倾翻机构力能参数计算
- 格式:doc
- 大小:1.62 MB
- 文档页数:13
用Pro/E 制图软件计算转炉倾翻力矩摘 要:转炉倾翻力矩计算有多种方式,本文采用三维制图软件Pro/E 对转炉任一倾动角度下的炉液进行实体动态建模分析,通过系统数据自动生成进行力矩计算,简化传统力矩计算方式的工作量并提高计算精度。
关键词:转炉;Pro-E 制图软件;实体建模;倾翻力矩;Calculation of Converter Tilting Torque by Pro/ELiu jialian 1 Li peizhen 21. Engineering College of Linyi Normal University, Linyi, 2760052.Jigang Group Co, Ltd, Jinan, 250100 Abstract: There are many method for calculation of converter tilting torque. In this article, using Pro / E to analysis the modeling of furnace at any angle, obtain the date and calculate the tilting torque, simplify the traditional method of calculation, improve the accuracy of the date.Keyword: converter; pro/E; virtual prototype, tilting torque1引言济钢第一炼钢厂4×25t 转炉原设计最大出钢量为28t ,最大倾翻力矩为84 m t ⋅。
通过近几年的不断扩容改造,实际最大出钢量已达到42t,为满足生产工艺的要求,需对转炉继续进行扩容改造,最大出钢量达到50t 。
改造前转炉有效容积为26.5m3左右,炉容比为0.54Nm3/t ,受炉容比过小影响,单炉出钢量限制在42吨左右, 在保证转炉支撑基础和托圈倾动等机构不变情况下对转炉进行改造,将炉身外径由原φ4200mm 增加为φ4280mm (相应炉壳与托圈间隙由目前100mm 缩小为60mm );炉身长度向下延长200mm ,同时炉底高度缩短200mm ,同步对炉壳三点支撑销轴及销轴座、炉底销座进行了提高强度的改造。
&1.2电杆基础极限倾覆力Sj或极限倾覆力矩Mj的计算,是假定土壤达到了极限平衡状态。
土压力的X的计算式如下:X =Y s ytan2 (45° +|)=m yX:土压力,KPa;叫土压力参数,按表&1.2确定,KN/n?;0:等代内摩阻角,按表8.1.2确定,(° );必自设计地面起算的深度E。
8.1.3电杆的计算宽度应按8.1.3的第一款和第二宽的内容确定。
1、基础为单杆组成时应按式(&1.3-1)确定:b0= b%(8.1.3-1)Ko=1 + 抽cos (45 ° + 4)tan B(8.1.3-2) B(1:电杆的计算宽度,m;b:电杆的实际宽度,m;k«:空间增大系数,可按式(8.1.3-2)或按表8.131确定;5:土的侧压力系数,可按表8.1.3-2确定。
2、基础为双杆组成时,基础计算宽度按式(8.133)与(8.1.3-4)中的较小者确定,双杆中心距此2.5恥b0= (b+Lcosp)&(8.1.3-3)b o=2b I<o(8.1.3-4)8.1.4不带卡盘的电杆基础,当基础埋深等确定后,极限倾覆力或极限倾覆力矩应符合下列公式要求:s%s°(8.1.4-1) MpYfHoS(8.1.4-2)。
式中:Sj ---- 极限倾覆力; Mj ——极限倾覆力矩; Yf —按表5.0.17确定;Ho —%作用点至设计地面处的距离,m o— — ———H 可由公式M 十2晒-切2-()求得,或按表&1.4确定。
8.1.5当Sj<Y0或“产丫彳”禺时,应采取措施增强抗倾覆承载能力。
一般方法是在基础埋深亍处加设卡盘,必要时增加下卡盘,当基土为冻胀土时应不设卡盘或采取防冻胀措施。
8.1.6计算带上卡盘的电杆基础时,当埋深及上卡盘位置确定后,应按式 (8.1.6-1)计算卡盘横向压力,按式(8.1.6-2).式(8.1.6-3)确定卡盘长度:(8.1.6-2)L±=L i + bPk =Y fS 0 (H 2- 2)(8.1.6-1) (8.1.4-3)(8.1.4-4)(8.1.4-5)(8.1.4-6)(8.1.4-7)(8.1.6-3)Sj= HM式中:•上卡盘横向设计值,KN;•上卡盘计算长度,m;人一设计地面至上卡盘的距离,m;d i ------- 上卡盘厚度,m;d2—上卡盘宽度,m;L± --- 上卡盘全长,m;当y,= m, H值可按下列方法求得,或结合表&1.6确定;Yf s°(i + 3q)「= mb o/l t2(8.1.6-4)1F1=2 +e2 - 2H3(8.1.6-5)8.1.7当采用上下、卡盘时,应分别按式(8.1.7-1)和式(8.1.7-2)确定上、下卡盘的压力值,按式(8.1.6-3)确定上卡盘长度,按时式(8.1.7-3).式(8.1.7-4) 确定下卡盘长度:(Y f S0-Sj)(H0 + y2) P=『2-儿k(* S°・ Sj)(H° + yi)Q 严——QkL 2_y2(md3 + 2y0d4tan B)L下出+ b式中:Qk——下卡盘横向设计压力值,KN;L>—下卡盘计算长度,m;y2—设计地面至下卡盘的距离,m;d 3 ------ 下卡盘厚度,m;•下卡盘宽度,m;(8.1.7-1) (8.1.7-2) (8.1.7-3) (8.1.7-4)'T--- 下卡盘全长,m;窄基铁塔浅基础倾覆稳定计算822有台阶基础倾覆稳定计算(见图&2.2)应符合下列公式要求:1a i -診[-%) _ | E/i t(l -加为 + y(e + f 内)Yf s(H()w(8.2.2-1)F + G-Yf S0/-py= 1 + /r p2 <o.8a i a^fiy>°(B.2.2-2)1 2E“m叽(S.2.2-3)吹辭o,a o= h t ~h\a(B.2.2-4)5= bK Q(B.2.2-5)X0 = \(B.2.2-6)1(B.2.2-7)e<3a if p= tan P(B.2.2-8)式中:61一底板侧面宽度,m;勺―底板侧面的计算宽度,m o8.2.3无台阶基础倾覆稳定计算(见图8.2.3)应符合下列公式要求1 2 “ 、 Yf S ()H 0<2E /p h i-3Eh i + y (e + / (A) F + Go-YfVpy1+圧 <o.s a i a ^咀y>°12E =1e<3^i式中:G°——基础自重,KN 。
5 整体稳定性5.1 验算工况本塔式起重机为固定基础的自升式塔式起重机,其抗倾翻稳定性的计算包括:安装架设、拆卸和使用过程(工作状态、非工作状态)。
表5.1 固定基础塔式起重机验算工况5.2 整体稳定性校核e=M—作用于基础上的弯矩。
h—基础深度。
b—基础宽度。
Fv—作用于基础上的垂直载荷。
Fh—作用于基础上的水平载荷。
Fg—混凝土基础的重力,T⨯=ρ.⨯⨯bhbFg603=作用于基础上的弯矩包括自重载荷、起升载荷、离心力、惯性力及风载荷产生的力矩,根据上述工况计算如下。
5.2.1基本稳定性工作状态,无风静载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷系数取1.0,离心力系数取1.0,起升载荷系数取1.5。
Fh=0NM+Fh ×h=62026542.33mm⋅Ne=70.3mm5.2.2 动态稳定性工作状态,有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0。
Fh=0NM+Fh ×h=101030892mm⋅Ne=114.52mm5.2.3 暴风侵袭稳定性非工作状态,载荷放大系数:自重载荷取1.0,风载荷系数取1.2。
M+Fh ×h=180657158mm⋅Ne=206.3mm5.2.4 突然卸载稳定性工作状态,考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷取1,起升载荷取-0.2,风载荷系数取1.0。
M+Fh ·h =-173008611.2mm⋅Ne=-197.6mm5.2.5 安装拆卸稳定性安装拆卸作状态,载荷放大系数:自重载荷取1,风载荷系数取1.0。
M+Fh ×h=54729184mm⋅Ne=87.7mm经计算地面反力至基础中心的距离小于b/3,故整机抗倾翻稳定性满足要求。
5.2.6 地面压应力验算][3)(2b g V b p bl F F p ≤+=Pb —地面计算压应力。
装载机倾翻载荷的计算公式为:倾翻载荷=整车满载重量×质心至前桥距离÷前桥之前的结构件和铲斗载荷质心至前桥距离。
计算时先确定质心坐标,倾翻载荷是指当装载机在某种工况下作业时,整机有倾翻的趋势,但尚未倾翻,此时作用在装载机上的外力矩的代数和。
这个外力矩称为倾翻力矩,单位用N·m表示。
倾翻载荷与倾翻力矩成正比,倾翻力矩越大,倾翻载荷也越大,装载机越容易倾翻。
因此,倾翻载荷可以作为装载机稳定性能的评价指标之一。
倾翻机构力能参数计算
3.1 SolidWorks简介
SolidWorks软件是世界上第一个基于Windows开发的三维CAD系统,由于技术创新符合CAD技术的发展潮流和趋势,SolidWorks公司于两年间成为
CAD/CAM产业中获利最高的公司。
良好的财务状况和用户支持使得SolidWorks 每年都有数十乃至数百项的技术创新,公司也获得了很多荣誉。
,SolidWorks 所遵循的易用、稳定和创新三大原则得到了全面的落实和证明,使用它,设计师大大缩短了设计时间,产品快速、高效地投向了市场。
由于使用了Windows OLE 技术、直观式设计技术、先进的parasolid内核(由剑桥提供)以及良好的与第三方软件的集成技术,SolidWorks成为全球装机量最大、最好用的软件。
SolidWorks软件的特点:
1.第一个在Windows操作系统下开发的CAD软件,与Windows系统全兼容。
2.菜单少,使用直观、简单,界面友好SolidWorks一共只有60几个命令,其余所有命令与Windows命令是相同的;下拉菜单一般只有二层,(三层的不超过5个);图形菜单设计简单明快,非常形象化,一看即知。
3.数据转换接口丰富,转换成功率高。
SolidWorks与I-DEAS、ANSYS、
Pro/Engineer、AutoCAD等之间的数据转换均非常成功、流畅。
4.独特的配置功能SolidWorks允许建立一个零件而有几个不同的配置,这对于通用件或形状相似零件的设计,可大大节约时间。
5.特征管理器特征管理器(PropertyManager)是SolidWorks的独特技术,在不占用绘图区空间的情况下,实现对零件的操纵、拖曳等操作。
6.自上而下的装配体设计技术(top-to-down)目前只有SolidWorks提供自上而下的装配体设计技术,它可使设计者在设计零件、毛坯件时于零件间捕捉设计关系,在装配体内设计新零件、编辑已有零件。
7.比例缩放技术可以给模具零件在X、Y、Z方向给定不同的收缩而得到模具型腔或型芯。
8.曲面设计工具用SolidWorks,设计者可以创造出非常复杂的曲面,如:由两个或多个模具曲面混合成复杂的分型面。
设计者亦可裁减曲面、延长曲面、倒圆角及缝合曲面。
9.丰富的第三方软件支持功能。
本课题运用SolidWorks对铁水倾翻车进行三维设计,并利用该软件对铁水倾翻车进行结构的分析计算。
3.2 铁水罐及铁水的建模
图3.1 铁水罐的三视图
铁水罐为球缺底圆锥体罐。
罐外壳由钢板与吊架焊接而成,内衬砌筑耐火砖。
吊架上有起吊用的吊轴及供铁水罐坐于车架上的支轴,与吊架焊在一起的还有供铁水罐在铸铁机前方支柱上倾翻回转的支爪;罐下部有焊接的吊耳座,吊耳
座上装有销轴供铁水罐翻转时,卷扬机吊钩提升用。
根据铁水罐的设计图纸,按照1:1的建模,画出铁水罐的三维模型。
如图3.2所示。
1.罐壳
2.吊耳座
3.支轴
4.吊轴
5.支爪
6.内衬(耐火砖)
图3.2 铁水罐的三维图
根据铁水罐倾翻角度,对未倾翻时的铁水和倾翻时的铁水建模,如图 3.3
和图3.4
所示。
图3.3 未倾动铁水建模图3.4 倾动铁水建模
3.3 铁水罐参数设计合理性验证
1.空罐时重心位置的查询:
图3.5 空罐重心查询
由图3.5可以看出,空罐时重心所在位置在吊轴下方,所以在吊运时不会倾翻,设计合理。
2.如图
3.6所示的为铁水罐安放在罐座上时的示意图,经过查询,罐体和罐座的总质量为30t。
重心位置如图3.6所示。
查询方法为点击“工具”菜单—“质量特性”选项。
图3.6 空罐与罐座
3.空罐倾动时重心查询:
图3.7 空罐倾动
当空铁水罐倾动到极位时,重心位于两支轴之间,距离右侧支轴的水平距离368mm,因此罐体不会离开罐座倾翻,能够安全工作(图3.7)。
4.装入铁水时的罐体质量及重心
图3.8 装入铁水未倾动
重心位置如图3.8所示,吊运时不会倾翻;通过质量查询得质量为70.9t。
5.装入铁水倾动到35°
图3.9 装入铁水倾动
罐体与铁水总重心位于两支点之间,与右支点距离367mm,因此倾动35°时罐体不会在罐座上倾翻,能够安全工作,如图(3.9)。
6.带罐座空罐倾动
图3.10 带罐座空罐倾动
如图3.10所示,空罐倾翻35°时罐座及铁水罐重心位于支点左侧,因此不会倾翻,且能够自动回到水平位置。
7.带罐座装入铁水未倾动时
图3.11 装入铁水未倾动
如图3.11所示,总质量为76t。
重心位置如图所示。
8.装满铁水带罐座倾翻示意图
图3.12 装入铁水倾动
如图(3.12)所示,当装入铁水倾翻时,铁水及罐体罐座重心如图示位置,重心位于支点左侧,罐体不会倾翻。
3.4 倾翻力矩的计算
图3.13开始倾动时倾动力矩计算
1)开始倾动时倾动力矩计算:
k y m M M M M =++ (3.1)
式中:k M -----空罐力矩 y M ---铁水力矩
m M --弧形板与导轨的接触处的摩擦力矩
用SolidWorks 建模,可以得到空罐铁水罐座的总的重心,如图(3.13)所示
4
3
k y 761036010
273600M M G L -+=⨯=⨯⨯⨯=总N.m
摩擦力矩m M
k y m k M G G =
+ () (3.2) 式中:k G --空炉时炉子倾动部分的重力,N ; k-变形臂,取k 2
C
= 按赫茨理论,圆柱形扇形板与直轨的接触面宽度的半值:
6
1
3.2610
h P R
C -=⨯ (m ) (3.3) 式中 P=弧形板上的载荷(N ); R---弧形板半径(m )
1h ---弧形板与导轨接触宽度
(m )。
对支点1O 取矩,0M =∑,(图3.14)
1120F L G L -⨯+⨯= 1F =154576 N
5217.610154576605424F G F =-=⨯-=N
2
3027122
F P =
=N
图3.14 力矩计算
61
6 3.2610m h 302712 1.389
0.12
0.0061m
P R
C --=⨯⨯⨯= ()=3.2610
0.00610.0030522
C k =
==m 4
k y m k =7.6100.00305231.8M G G =
+⨯⨯= ()N m k y m M M M M =++
273600231.8273832=+= N m
2)当罐体倾翻35°时,求倾动力矩:
图3.15 倾动求力矩
k y m M M M M =++ 43761056510429400k y M M G L -+=⨯=⨯⨯⨯=总N k y m k M G G =+ () 对支点1O 取矩,0M =∑,
1120F L G L -⨯+⨯= 1F =162344N
根据力的三角形,求得2F =610923N 2
610923
30546222F P ===N
6163.2610305462 1.389
3.26100.12
p R
C h --=⨯⨯=⨯
图3.16 力三角形 =0.0061m
0.0061
0.0030522C
k ===m 4
k y m k =7.6100.00305231.8M G G =+⨯⨯= () N m k y m M M M M =++
429400231.8429632=+= N m。