,,ααα下的坐标为()130,求α在基321,,βββ下的坐标. 五.(15分) 设12(1,2,1,0),(1,1,1,1),αα==-1(2,1,0,1),β=-2(1,1,3,7)β=,),(),,(212211ββααL W L W ==,求)dim (21W W +及)dim (21W W .六.(15分) 设n nA P⨯∈:1)证明:全体与A 可交换的矩阵组成n n P ⨯的一子空间,记作()C A ; 2)当A =E 时,求()C A ;3)当100002000A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦时,求()C A 的维数与一组基.七.(15分)已知n nP⨯的两个子空间{}1n n V A P A A ⨯'=∈=,{}2n n V A P A A ⨯'=∈=-,证明:12n n P V V ⨯=⊕.答案:一.1.线性无关,β可以由n ααα,,,21 线性表示 2. 对V 的加法和数乘封闭3. 12{}W W o ⋂=或12dim()0W W ⋂=4. 线性映射,()()()f f f αβαβ+=+,()()f k kf αα= 5. 111⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦6. dim =2,它的一个基为1,i ; dim =2,它的一个基为1.二.C C B C A三. 解:由32543254325431330387018735131103870000---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦12534101920183701837300000000--⎡⎤⎡⎤⎢⎥⎢⎥→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,W 的维数为2,一组基为()()''1218310,29701ξξ=-=-.四. 解:(1)由()()()123123123101=012=A 102αααεεεεεε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,()()()123123123111=011=001B βββεεεεεε⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,()()1123123=A B βββααα-∴,过渡矩阵11101111201111221=012011212011231102001101001110A B ---⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. (2) ()112312311=(,,)3=300B A ααααβββ-⎛⎫⎛⎫ ⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭坐标为111101*********=0110123110320001102010201B A -----⎛⎫⎡⎤⎡⎤⎛⎫⎡⎤⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥-=-= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎝⎭⎣⎦⎝⎭⎝⎭五.解:由()12121121110321110117=1103022201170115ααββ-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥→⎢⎥⎢⎥--⎢⎥⎢⎥---⎣⎦⎣⎦10141000011701000041200100201--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 12dim 2,dim 2W W ==,12dim()=4W W +,12dim()=0W W六. 证明 1)设与A 可交换的矩阵的集合记为()C A .显然()O C A ∈,,()B D C A ∀∈,()()A B D AB AD BA DA B D A +=+=+=+,故()B D C A +∈.若k 是一数,()B C A ∀∈,可得()()()()A kB k AB k BA kB A ===,故()kB C A ∈.所以()C A 构成n n P ⨯的子空间。
高数答案(全集)第六章参考答案第六章常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12还有使因子21x -?012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ??++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ??11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令x yu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ??==??1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=?32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15.化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++ 17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='?21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=?18.xx x dx x x y x1ln 32ln 12--=+=''? 2ln ln 213)1ln 3(21---=--='?x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=?x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+??=--?即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =?==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。
微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。
(理工类)习题 6-1答案: (经管类)习题 5-1答案: 1. (1)1;(2)1-e .2. (1)0;(2)0; (3)1;(4)418-π.3. (1)dx x )sin(10⎰π;(2)dx x ⎰1ln .(理工类)习题 6-2答案: (经管类)习题 5-2答案: 1. (1)>⎰102dx x 13x dx ⎰; (2) ⎰⎰<433432)(ln )(ln dx x dx x ;(3) ⎰⎰>1012dxe dx e xx; (4) ⎰⎰+>434)3(tan ππdxxx xdx .2. (1);51)1(6412≤+≤⎰dx x (2)⎰≤+≤πππ02)sin 1(dx x ;(3)22041222e dx ee xx ≤≤⎰--; (4)3sin3143πππ≤+≤⎰x.(5)12012≤-≤⎰dx x x(理工类)习题 6-3答案: (经管类)习题 5-3答案: 1. (1)xxx 2cos1sin + ; (2)42xxe-;(3))cos )(sin sincos(2x x x -π.2. xxsin 1cos --.3. (1)21;(2)e21;(3)21;(4)42π.4. 极值点0=x ,拐点为))11(21;22(e-±. 5. (1)881;(2)6π;(3)3π;(4)21;(5)4;(6)41π-.6. ⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤=Φ21,672210,3)(23x x x x x x . 7. )(x F 在0=x 处连续,但不可导.(理工类)习题 6-4答案: (经管类)习题 5-4答案:1. (1)2π;(2)16π;(3)3322-;(4)61;(5)322;(6)52; (7))1(211--e ;(8)23;(9)1;(10)4arctan π-e .2. 212121tan4+--e.3. (1)0 ;(2)3243π;(3)π-4;(4)ln .4. (1)2-π;(2)4142+e; (3)12312-+π;(4)214-π;(5)42ln 8-π;(6)122--e (7))11cos 1sin (21+-e e ;(8)12-e .(理工类)习题 6-5答案: (经管类)习题 5-5答案:1. (1)1;(2)21;(3)发散;(4)2ln ;(5) π;(6)2ln 21 ; (7) 发散;(8) 发散;(9) 1;(10) 发散. 2. 当1>λ时收敛于1)2)(ln 1(1--λλ;当1≤λ时发散.3. 2ln 214+π.(理工类)习题 6-6答案: (经管类)习题 5-6答案: 1. (1)364;(2)61;(3)332;(4)2ln 23-;(5)a b -;(6)21-+ee .2.169.3. (1)2a π;(2)218a π;(3) 45π.4.103π.5. 225a π;336a π. 6.h a 221π.(理工类)习题 6-7答案: 1. 1.56焦. 2. ⎪⎭⎫⎝⎛-b akq 11. 3. 1.57697.5kJ. 4. 710693.7⨯焦. 5. ab k ln.6..323R γ7. 3.1429N.8. 取y轴通过细棒,11y F G m aρ⎛⎫=-⎝,xF =(理工类)复习题六1. (1)4π; (2)32234-;(3))a af (; (4)2.2.≤21dx xx ⎰24sin ππ⋅≤223. (1)2sin x ;(2))(2x xf .4.)0(2cos 22≠y yexy.5.51.6. 32342+-x x .7. y x =. 11.(1)342-π; (2)π32;(3))2(2+π;(4)2ln 3112.2π.13.⎪⎭⎫⎝⎛-++A 212121π 17.).21(33+18.1. 19.2e .20. (1)7π,4π;(2)2160π.21.43,32==b a .22..cb c sh2(经管类)复习题六1. (1)4π; (2))a af (.2. (1)2sin x ;(2))(2x xf .3. 32342+-x x .4. y x =. 8.(1)342-π; (2)π32;(3))2(2+π;(4)2ln 31.9.2π.10.⎪⎭⎫⎝⎛-++A 212121π. 14. ).21(33+15.1. 16. 43,32==b a .。
一、填空题 1、在3
F 中,计算
()()()11
2,0,11,1,20,1,1____32
;-+---+=1111,,326⎛⎫
--- ⎪⎝⎭
2、若1234,α,α,αα线性无关,则12233441,,α+α,α+αα+αα+α的极大无关组是 ;()12233441dim ,,L α+α,α+αα+αα+α= ;
122334,α+α,α+αα+α;3
3、若向量α关于基123,,ααα的坐标为()123,,x x x 则α关于基1232,,ααα-的坐标为 ;
在向量空间()2M F 中,向量a b c d ⎛⎫ ⎪⎝⎭关于基1000⎛⎫ ⎪⎝⎭,0010⎛⎫ ⎪⎝
⎭,0100⎛⎫ ⎪⎝⎭ ,0001⎛⎫
⎪⎝⎭的坐
标是 ;1231,,2x x x ⎛⎫
-
⎪⎝⎭
;(),,,a c b d 4、向量组()()()()12340,1,13,1,2α=1,1,1,, α=2,1,0, α=, α=的一个极大 无关组是 ;向量组1(1,1,0,0)α=,2(0,1,1,0)α=,3(1,0,1,0)α=,
4(1,0,0,1)α=的极大无关组是 ;123α,α,α;1234,α,α,αα。
5、设0,a V a b R a b ⎧⎫
⎛⎫=∈⎨⎬ ⎪-⎝⎭⎩⎭
则dim V = 2 ;0
6、设(){}1
1
220n
n V x x x
x nx =
+++= ,则dim V = n-1 ;
7.由基123,,2ααα到基1232,,ααα-的过渡矩阵是 ;20001
01002⎛⎫
⎪ ⎪
⎪ ⎪- ⎪⎝⎭
8、设A 为n 阶方阵,且()()r A s s n =≠则齐次线性方程组AX=0的解空间的维数为 n-s ; 9、若1234,,,αααα线性无关,则123,,ααα线性 无关 ;
10、 向量空间没有基;含一个向量的向量空间是 空间;
二、解答题
1、检验下列集合对所规定的运算是否构成所给数域上的线性空间: 1
)设{}
,V a a b Q =+∈,对普通数的加法和乘法;是
2)V 为定义在数域P 上的一切n 阶方阵,对数与矩阵的乘法及以下定义的加法:
,,n n X Y P X Y XY YX ⨯∀∈⊕=-;不是
3)(){},|,V x y x y P =
∈,加法按普通矩阵相加,并定义数乘为:
()()2111,,,0,x y P k P k ky αα∀=∈∈∙=:不是
2、设,F F 是数域,若F F ⊂,问对数的加法与乘法,F 是否构成F 上线性空间?F 是否构成F 上线性空间?不是;是
3、实数域对于数的加法和乘法构成实数域上线性空间,问有理数集是否为实数集的子空间?又R +
是否R 的子空间?若实数域对于数的加法和乘法构成有理数域上线性空间,问有理数集是否为实数集的子空间?不是;是 4、判断正误,并说明为什么?
1)如果12,,,r V ααα∈ ,则12,,,r ααα 是()12,,,r L ααα 的基;不一定 2)若12,,,n ααα 是n 维空间的一组生成元,则12,,,n ααα 一定是V 的基;不 3)若()12,,,r L ααα 中有某一向量关于12,,,r ααα 的表示法唯一,则()12,,,r L ααα 是r 维线性空间;是
4)设()()(){}
1,1,0,1,1,0,0,0,0S =--,则S 是3
P 的子空了间;不
5)任一线性空间都有基。
否 6)若
12,,,r ααα 线性相关,则任意不全为零的12,,,r k k k P ∈ ,都有
1122
0r r k k k ααα+++= ;否 7)若12,,,r ααα 线性相关,则存在无穷多组不全为零的12,,,r k k k P ∈ ,使
1122
0r r k k k ααα+++= ;是 8)12,αα线性相关的充要条件是存在k P ∈,使12k αα=;否
9)若12,,,r ααα 与12,,,s βββ 的极大无关组分别是12,,,t i i i ααα 和12,,,k j j j βββ ,则()()
1212,,,,,,k t j j j i i i L L βββααα+ 的基是{}
1212,,,,,,,t k i i i j j j αααβββ ;否 10)如果12,,,r ααα 线性无关,那么每一向量都不能由其余向量线性表示。
是
5、若实数域作为实数域上线性空间,问子空间(L 是几维的?若实数域作为有理
数域上线性空间,问子空间(L 是几维的?1;3
6、判断[]F x 中的向量()2231f x x x =++能否由()13,f x x =+()22,f x =
()234f x x x =++线性表示?表示法是否唯一。
能;唯一
7、在三维空间中,求一非零向量β,使其关于基123,,ααα的坐标和基3231,,αααα+的坐标相同。
()2,0a a P a βα=∈≠且
8、设123,,ααα是V 的基,问k 为何值时,122331,,k αααααα+++也是V 的基,并求 1)由基122331,,k αααααα+++到基123,,ααα的过渡矩阵; 2)求123a b c ξααα=++关于基122331,,k αααααα+++的坐标。
1223311,,k k αααααα≠-+++时也是V 的基;
111)11,1111k k k k -⎛⎫ ⎪- ⎪+ ⎪-⎝⎭ 12)1a kb kc a b kc k a b c +-⎛⎫ ⎪-++ ⎪+ ⎪
-+⎝⎭
9、在[]4F x 中,求向量组{}
23
1,,1,1,2
x x x x x ++++的极大无关组;
{}2
31,,1,2x x
x x +++
10、有没有只含一个向量的线性空间?有没有只含有限个向量的线性空间?为什么?
有;没有 11、设()[
]g x F x ∈,()()()[]{}|w g x f x f x F x =∈,
问按通常多项式加法及数乘运算w 是否构成向量空间?是
12、求()
221,1,L x x x x ---的基与维数。
2
1,1,x x -- 2
13、在4
P 中设()()()1231,1,0,1,1,0,0,1,1,1,1,1,ααα===-()11,2,0,1,β=,
()20,1,1,0β=,求()123L α,α,α+(),L ββ12和()()123,L L ββ12α,α,α 的基与维数。
123,,ααα;3;,ββ12;2
14、在4
P 中,设()()()1231,1,1,2,2,1,3,0,0,3,5,4ααα=-=-=--,()11,2,2,1,β= ()24,3,3,1β=-,求()123L α,α,α+(),L ββ12和()()123,L L ββ12α,α,α 的基与维数。
121,,ααβ;3;122αα+;1
15、在4
P 中,设()()121,1,0,0,1,0,1,1αα==,()()120,0,1,1,0,1,1,0ββ==
求()()12,L L ββ12α,α 与()()12,L L ββ12α,α+的基与维数。
()(){}12,0L L ββ12α,α= ;0;12,,,ααββ12;4;
16、设()()()()12341,1,1,3,1,3,5,1,3,2,1,2,1,6,10,p p αααα==-=-+=--,问P 为
何值时,1234,,,αααα为4
R 的一个基。
133
P ≠
17、求齐次线性方程组12341234
12341234380503970230
x x x x x x x x x x x x x x x x -++=⎧⎪-+-=⎪⎨+-+=⎪⎪+-+=⎩的基础解系
同解方程组为:134
234
232274x x x x x x =-+⎧⎨=-⎩,基础解系:123172,2001ηη-⎛⎫⎛⎫
⎪ ⎪- ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。