信号与系统讲义第四章5系统频率特性与稳定性(精)
- 格式:ppt
- 大小:2.28 MB
- 文档页数:27
第四章控制系统的频域分析法 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 165 频率特性法本章是通过对系统的频率特性研究分析自动控制系统,是一种经典方法。
问题:什么是频率特性,如何描述?如何利用频率特性分析控制系统?5.1 频率特性5.1.1频率特性的基本概念我们知道,系统(包括开环系统和闭环系统)对正弦输入信号的稳态反应是用以描述系统性能的一种广泛应用的工程方法。
频率特性描述了系统在正弦输入信号作用下,其输出信号与输入信号之间的关系。
设系统的传递函数为又设其中:的振幅为常值:正弦函数的角频率有一般地A(s),B(s)为s的多项式;为的极点,包括实数和共扼复数对稳定的系统而言均具有负实部。
(设系统无重极点)其中,待定,是的共扼复数,为待定系数。
由拉氏反变换可得:则输出信号的稳态分量:(对于稳定的系统具有负实部)注:如果系统中含有k个重极点,则在中将会出现象(j=0,1,2,……,k-1)这样一些项,然而对于稳定的系统来说,由于具有负实部,所以各项都将随着趋于无穷大而趋于零。
因此具有重极点的稳定系统的稳态分量具有和上式相同的形式。
可按下式计算:(由留数公式)及其中为一复数,可表示为其中,模幅角同样可以证明,是的偶函数是的奇函数证明:设式中则有是的偶函数是的奇函数稳定的线性定常系统在正弦输入下的稳态响应为:可见:线性定常系统在正弦信作用下的稳态响应仍是与输入信号同频率的正弦信号。
其振幅是输入信号振幅R的倍,在相位上,正弦输出相对于输入的相移,同样是的函数,对确定的来说,振幅C及相移将是确定的。
综上:在正弦输入信号的作用下,线性定常系统的输出信号的稳态分量是和正弦输入信号同频率的正弦函数,其振幅C与输入正弦的振幅R 的比值C/R=是角频率的函数。
它描述系统对不同频率的输入信号在稳态情况下的衰减(或放大)特性,定义这种振幅比依赖于频率的函数为系统的幅频特性。
相对于输入信号r(t)的相移也是的函数,是系统输出信号的稳态分量对正弦输入信号r(t)的相移为该系统的相频特性,它描述系统的稳态输出对不同频率的正弦输入信号在相位上产生相角滞后或相角超前的特性。
第4章 周期信号的频域分析4.1连续时间信号的Fourier 级数 4.1.1指数形式的Fourier 级数 周期信号f(t)的定义: 对:T R t 使得存在一个大于零的,,0∈∀,)()(0t f T t f =+ R t ∈∀T 0-基波周期(Fundamental Period)基波角频率(Fundamental Angular Frequency )基波频率(Fundamental Frequency )信号分解∑⎰∞-∞=∞∞--==-==m m n m x n n x n x d t x t t x t x ][][][*][][)()()(*)()(δδττδτδ即任意一个信号都可以分解为单位冲激信号的加权积分或者加权和。
除了单位冲激信号外,是否还有其他信号可以构成这种基本信号?nj jst t j re z e e )(Ω---变换拉普拉斯傅立叶ω傅立叶于1768年生于法国,1807年提出著名论断.① 任意一个周期信号都可以表示为互成谐波关系的正弦函数的级数和。
② 任意一个非周期信号都可以表示为不是谐波关系的正弦信号)(t j e ω的加权积分。
具体含义的解释见ppt⎪⎪⎪⎩⎪⎪⎪⎨⎧DT FT )ansform,Fourier tr time -(discrete 立叶变 离散时间→离散时间非周期信号FT )]ransform,(Fourier t 立叶变 →连续时间非周期信号DT FS)series,Fourier time -(discrete 立叶级 离散时间→离散时间周期信号Fs) series (Fourier立叶级 →连续时间周期信号换傅换傅数数傅连续时间周期信号的Fourier 级数:∑∞-∞==n tjn nec t f 0)(ω傅立叶系数n C 表示构成一个信号的频率的分部情况。
例子14.1.2 三角形式的Fourier 级数若f(t)的实函数,则*n n c C -=狄里赫利条件:狄里赫利认为,只有在满足一定条件时,周期信号才能展开成傅里叶级数。
§4.5系统函数零极点∽频响特性一、频响特性1.概念①系统在正弦信号激励下稳态响应随信号频率的变化情况②H (s )稳定系统0sin()m E t ω0()lim ()~ss t r t r t ω→∞=③包括:幅频特性、相频特性§4.5系统函数零极点∽频响特性00120012...j j n nK K K K K s j s j s p s p s p ωωωω−=++++++−−−−j e H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000−=−−⋅=⋅+=−−=−ϕωωωωωωje H E j j H E s R j s K j m m j s zs j 22)(|)()(00000000ϕωωωωωω=⋅=⋅−==2.稳定系统的频响特性)()(220s H s E s R m zs ωω+=①系统响应:000()j H j H e ϕω=000()j H j H e ϕω−−=令则§4.5系统函数零极点∽频响特性0000()lim ()j t j tss zs j j t r t r t K e K e ωωωω−−→∞==+)sin()(2000)()(00000ϕωωωϕωϕ+=+−=++−t H E e e jE m t j j t j m 0000sin()sin()m ss m E t r E H t ωφωφϕ+→=++②0000cos()cos()m ss m E t r E H t ωφωφϕ+→=++§4.5系统函数零极点∽频响特性③ωω()H s 当正弦激励信号频率改变时,将代入得到频率响应()()()|()j s j H j H s H j e ϕωωωω===幅频特性相频特性§4.5系统函数零极点∽频响特性[例1]求系统的稳态响应22()3()2()2()3()d d dr t r t r t e t e t dt dt dt ++=+()sin cos 2e t t t=+解:222323()()3232s j H s H j s s j ωωωω++=→=+++−2(arctan arctan3)33213(1)1310j j H j ej −+==+4(arctan arctan3)32345(2)26210j j H j ej π−−+==−+()ss r t 13251()sin(arctan arctan 3)cos(2arctan arctan 3)10332210ss r t t t π=+−++−−§4.5系统函数零极点∽频响特性c ωω()H j ωc c ωωωω<⎫⎬>⎭时,网络允许信号通过低通特性时,网络不允许信号通过cωω()H j ωc c ωωωω<⎫⎬>⎭时,网络不允许信号通过高通特性时,网络允许信号通过1c ω2c ωω()H j ω带阻特性3.滤波网络分类:幅频特性1c ω2c ωω()H j ω带通特性1c ω§4.5系统函数零极点∽频响特性1111()()()()()()mmj j j j nniii i K s z K j z H s H j s p j p ωωω====−−=→=→−−∏∏∏∏Oσ⋅×ip jz iθj ψj ωi M jN ,j i z p 频率特性取决于零、极点的分布4.频响特性的S 平面几何分析法()H j ωjj j j j z N eψω−=ij i i j p M eθω−=→令§4.5系统函数零极点∽频响特性121212121212[()()]1212()()()m nm n j j j m j j j n j m nj N e N e N e H j KM e M e M e N N N KeM M M H j e ψψψθθθψψψθθθϕωωω+++−+++=== 1212()()()m n ϕωψψψθθθ=+++−+++ 1212()m nN N N H j KM M M ω= 其中Oσ⋅×ip jz iθj ψj ωiM jN §4.5系统函数零极点∽频响特性RC 21()()11()V s R sH s V s R s sC RC ===++CR++-1v -2v 【例2】研究图示的高通滤波网络的频响特性10z =零点:11p RC=−极点:解:转移函§4.5系统函数零极点∽频响特性()|()s j H s H j ωω==11()1211()j j j N e V H j e M e V ψϕωθω==→211111,()V N V M ϕωψθ==−O ×j ω1M 1N 1θ190ψ=σ1RC−以矢量因子表示为1211111110,000,90()90N V N M RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩0ω=时,§4.5系统函数零极点∽频响特性121111111222,2245,90()45N V N M RC RC M V θψϕω⎧==→=→=⎪⎨⎪==→=⎩ 1211111190,90()0N V M V θψϕω⎧→⇒→⎪⎨⎪→=→=⎩1RC ω=时,此点为高通滤波网络截止频率点ω→∞时,45 901RCω()ϕωO ()H j ω221§4.5系统函数零极点∽频响特性s RC 21()()()V j H j V j ωωω=1122R C R C ++-1v -2v C1R1C2R2++--3v 3kv 【例3】由平面几何法研究下图所示二阶系统的频响特性,,且§4.5系统函数零极点∽频响特性1311211112112223221()()1()()11()()()()()1sC V s V s R V s k s sC H s V s R C s s R R C R C V s kV s R sC ⎧⎪⎪=⎪+⎪⇒==⎨⎪++⎪=⎪+⎪⎩i 1121122110;,z p p R C R C ==−=−O ×j ω1M 1N 1θ190ψ= σ111R C −×2M 2θ221R C−解:零、极点为:1122R C R C 由于221R C −,所以靠近原点,111R C −离开较远。