一、逆矩阵与逆变换
- 格式:doc
- 大小:395.50 KB
- 文档页数:2
《矩阵与变换》复习【知识梳理】1.二阶矩阵与平面向量:(1)矩阵的概念与表示:矩阵的行、列、元素;零矩阵、单位矩阵;行矩阵、列矩阵. (2)二阶矩阵与平面列向量的乘法:⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡00y x = . (3)二阶矩阵M =⎥⎦⎤⎢⎣⎡d c b a 确定的变换T M 为:⎥⎦⎤⎢⎣⎡y x →⎥⎦⎤⎢⎣⎡''y x = = . 2.几种常见的平面变换:变换 恒等变换伸压变换反射变换旋转变换投影变换切变变换变换矩阵3.变换的复合与矩阵的乘法: (1)矩阵的乘法:⎥⎦⎤⎢⎣⎡22211211a a a a ⎥⎦⎤⎢⎣⎡22211211b b b b = . 4.逆变换与逆矩阵:(1)逆矩阵的概念:对于二阶矩阵A ,B ,若有 ,则称A 是可逆的,B 称为A 的逆矩阵,A 的逆矩阵记为 . (2)逆矩阵的几何意义: (3)二阶可逆矩阵A =⎥⎦⎤⎢⎣⎡d c b a的逆矩阵公式: . (4)若二阶矩阵A ,B 可逆,则(AB )-1= . 5.特征值与特征向量:(1)概念:设A 为二阶矩阵,若对于实数λ,存在一个非零向量α,使得 ,则称λ是A 的一个特征值,α是A 的属于特征值λ的一个特征向量. (2)特征多项式:f (λ) = . (3)特征值与特征向量的求解步骤:【典型例题】例1.已知变换T 把点(2,1),(-3,2)分别变换成点(7,0),(0,-7),(1)求变换T 对应的矩阵M ;(2)求直线l :x +5y -7=0在变换T 下所得的曲线方程.例2.在直角坐标系中,已知△ABC 的顶点坐标分别为A (0,0),B (1,1),C (0,2),M =⎥⎦⎤⎢⎣⎡1201,N =⎥⎦⎤⎢⎣⎡-0110求△ABC 在矩阵MN 作用下变换所得图形的面积.例3.已知矩阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211,定义其转置矩阵如下:A ′=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212221212111.(1)若A =⎥⎦⎤⎢⎣⎡d c b a ,写出A 的转置矩阵A ′,并求行列式|A |和|A ′|,两者有何关系? (2)若A ⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡43表示的方程组为⎩⎨⎧=+=-43352y x y x ,试求解A ′⎥⎦⎤⎢⎣⎡y x =⎥⎦⎤⎢⎣⎡-295表示的方程组.例4.已知矩阵A =⎥⎦⎤⎢⎣⎡d c 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α. (1)求矩阵A 及其逆矩阵;(2)若向量α=⎥⎦⎤⎢⎣⎡-91,试计算A n α.【反馈练习】1.下列说法中正确的是 .①反射变换,伸压变换,切变变换都是初等变换; ②任何矩阵都有逆矩阵;③若M ,N 互为逆矩阵,则MN =E ; ④反射变换矩阵都是自己的逆矩阵. 2.已知A =⎥⎦⎤⎢⎣⎡--+y yx 2002,B =⎥⎦⎤⎢⎣⎡-y x x200,若A =B ,则xy = . 3.将平面内的图形绕原点逆时针旋转045的变换矩阵记为M ,曲线C :1=xy 在M 确定的变换T M 作用下变为了曲线C ',则C '的方程为 . 4.若⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-13913214M ,则M = ;若⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-13913214M ,则M = . 5.已知矩阵⎥⎦⎤⎢⎣⎡=2001M ,⎥⎥⎦⎤⎢⎢⎣⎡=10021N ,试求曲线C :y =sin x 在矩阵MN 变换下所得曲线的解析式.6.已知矩阵M =2313⎡⎢⎢⎢-⎢⎣ 1323⎤-⎥⎥⎥⎥⎦,N =2112⎡⎤⎢⎥⎣⎦及向量σ1=11⎡⎤⎢⎥⎣⎦,σ2=11⎡⎤⎢⎥-⎣⎦. (1)证明M 和N 互为逆矩阵;(2)证明σ1和σ2同时是M 和N 的特征向量.7.矩阵A =1102⎡⎤⎢⎥⎣⎦有特征向量α1=11⎡⎤⎢⎥⎣⎦,α2=10⎡⎤⎢⎥⎣⎦. (1)求出α1,α2对应的特征值;(2)对向量α=31⎡⎤⎢⎥⎣⎦,计算A n α.高三数学(理)《矩阵与变换》专题练习1、用矩阵与向量的乘法的形式表示方程组⎩⎨⎧-=-=+1y 2x 2y 3x 2其中正确的是( )A 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x B 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122312y x C 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-122132y x D 、⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-121223y x2、已知四边形ABCD 的顶点分别为A (-1,0),B (1,0),C (1,1),D (-1,1),四边形ABCD 在矩阵⎥⎦⎤⎢⎣⎡100a 变换作用下变成正方形,则a =( ) A 、21 B 、2 C 、3 D 、313、若矩阵M 1=⎥⎦⎤⎢⎣⎡1001,M 2=⎥⎦⎤⎢⎣⎡-1001,M 3=⎥⎦⎤⎢⎣⎡0101,则由M 1,M 2,M 3确定的变换分别是( )A 、恒等变换、反射变换、投影变换B 、恒等变换、投影变换、反射变换C 、投影变换、反射变换、恒等变换D 、反射变换、恒等变换、投影变换4、在直角坐标系xOy 内,将每个点的横坐标与纵坐标都变为原来的3倍,则该变换的矩阵是( )A 、1003⎛⎫⎪⎝⎭B 、0330⎛⎫⎪⎝⎭ C 、3003⎛⎫ ⎪⎝⎭ D 、3001⎛⎫⎪⎝⎭5、已知矩阵A =1111⎛⎫⎪-⎝⎭,B =2111-⎛⎫ ⎪-⎝⎭,则AB 等于( )A 、3120⎛⎫⎪-⎝⎭ B 、1032⎛⎫ ⎪-⎝⎭ C 、1302-⎛⎫ ⎪⎝⎭ D 、1320-⎛⎫ ⎪⎝⎭6、已知矩阵A = 1101-⎛⎫⎪⎝⎭,则矩阵A 的逆矩阵A -1等于( )A 、11221122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭B 、11221122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭C 、11221122⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭ D 、11221122⎛⎫⎪ ⎪ ⎪- ⎪⎝⎭7、点(-1,k )在伸压变换矩阵⎥⎦⎤⎢⎣⎡100m 之下的对应点的坐标为(-2,-4),则m 、k 的值分别为( )A 、2,4B 、-2,4C 、2,-4D 、-2,-48、设T 是以 ox 轴为轴的反射变换,则变换T 的矩阵为( )A 、⎥⎦⎤⎢⎣⎡-1001 B、 ⎥⎦⎤⎢⎣⎡-1001 C、 ⎥⎦⎤⎢⎣⎡--1001 D、⎥⎦⎤⎢⎣⎡01109、设A 是到ox 轴的正投影变换,A 把点P (x ,y )变成点P ′(x ,0),B 是到oy 轴的正投影变换B 把点P (x ,y )变成点P ″(0,y ),则变换A 和B 的矩阵分别为( ).A、⎥⎦⎤⎢⎣⎡0001,⎥⎦⎤⎢⎣⎡1000 B、⎥⎦⎤⎢⎣⎡1000,⎥⎦⎤⎢⎣⎡0001 C、⎥⎦⎤⎢⎣⎡0101,⎥⎦⎤⎢⎣⎡0001 D、⎥⎦⎤⎢⎣⎡0001,⎥⎦⎤⎢⎣⎡010110、计算:⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡321110=__________ 11、点A (1,2)在矩阵⎥⎦⎤⎢⎣⎡-1022对应的变换作用下得到的点的坐标是___________12、若点A 在矩阵1222-⎡⎤⎢⎥-⎣⎦对应的变换作用下下得到的点为(2,4),则点A 的坐标为_________ 13、将向量⎥⎦⎤⎢⎣⎡=12a 绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为___________14、在某个旋转变换中,顺时针旋转3π所对应的变换矩阵为______ 15、曲线y x =在矩阵0110⎡⎤⎢⎥⎣⎦作用下变换所得的图形对应的曲线方程为______ 16、曲线xy=1绕坐标原点逆时针旋转90°后得到的曲线方程是 ,变换对应的矩阵是__ 17、若曲线x 3cos 21y =经过伸压变换T 作用后变为新的曲线cos y x =,试求变换T 对应的矩阵M =___. 18、求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵.19、已知△ABO 的顶点坐标分别是A (4,2),B (2,4),O (0,0),计算在变换T M =1111⎡⎤⎢⎥-⎣⎦之下三个顶点ABO 的对应点的坐标.20、在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵⎣⎡⎦⎤2 00 1对应的变换作用下得到曲线F ,求F 的方程.21、求曲线C :1xy =在矩阵1111M ⎛⎫= ⎪-⎝⎭对应的变换作用下得到的曲线C 1的方程.22、求将曲线2y x =绕原点逆时针旋转90︒后所得的曲线方程.23、直角坐标系xOy 中,点(2,-2)在矩阵010M a ⎛⎫=⎪⎝⎭对应变换作用下得到点(-2,4),曲线22:1C x y +=在矩阵M 对应变换作用下得到曲线C ',求曲线C '的方程.24、设点P 的坐标为(1,-2),T 是绕原点逆时针方向旋转3π的旋转变换,求旋转变换T 对应的矩阵,并求点P 在T 作用下的象点P ′的坐标.25、在平面直角坐标系xOy 中,A(0,0),B(-3,),C(-2,1),设k ≠0,k ∈R ,M=⎥⎦⎤⎢⎣⎡100k ,N=⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值.26、若点(2,2)A 在矩阵=M ⎝⎛ααsin cos ⎪⎪⎭⎫-ααcos sin 对应变换的作用下得到的点为B (2,2)-,求矩阵M 的逆矩阵.27、已知矩阵M=⎥⎦⎤⎢⎣⎡x 221的一个特征值为3,求其另一个特征值.28、设矩阵A =⎣⎡⎦⎤1 a 0 1(a ≠0)、(1)求A 2 ,A 3;(2)猜想A n (n ∈N *);(3)证明:A n (n ∈N *)的特征值是与n 无关的常数,并求出此常数.29、已知△ABC ,A(-1,0),B(3,0),C(2,1),对它先作关于x 轴的反射变换,再将所得图形绕原点逆时针旋转90°.(1)分别求两次变换所对应的矩阵M 1,M 2;(2)求点C 在两次连续的变换作用下所得到的点的坐标.30、已知矩阵A =⎣⎢⎡⎦⎥⎤ 3 3 c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2、求矩阵A ,并写出A 的逆矩阵.31、已知矩阵11A ⎡=⎢-⎣ 24⎤⎥⎦,向量74α⎡⎤=⎢⎥⎣⎦. (1)求A 的特征值1λ、2λ和特征向量1α、2α; (2)计算5A α的值.32、已知矩阵11A ⎡=⎢-⎣ a b ⎤⎥⎦,A 的一个特征值2λ=,其对应的特征向是是121α⎡⎤=⎢⎥⎣⎦.(1)求矩阵A ;(2)若向量74β⎡⎤=⎢⎥⎣⎦,计算5A β的值.。
《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量 【考情分析】考试要求 1. 二阶逆矩阵,B 级要求;2. 二阶矩阵的特征值与特征向量,B 级要求;3. 二阶矩阵的简单应用,B 级要求.理解逆矩阵的意义并掌握二阶矩阵存在逆矩阵的条件,会利用矩阵求解方程组.掌握矩阵特征值与特征向量的定义,会求二阶矩阵的特征值与特征向量,利用矩阵A 的特征值、特征向量给出A n α的简单表示,并能用它来解决问题.理解矩阵的简单应用. 【知识清单】 1. 逆变换与逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . (3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n 的系数矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b c d -1⎣⎢⎡⎦⎥⎤m n ,其中A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . 2.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量.(2)从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量. (3)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的一个特征值,它的一个特征向量为X =⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y , 即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy , 故⎩⎪⎨⎪⎧(λ-a )x -by =0-cx +(λ-d )y =0⇔⎣⎢⎢⎡⎦⎥⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*) 则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d 为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征多项式;方程⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征方程. (4)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记X 1=⎣⎢⎡⎦⎥⎤x 1y 1,X 2=⎣⎢⎡⎦⎥⎤x 2y 2.则AX 1=λ1X 1、AX 2=λ2X 2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤a b c d 的特征值,X 1=⎣⎢⎡⎦⎥⎤x 1y 1,X 2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.【课前预习】1. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式. 解析:f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4. 2. (选修4-2P 65习题2.4第7题)已知可逆矩阵A =⎣⎢⎡⎦⎥⎤a 273的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a ,求a 、b 的值. 解析:由题意,知AA -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a=⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎢⎡⎦⎥⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3.(选修4-2P 54例4改编)已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1.解析:因为 AB =⎣⎢⎡⎦⎥⎤0 -12 0,设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d , 所以 (AB )(AB )-1=⎣⎢⎡⎦⎥⎤1 00 1. 所以 ⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1. 所以 ⎩⎪⎨⎪⎧-c =1,-d =0,2a =0,2b =1,故a =0,b =12,c =-1,d =0.即(AB )-1=⎣⎢⎡⎦⎥⎤ 012-10. 4. (选修4-2P 73习题第1题改编)求矩阵M =⎣⎢⎡⎦⎥⎤16-2 -6 的特征值.解析:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)(λ+3),令f (λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. 已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.,求矩阵A .解析:由特征值、特征向量定义可知,A α1=λ1α1,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤ 1-1,得⎩⎪⎨⎪⎧a -b =-1,c -d =1.同理可得⎩⎪⎨⎪⎧3a +2b =12,3c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2 32 1. 【典型例题】目标1 求逆矩阵与逆变换例1求矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2 35 6的逆矩阵. 解析:(法一)设矩阵A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤x y z w , 则⎣⎢⎡⎦⎥⎤2 35 6⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎢⎡⎦⎥⎥⎤2x +3z 2y +3w 5x +6z 5y +6w =⎣⎢⎡⎦⎥⎤1 00 1, 所以⎩⎪⎨⎪⎧2x +3z =1,2y +3w =0,5x +6z =0,5y +6w =1,解得⎩⎪⎨⎪⎧x =-2,y =1,z =53,w =-23.故所求的逆矩阵A -1=⎣⎢⎡⎦⎥⎤-2 153 -23. (法二)注意到2×6-3×5=-3≠0,故A 存在逆矩阵A -1,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤6-3 -3-3-5-3 2-3=⎣⎢⎡⎦⎥⎤-2 153 -23. 【借题发挥】变式1 (2016·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤102-2,矩阵B 的逆矩阵B -1=⎣⎢⎡⎦⎥⎤1 -122,求矩阵AB .解 B =(B -1)-1=⎣⎢⎢⎡⎦⎥⎥⎤22 12202 12=⎣⎢⎢⎡⎦⎥⎥⎤1 14012. ∴AB =⎣⎢⎡⎦⎥⎤120-2·⎣⎢⎢⎡⎦⎥⎥⎤1 14012=⎣⎢⎡⎦⎥⎤1540 -1. 解:设a b B c d ⎡⎤=⎢⎥⎣⎦,则1110120102a b B B c d ⎡⎤-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即1110220122a c b d c d ⎡⎤--⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦,故1121022021a c b d c d ⎧-=⎪⎪⎪-=⎨⎪=⎪⎪=⎩,解得114012a b c d ⎧⎪⎪=⎪⎪=⎨⎪=⎪⎪⎪=⎩,所以114102B ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 因此,151121440210102AB ⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦. 变式2 已知关于直线y =2x 的反射变换对应的矩阵为A =⎣⎢⎢⎡⎦⎥⎥⎤-35 45 4535,切变变换对应的矩阵为B =⎣⎢⎡⎦⎥⎤1 0-2 1,试求出(AB )-1. 解析:反射变换和切变变换对应的矩阵都是可逆的,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤-35 45 45 35,B -1=⎣⎢⎡⎦⎥⎤1 02 1,(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1021⎣⎢⎢⎡⎦⎥⎥⎤-35 45 45 35=⎣⎢⎢⎡⎦⎥⎥⎤-35 45-25115. 【规律方法】求一个矩阵A 的逆矩阵或证明一个矩阵不可逆时,常用两种解法.法一:待定矩阵法:先设出其逆矩阵,根据逆矩阵的定义AB =BA =E ,应用矩阵相等的定义列方程组求解,若方程组有解,即可求出其逆矩阵,若方程组无解,则说明此矩阵不可逆,此种方法称为待定矩阵法.法二:利用逆矩阵公式,对矩阵A =⎣⎢⎡⎦⎥⎤a b c d : ①若ad -bc =0,则A 的逆矩阵不存在.②若ad -bc ≠0,则A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bc a ad -bc . 【同步拓展】(2017·常州期末)已知矩阵,列向量,若AX=B ,直接写出A ﹣1,并求出X .解析:解法一∵矩阵,∴A ﹣1=,∵AX=B ,∴X=A ﹣1B==.解法二:∵矩阵,∴A ﹣1=,∵AX=B , ∴=,∴,解得,∴X=.目标2 特征值与特征向量的计算与应用例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2a21,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解析:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4⇒a =3. (2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0,x +y =0,∴矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0.∴矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.【借题发挥】变式1 已知二阶矩阵A 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-3,属于特征值3的一个特征向量为⎣⎢⎡⎦⎥⎤11,求矩阵A .解析:设A =⎣⎢⎡⎦⎥⎤a b c d 由题意知⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-3=⎣⎢⎡⎦⎥⎤-1 3,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33, 即⎩⎪⎨⎪⎧ a -3b =-1,c -3d =3,a +b =3,c +d =3.解得⎩⎪⎨⎪⎧a =2,b =1,c =3,d =0.∴A =⎣⎢⎡⎦⎥⎤2 13 0. 变式2 (2015·江苏高考)已知R y x ∈,,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0的属于特征值2-的一个特征向量,求矩阵A 以及它的另一个特征值.解析:由已知,得Aα=-2α,即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-1 2 , 则⎩⎪⎨⎪⎧x -1=-2,y =2,,即⎩⎪⎨⎪⎧x =-1,y =2,,所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0. 从而矩阵A 的特征多项式()()()21f λλλ=+-,所以矩阵A 的另一个特征值为1.【规律方法】1.求矩阵A 的特征值与特征向量的一般思路为:先确定其特征多项式f (λ),再由f (λ)=0求出该矩阵的特征值,然后把特征值代入矩阵A 所确定的二元一次方程组⎩⎪⎨⎪⎧(λ-a )x -by =0,-cx +(λ-d )y =0,即可求出特征向量.2.根据矩阵A 的特征值与特征向量求矩阵A 的一般思路:设A =⎣⎢⎡⎦⎥⎤a b c d ,根据Aα=λα构建a ,b ,c ,d 的方程求解.【同步拓展】已知二阶矩阵M 有特征值λ=3及对应的一个特征向量α1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(9,15),求矩阵M .解析:设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤33,故⎩⎪⎨⎪⎧a +b =3,c +d =3. ⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤915,故⎩⎪⎨⎪⎧-a +2b =9,-c +2d =15.联立以上两方程组解得a =-1,b =4,c =-3,d =6,故M =⎣⎢⎢⎡⎦⎥⎥⎤-1 4-3 6. 目标3 根据A ,α计算A n α(n ∈N *)例3 给定的矩阵A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,B =⎣⎢⎡⎦⎥⎤32. (1)求A 的特征值λ1,λ2及对应的特征向量α1,α2; (2)求A 4B .解析: (1)设A 的一个特征值为λ,由题意知:⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=0,即(λ-2)(λ-3)=0,∴λ1=2,λ2=3. 当λ1=2时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值2的特征向量α1=⎣⎢⎡⎦⎥⎤21;当λ2=3时,由⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =3⎣⎢⎡⎦⎥⎤x y ,得A 属于特征值3的特征向量α2=⎣⎢⎡⎦⎥⎤11.(2)由于B =⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤21+⎣⎢⎡⎦⎥⎤11=α1+α2,故A 4B =A 4(α1+α2)=24α1+34α2=16α1+81α2=⎣⎢⎡⎦⎥⎤3216+⎣⎢⎡⎦⎥⎤8181=⎣⎢⎡⎦⎥⎤11397. 【规律方法】已知矩阵A 和向量α,求A n α(n ∈N *),其步骤为:(1)求出矩阵A 的特征值λ1,λ2和对应的特征向量α1,α2. (2)把α用特征向量的组合来表示:α=s α1+t α2.(3)应用A n α=sλn 1α1+tλn2α2表示A n α.【同步拓展】已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β. 解析:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3. 令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,则m =4,n =-3.M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.【归纳分析】1.不是每个二阶矩阵都可逆,只有当⎣⎢⎡⎦⎥⎤a b c d 中ad -bc ≠0时,才可逆,如当A =⎣⎢⎡⎦⎥⎤1 00 0,因为1×0-0×0=0,找不到二阶矩阵B ,使得BA =AB =E 成立,故A =⎣⎢⎡⎦⎥⎤1 00 0不可逆. 2.逆矩阵的性质:(1)若二阶矩阵A 存在逆矩阵B ,则逆矩阵是惟一的.(2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3)已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .3.如果向量α是属于λ的特征向量,将它乘非零实数t 后所得的新向量t α与向量α共线,故t α也是属于λ的特征向量,因此,一个特征值对应多个特征向量,显然,只要有了特征值的一个特征向量,就可以表示出属于这个特征值的共线的所有特征向量了.4. 由于特征向量的存在,求矩阵幂的作用结果,可以转化成求数的幂的运算结果. 【课后作业】 1.已知矩阵1012,0206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,求矩阵B A 1-. 解析:设矩阵A 的逆矩阵为 ⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤-1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1, 故a =-1,b =0,c =0,d =21∴矩阵A 的逆矩阵为A -1=⎣⎢⎡⎦⎥⎤-1 00 12. 所以B A1-=⎣⎢⎡⎦⎥⎤-1 00 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3 . 2. 求矩阵M =⎣⎢⎡⎦⎥⎤2 41-1的特征值及对应的特征向量. 解析:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-4-1λ+1=λ2-λ-6=(λ-3)(λ+2),令f(λ)=0,得到M 的特征值λ1=3,λ2=-2.当λ1=3时,矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤41;当λ2=-2时,矩阵M 的一个特征向量为⎣⎢⎡⎦⎥⎤1-1.3. 已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12 -12,求矩阵A 的特征值. 解析:因为A -1A =E ,所以A =(A -1)-1.因为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1434 12 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 32 1,于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.4. 已知矩阵M =⎣⎢⎡⎦⎥⎤10012,N =⎣⎢⎡⎦⎥⎤12001,试求曲线y =cos x 在矩阵M-1N 变换下的函数解析式.解析:由M -1=⎣⎢⎡⎦⎥⎤1002,得M -1N =⎣⎢⎡⎦⎥⎤1002⎣⎢⎡⎦⎥⎤1201=⎣⎢⎡⎦⎥⎤12002,即在矩阵M -1N 的变换下有如下过程,⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤12x 2y ,则12y ′=cos2x ′,即曲线y =cos x 在矩阵M -1N 的变换下的解析式为y =2cos2x .5. 已知二阶矩阵A 的属于特征值-2的一个特征向量为⎣⎢⎡⎦⎥⎤1-3,属于特征值2的一个特征向量为⎣⎢⎡⎦⎥⎤11,求矩阵A .解析:设A =⎣⎢⎡⎦⎥⎤a b c d , 由题意知⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-3=⎣⎢⎡⎦⎥⎤-2 6,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,即⎩⎪⎨⎪⎧a -3b =-2,c -3d =6,a +b =2,c +d =2,解得⎩⎪⎨⎪⎧a =1,b =1,c =3,d =-1,∴A =⎣⎢⎡⎦⎥⎤1 13 -1. 6. 已知α是矩阵M 的属于特征值λ=3的一个特征向量,其中M =⎣⎢⎡⎦⎥⎤a m 2b ,α=⎣⎢⎡⎦⎥⎤-1 5,且a +b +m =3,求a ,b ,m 的值. 解析:因为α是矩阵M 的属于特征值λ=3的一个特征向量,所以Mα=λα,即⎣⎢⎡⎦⎥⎤a m 2 b ⎣⎢⎡⎦⎥⎤-1 5=3⎣⎢⎡⎦⎥⎤-1 5,所以⎩⎪⎨⎪⎧-a +5m =-3,-2+5b =15,由a +b +m =3,解得a =16,b =175,m =-1730.7. (2016·泰州期末)已知矩阵A =⎣⎢⎡⎦⎥⎤2 n m 1的一个特征值为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值; (2) 求A -1.解析:(1) 由题意得:Aα=λα⎣⎢⎡⎦⎥⎤2 n m 1⎣⎢⎡⎦⎥⎤12=λ⎣⎢⎡⎦⎥⎤12=2⎣⎢⎡⎦⎥⎤12⎩⎪⎨⎪⎧2+2n =2,m +2=4,解得⎩⎪⎨⎪⎧n =0,m =2.(2) 设A -1=⎣⎢⎡⎦⎥⎤a b c d ,⎣⎢⎡⎦⎥⎤2 02 1⎣⎢⎡⎦⎥⎤a b c d =E =⎣⎢⎡⎦⎥⎤1 00 1, 所以 ⎩⎪⎨⎪⎧2a =1,2b =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =12,b =0,c =-1,d =1,所以 A-1=⎣⎢⎡⎦⎥⎤120-11. 8. 已知矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1=⎣⎢⎡⎦⎥⎤10,e 2=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α=⎣⎢⎡⎦⎥⎤x y ,求M 100α.解析:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤2 00-1变换的意义知 M-1=⎣⎢⎡⎦⎥⎤12 0-1, 又Me 1=λ1e 1,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2, 同理Me 2=λ2e 2,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1. (2) 因为α=⎣⎢⎡⎦⎥⎤x y =x e 1+y e 2,所以M 100α=M 100(x e 1+y ·e 2)=x M 100e 1+y M 100e 2=x λ1001e 1+y λ2100e 2=⎣⎢⎡⎦⎥⎤2100x y.9. 已知矩阵M =⎣⎢⎡⎦⎥⎤2 13 4. (1)求矩阵M 的逆矩阵;(2)求矩阵M 的特征值及特征向量. 解析:(1)因为2×4-1×3=5≠0,所以M 存在逆矩阵M -1,所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤ 45 -15-35 25. (2)矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -1-3 λ-4=(λ-2)(λ-4)-3=λ2-6λ+5, 令f (λ)=0,得矩阵M 的特征值为1或5,当λ=1时,由二元一次方程⎩⎪⎨⎪⎧-x -y =0,-3x -3y =0,得x +y =0,令x=1,则y =-1,所以特征值λ=1对应的特征向量为α1=⎣⎢⎡⎦⎥⎤1-1.当λ=5时,由二元一次方程⎩⎪⎨⎪⎧3x -y =0,-3x +y =0,得3x -y =0, 令x =1,则y =3,所以特征值λ=5对应的特征向量为α2=⎣⎢⎡⎦⎥⎤13.10.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1)求矩阵M 的逆矩阵M -1;(2)设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解析:(1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧ a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4.所以M =⎣⎢⎡⎦⎥⎤1 23 4,从而M -1=⎣⎢⎡⎦⎥⎤-2 132-12. (2)设直线l 上任意一点(x ,y ),在变换M 作用下对应直线m 上任意一点(x ′,y ′),因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y ,且m :2x ′-y ′=4, 所以2(x +2y )-(3x +4y )=4,即直线l 的方程为x +4=0.11. 已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). 求:(1) 矩阵M;(2) 矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系;(3) 直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.解析:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88,故⎩⎪⎨⎪⎧a +b =8,c +d =8.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-24,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4. 联立以上两方程组解得a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6244. (2) 由(1)知,矩阵M 的特征多项式为f(λ)=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2.设矩阵M 的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y ,则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0. (3) 设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤6244⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简,得x ′-y ′+2=0,即x -y +2=0. 【提优训练】1.利用逆矩阵的知识解方程MX =N ,其中M =⎣⎢⎡⎦⎥⎤5241,N =⎣⎢⎡⎦⎥⎤ 5-8. 解析:设M-1=⎣⎢⎡⎦⎥⎤x yz w,⎣⎢⎡⎦⎥⎤5241⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎢⎡⎦⎥⎥⎤5x +2z 5y +2w 4x +z 4y +w=⎣⎢⎡⎦⎥⎤1001,⎩⎪⎨⎪⎧5x +2z =1,5y +2w =0,4x +z =0,4y +w =1,解之得⎩⎪⎪⎨⎪⎪⎧x =-13,y =23,z =43,w =-53.所以M -1=⎣⎢⎢⎡⎦⎥⎥⎤-132343-53.。
矩阵的变换与运算矩阵的乘法与逆矩阵矩阵的变换与运算:矩阵的乘法与逆矩阵矩阵在数学中扮演着重要的角色,它可以用于描述线性变换或者表示线性系统的方程组。
本文将讨论矩阵的变换与运算,重点介绍矩阵的乘法与逆矩阵两个关键概念。
一、矩阵的乘法(Matrix Multiplication)矩阵的乘法是矩阵运算中的一种基本运算,表示为A * B,其中A 和B分别为两个矩阵。
在进行矩阵乘法时,需要满足乘法的条件:A 矩阵的列数等于B矩阵的行数。
矩阵乘法的计算方法是将A矩阵的每一行与B矩阵的每一列进行内积运算,并将结果填入一个新的矩阵C中。
具体计算过程如下:C[i][j] = A[i][1]*B[1][j] + A[i][2]*B[2][j] + ... + A[i][n]*B[n][j]其中,C[i][j]表示矩阵C中第i行第j列的元素,A[i][k]表示矩阵A 中第i行第k列的元素,B[k][j]表示矩阵B中第k行第j列的元素。
矩阵乘法的重要性在于可以描述线性变换的复合效果,同时也有利于解决线性方程组。
在实际应用中,矩阵乘法广泛运用于计算机图形学、信号处理、最优化等领域。
二、逆矩阵(Inverse Matrix)逆矩阵是指对于一个可逆矩阵A,存在一个矩阵B,使得A * B = B * A = I,其中I为单位矩阵。
逆矩阵的存在与否与矩阵的行列式密切相关。
判断矩阵A是否可逆的条件是行列式不等于零,即|A| ≠ 0。
若矩阵A可逆,则可以通过一系列行变换将其转化为单位矩阵,对应的变换矩阵为逆矩阵。
逆矩阵的计算可以使用伴随矩阵法或者初等行变换法。
例如,对于一个2x2的矩阵A:A = [a b][c d]若|A| ≠ 0,即ad - bc ≠ 0,则A的逆矩阵存在,并可表示为:A^-1 = 1/(ad - bc) * [d -b][-c a]逆矩阵的应用广泛,例如求解线性方程组、计算矩阵的行列式与秩、求解微分方程等。
三、矩阵的变换(Matrix Transformation)矩阵的变换是指通过矩阵的乘法,对向量进行线性变换。
矩阵逆矩阵的求法One 、矩阵的逆的定义矩阵的逆,又叫做逆矩阵,是指一个方阵在乘积中具有反作用的转换矩阵,它被定义为:存在一个转换矩阵A,使得它和定矩阵相乘等于单位矩阵I,且称A为定矩阵的逆,标记为A⁻¹。
其定义如下:ªA⁻¹A=AA⁻¹=I了解到矩阵逆的定义后,很容易想到,如果有一种新的矩阵,它可以被乘以一个矩阵就得到一个单位矩阵的话,那么这个新的矩阵就是这个矩阵的逆,这个新的矩阵称为全逆矩阵。
全逆矩阵的求法是将单位矩阵放入原始矩阵的右边,然后将单位矩阵的列进行相应的变换,直到变换出等价行阶梯型矩阵。
最后,再将此行阶梯型矩阵变换回与原始矩阵有相同行列数的矩阵,这就是原始矩阵的逆矩阵了。
2、矩阵的逆求法:使用秩当矩阵的行数和列数不相等时,使用全逆矩阵求解矩阵逆比较困难,通常可以使用矩阵的秩来求解矩阵逆。
准确地说,该方法是求解方程Ax=b求解矩阵A的逆矩阵A⁻¹。
方法是,先求出该方程的秩r,如果r=m,m指的是A的行数,则A为可逆矩阵,否则A为不可逆矩阵,而其逆矩阵为不存在状态。
此后可采用Gauss-Jordan方法来求出A的逆矩阵A⁻¹。
三、矩阵的逆的求解实例下面通过一个实例来详细地介绍矩阵逆的求解方法:我们现在考虑如下矩阵A:A =\begin{pmatrix}2 & -1 & 3\\1 & -1 & 0\\1 & 4 & 2\end{pmatrix}首先,我们应求出A的逆A⁻¹:来证明A的矩阵逆的求解结果的正确性,我们将A和A⁻¹相乘:从结果可以看出,A和A⁻¹相乘得到结果是单位矩阵,说明经过求解,A的矩阵是正确的。
导入新课除了我们已学过的一些矩阵的性质之外还有其他性质么?知识回顾矩阵乘法的运算性质结合律(ab)c=a(bc)交换律ab=ba消去律设a≠0,若ab=a,则b=c;若ba=ca,则b=c.类比实数的乘法运算中有一条重要的运算性质:.aa a a ,a 1=1•=•10则如果 ≠把恒等变换I 和单位矩阵E 作为数1的类比对象知识与能力掌握逆矩阵的概念和简单性质过程与方法●通过线性变换理解逆矩阵的性质情感态度与价值观●培养学生提出问题,解决问题的能力重点:●逆矩阵的概念与简单性质.●逆矩阵的概念;●用线性变换的角度理解逆矩阵的简单性质.难点:探究1对于一个线性变换ρ,是否存在一个线性变换σ,使得σ·ρ=ρ·σ= I ?对于一个二阶矩阵A,是否存在一个二阶矩阵B,使得AB=BA=E?Oyx30°R -30°R 30°αα′例1 旋转变换R 30°:.y x y ,y x x 23+21=′2123=′-R -30°:.y x y ,y x x 23+21=′21+23=′-对于直角坐标系xOy 内的任意一个向量α由图可得:α′ αα有:(R 30°· R -30°)= R 30°(R -30°)= α α α同理可得:R -30°· R 30°=I∴R 30°· R -30°= I23212123-23212123-对于二阶矩阵,存在二阶矩阵,使得23212123-23212123-23212123-23212123-==E 2思考一般的旋转变换Rψ,也有相似的结论么?探究2对于切变变换、伸缩变换、反射变换等线性变换,能否找到一个线性变换,使得它们的复合变换是恒等变换I?同学们:我会了哦!你们会了么?类比书本看看答对了么?定义设ρ是一个线性变换,若存在线性变换σ,使得σρ=ρσ= I,则称变换ρ可逆,并称σ是ρ的逆矩阵.用矩阵的语言表述:设A是一个二阶矩阵,若存在二阶矩阵B,使得AB=BA=E2,则称矩阵A可逆,或A是可逆矩阵,并称B是A的逆矩阵.设A是一个二阶可逆矩阵,对于对应的线性变换为ρ,由矩阵和变换的对应关系,得到A的逆矩阵就是ρ逆变换对应的矩阵.思考是否每一个二阶矩阵都可逆?若能,请说明理由;若不能,请举例说明.答案:不是.如A =0012探究31.若一个线性变换是可逆的,则它的逆变换是唯一的么?2.若一个二阶矩阵是可逆的,则它的逆矩阵是唯一的么?以例1中的两个旋转变换为例反证法证明:假设不唯一,则存在变换R 30°的任意一个逆变换σ,使得σ R 30°= R 30°σ= I .∴对平面上任意一个向量有,α()()()()()().R I R R R R R R R I α=α=ασ•=ασ=ασ=ασ=ασ°30°30°30°30°30°30°30°30 -----)(.=σ°30假设不成立-,R ∴∴逆变换是唯一的.性质1设A是一个二阶矩阵,若A是可逆的,则A的逆矩阵是唯一的.证明:设B,B2都是A的逆矩阵,则1B1A=AB1=E2,B2A=AB2=E2.∴B=E2B1=(B2A)B1=B2(AB1)1=B2E2=B2.即:B=B2.1探究4两个可逆变换的复合变换仍可逆么?yy ,x x 2=′=′伸缩变换ρ:yx y ,y x x 23+21=′2123=′-旋转变换R 30°:它们的逆矩阵分别为:y y ,x x 21=′=′:-ρ1yx y ,y x x 23+21=′21+23=′-R -30°:任意一个平面向量: = .αy x 先经ρ·R 30°的复合变换,再经R -30°·ρ-1,最终仍得到α如图:ρOyxαR °30-R °30ρ1-()()().RR R R .I R R I R R 1°301°3011°30°30°301°30°30°301ρ=ρ=ρ•,ρ•=ρ•ρ•=ρ••ρ---------且可逆即:变换)(类似:;)(∴性质2设A , B是二阶矩阵,若A,B都可逆,则AB 也可逆,且(AB)-1=B-1A-1.证明:∵(AB)(B-1A-1)=A(BB-1)A-1=AE2A-1=AA-1=E2,(B-1A-1) (AB)= B-1( AA-1)B= B-1E2B= B-1B=E2,即:(AB)(B-1A-1)=(B-1A-1)(AB)=E2∴AB可逆,且(AB)-1 = B-1A-1.课堂小结1. A是一个二阶矩阵,若存在二阶矩阵B,使,则称矩阵A可逆.得AB=BA=E22.A是一个二阶矩阵,若A是可逆的,则A的逆矩阵是唯一的.3.A, B是二阶矩阵,若A,B都可逆,则AB也可逆,且(AB)-1=B-1A-1.教材习题答案:)伸缩变换(ρ11.:其逆变换为可逆σ,kyy ,x x =′=′yky ,x x 1=′=′:轴的反射变换)关于(ρ2x 可逆,yy ,x x -=′=′.y y ,x x -=′=′:其逆变换为ρ1201-1201)(12.其逆矩阵为可逆,10021021)(2其逆矩阵为可逆,1000)(3不可逆θθθθcos sin sin cos -θθθθcos sin sin cos -)(4其逆矩阵为可逆,()()..I I .I ,I ,.逆变换是唯一的则矩阵都是它的逆,是可逆的,设线性变换∴∴σ=σ•=σ•ρ•σ=σ•ρ•σ=•σ=σ=ρ•σ=σ•ρ=ρ•σ=σ•ρσσρ322212*********().A AA .E A A A A ,E A A A A ,A .=====41111111-------可逆且即:则可逆设二阶矩阵∴()()()()()().A A A .E A A EA A A A A A A A ,E A A A AE A AAA A A .E A A A A ,A .211221111221111121211===========5--------------也可逆且则可逆设二阶矩阵∴∴∴。
《2.1.2 逆矩阵的性质》教案1教学目标1. 理解变换、矩阵的逆变换和逆矩阵;2. 掌握逆矩阵的两个性质。
教学重点逆变换和逆矩阵的概念。
教学难点逆矩阵的两个性质。
教学过程1. 逆变换和逆矩阵1.逆变换:设ρ是一个线性变换,如果存在一个线性变换σ,使得σρ=ρσ=I ,(I 是恒等变换)则称变换ρ可逆,其中σ是ρ的逆变换。
2.逆矩阵:设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA=AB=E 2,则称矩阵A可逆,其中B为A的逆矩阵。
符号、记法:1A -,读作A的逆。
注意:有些二阶矩阵是不可逆的。
2. 逆矩阵的性质1.二阶矩阵A 是可逆的,则A 的逆矩阵是唯一的。
2.设二阶矩阵A 、B 均可逆,则AB 也可逆,且111()AB B A ---=【随堂练习】对于伸缩变换12''x k x y k y =⎧⎨=⎩(0)k ≠,对应的变换矩阵A=12 00 k k ⎡⎤⎢⎥⎣⎦,是否存在变换矩阵B , 使得连续进行两次变换(先T A 后T B )的结果与恒等变换的结果相同?思路分析:利用伸缩变换计算公式解决。
答案:由题意知,进行第二次变换121'1'x x k y y k ⎧=⎪⎪⎨⎪=⎪⎩,对应的变换矩阵,121 010 k B k ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 从而可知,AB BA E ==,技巧点拨:本题主要考查利用伸缩变换的思想求逆矩阵。
例题分析例题1 用几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请把它求出来;若不存在,请说明理由.()011;10A ⎡⎤=⎢⎥⎣⎦ ()102.10B ⎡⎤=⎢⎥⎣⎦思路分析:根据题设条件找出对应的变换矩阵,从而判断逆矩阵是否存在。
答案:(1) 矩阵 A 为反射变换矩阵,它对应的几何变换为以直线 y=x 为反射轴的反射变换,因此,它存在逆矩阵,即为其本身,故 101.10A -⎡⎤=⎢⎥⎣⎦(2) 矩阵 B 为投影变换矩阵,它对应的几何变换为将平面上所有的点沿垂直于 x 轴方向投影到直线 y=x 上,这个变换把多个向量变为同一个向量,因此,它不存在逆变换,即矩阵 B 不存在逆矩阵.技巧点拨:求逆矩阵是否存在的关键是找出相应的变换,通过几何变换来确定并找出逆矩阵。
2.4.2 二阶矩阵与二元一次方程组1.把⎪⎪⎪⎪⎪⎪a b cd 称为二阶行列式,它的运算结果是一个数值,记为det(A )=⎪⎪⎪⎪⎪⎪a b cd =ad-bc .2.方程组⎩⎪⎨⎪⎧ax +by =mcx +dy =n 写成矩阵形式为AZ =B ,其中A =⎣⎢⎡⎦⎥⎤ab cd ,称为系数矩阵,Z =⎣⎢⎡⎦⎥⎤x y ,B =⎣⎢⎡⎦⎥⎤m n ,当A 可逆时,方程组有唯一解,当A 不可逆时,方程组无解或有无数组解. 3.对于方程组⎩⎪⎨⎪⎧ ax +by =mzx +dy =n ,令D =⎪⎪⎪⎪⎪⎪ab cd ,D x=⎪⎪⎪⎪⎪⎪m b nd ,D y =⎪⎪⎪⎪⎪⎪am cn ,当D ≠0时,方程组有唯一组解,为x =D x D ,y =D yD .4.对于方程组⎩⎪⎨⎪⎧ax +by =0cx +dy =0,令D =⎪⎪⎪⎪⎪⎪ab cd ,当D =0时,此方程组有非零解.5.二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d 可逆的充要条件是det(A )≠0且A -1=⎣⎢⎢⎡⎦⎥⎥⎤dA-bA -cAa A.[对应学生用书P34][例1] 求⎪⎪⎪⎪⎪⎪λ-2 3λ+52λ-2 5λ+8的最大值(其中λ∈R ).[思路点拨] 利用行列式的运算转化为二次函数求最值.[精解详析] ⎪⎪⎪⎪⎪⎪λ-2 3λ+52λ-2 5λ+8=(λ-2)(5λ+8)-(2λ-2)(3λ+5) =-λ2-6λ-6=-(λ+3)2+3≤3,∴⎪⎪⎪⎪⎪⎪λ-2 3λ+52λ-2 5λ+8的最大值为3.(1)矩阵A =⎣⎢⎡⎦⎥⎤ab cd 与它的行列式det(A )=⎪⎪⎪⎪⎪⎪ab cd 的意义是不同的.矩阵A 不是一个数,而是4个数按顺序排列成的一个数表,行列式det(A )是由矩阵A 算出来的一个数,不同的矩阵可以有相同的行列式的值.(2)⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,它是位于两条对角线上的元素的乘积之差.1.计算下列行列式的值:(1)⎪⎪⎪⎪⎪⎪ 6 2-5 -3;(2)⎪⎪⎪⎪⎪⎪cos θ -sin θsin θ cos θ 解:(1)⎪⎪⎪⎪⎪⎪ 6 2-5 -3=6×(-3)-(-5)×2=-8;(2)⎪⎪⎪⎪⎪⎪cos θ -sin θsin θ cos θ=cos 2 θ-(-sin 2θ)=1.2.若⎪⎪⎪⎪⎪⎪ x 2 y 2-1 1=⎪⎪⎪⎪⎪⎪x x y -y ,求x +y 的值.解:x 2+y 2=-2xy ⇒x +y =0.[例2] 已知A =⎣⎢⎡⎦⎥⎤12-12,B =⎣⎢⎡⎦⎥⎤ 1 1-11,判断AB 是否可逆,若可逆求出逆矩阵.[思路点拨] 利用矩阵可逆的充要条件求解.[精解详析]AB =⎣⎢⎡⎦⎥⎤ 12-1 2 ⎣⎢⎡⎦⎥⎤1 1-11=⎣⎢⎡⎦⎥⎤-1 3-3 1. 因det(AB )=⎪⎪⎪⎪⎪⎪-13-31=-1+9=8≠0,故AB 可逆,∴(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤18 -3838 -18. 已知矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,利用行列式求矩阵A 的逆矩阵的步骤如下:(1)首先计算det(A )=⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,当det(A )≠0时,逆矩阵存在. (2)利用A-1=⎣⎢⎢⎡⎦⎥⎥⎤d A-bA -cAa A,求出逆矩阵A -1.3.判断下列矩阵是否可逆,若可逆,求出逆矩阵.(1)⎣⎢⎡⎦⎥⎤-1 1 1 1;(2)⎣⎢⎡⎦⎥⎤1 a 01;(3)⎣⎢⎡⎦⎥⎤a001.解:(1)二阶行列式⎪⎪⎪⎪⎪⎪-1 1 1 1=-1-1=-2≠0,所以矩阵可逆,逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤-12 12 12 12. (2)二阶行列式⎪⎪⎪⎪⎪⎪1a 01=1≠0,所以矩阵可逆,逆矩阵为⎣⎢⎡⎦⎥⎤1 -a 0 1. (3)二阶行列式⎪⎪⎪⎪⎪⎪a 001=a ,当a =0时,矩阵不可逆,当a ≠0时,矩阵可逆,逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤1a 0 0 1. 4.若矩阵A =⎣⎢⎡⎦⎥⎤3 96 x 2存在逆矩阵,求x 的取值范围. 解:据题意det(A )≠0,即⎪⎪⎪⎪⎪⎪3 96 x 2≠0.∴3x 2-54≠0. ∴x ≠±3 2.故x 的取值范围是{x |x ∈R 且x ≠±32}.[例3] 分别利用行列式及逆矩阵解二元一次方程组⎩⎪⎨⎪⎧3x -2y =1,-x +4y =3.[思路点拨] 求出相应行列式的值,利用x =D xD ,y =D y D求解,或求出方程组对应的逆矩阵,利用逆矩阵法求解.[精解详析] 法一:(行列式解法)D =⎪⎪⎪⎪⎪⎪ 3 -2-1 4=12-2=10, D x =⎪⎪⎪⎪⎪⎪1 -23 4=4+6=10,D y =⎪⎪⎪⎪⎪⎪3 1-13=9+1=10, 故方程组的解为⎩⎪⎨⎪⎧x =D xD =1010=1y =D yD =1010=1.法二:(逆矩阵解法)已知方程组可以写成矩阵形式⎣⎢⎡⎦⎥⎤ 3 -2-1 4 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤13. 令M =⎣⎢⎡⎦⎥⎤3 -2-1 4,则其行列式det(M )=⎪⎪⎪⎪⎪⎪3 -2-1 4=3×4-(-1)×(-2)=10≠0,所以矩阵M 存在逆矩阵M -1,且 M -1=⎣⎢⎢⎡⎦⎥⎥⎤410 210110 310=⎣⎢⎢⎡⎦⎥⎥⎤25 15110 310,这样⎣⎢⎡⎦⎥⎤x y =M-1⎣⎢⎡⎦⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤2515110 310 ⎣⎢⎡⎦⎥⎤13=⎣⎢⎡⎦⎥⎤11. 即方程组的解为⎩⎪⎨⎪⎧x =1,y =1.利用逆矩阵解二元一次方程组的步骤为:(1)将二元一次方程组化成标准形式⎩⎪⎨⎪⎧ax +by =e ,cx +dy =f .并写成矩阵形式.(2)判定系数矩阵是否可逆,即看⎪⎪⎪⎪⎪⎪a b cd 是否为零.若可逆则二元一次方程组有唯一解,若不可逆,方程组无解或解不唯一.(3)若可逆,求逆矩阵:⎣⎢⎡ab cd (4)利用矩阵乘法求解:即计算⎣⎢⎡ab cd⎦⎥⎤e f. 5.利用行列式解下列方程组:(1)⎩⎪⎨⎪⎧3x -3y =1,-x +4y =3;(2)⎩⎪⎨⎪⎧x +2y +1=0,3x +4y -1=0.解:(1)因为D =⎪⎪⎪⎪⎪⎪ 3 -3-1 4=3×4-(-3)×(-1)=9≠0,此方程组存在唯一解.又D x =⎪⎪⎪⎪⎪⎪1 -33 4=1×4-(-3)×3=13,D y =⎪⎪⎪⎪⎪⎪3 1-13=3×3-1×(-1)=10. 所以x =D x D =139,y =D y D =109.故该方程组的解为⎩⎪⎨⎪⎧x =139,y =109.(2)先将方程组改写成一般形式⎩⎪⎨⎪⎧x +2y =-1,3x +4y =1.因为D =⎪⎪⎪⎪⎪⎪1234=-2≠0,此方程组存在唯一解.又D x =⎪⎪⎪⎪⎪⎪-1 2 14=-6,D y =⎪⎪⎪⎪⎪⎪1 -13 1=4, 所以x =D x D=3,y =D yD=-2.故该方程组的解为⎩⎪⎨⎪⎧x =3,y =-2.[例4] m 为何值时,二元一次方程组⎣⎢⎡⎦⎥⎤3 -21 -4 ⎣⎢⎡⎦⎥⎤x y =m ⎣⎢⎡⎦⎥⎤x y 有非零解?[思路点拨] 先求出方程组对应行列式,利用行列式值为0时方程组有非零解求解. [精解详析] 二元一次方程组⎣⎢⎡⎦⎥⎤3 -21 -4 ⎣⎢⎡⎦⎥⎤x y =m ⎣⎢⎡⎦⎥⎤x y ,即为⎣⎢⎡⎦⎥⎤3x -2y x -4y =⎣⎢⎡⎦⎥⎤mx my , ∴⎩⎪⎨⎪⎧3x -2y =mx ,x -4y =my ,即⎩⎪⎨⎪⎧-m x -2y =0,x -+m y =0,即⎣⎢⎡⎦⎥⎤3-m -2 1 -+m ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00.∴当⎪⎪⎪⎪⎪⎪3-m -2 1 -+m =0,即-(3-m )(4+m )+2=0时,方程组有非零解.∴当m =-1±412时,方程有非零解.齐次线性方程组有非零解的充要条件为对应系数成比例,即a c =b d,此时,该齐次线性方程组的一组非零解为⎣⎢⎢⎡⎦⎥⎥⎤-b a 1.6.齐次线性方程组⎩⎪⎨⎪⎧2x -4y =0x -2y =0存在非零解吗?如果存在,求出一组非零解.解:因D =⎪⎪⎪⎪⎪⎪2 -41 -2=-4+4=0,所以存在非零解.其中一组非零解为⎣⎢⎡⎦⎥⎤21.7.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +my =0,4x -11y =0有非零解,求m 的值.解:D =⎪⎪⎪⎪⎪⎪3 m4 -11=-33-4m ,令D =0,则得m =-334.[对应学生用书P36]1.求下列行列式的值:(1)⎪⎪⎪⎪⎪⎪ 32-1 5;(2)⎪⎪⎪⎪⎪⎪7 -98 4. 解:(1)⎪⎪⎪⎪⎪⎪32-15=3×5-(-1)×2=15+2=17. (2)⎪⎪⎪⎪⎪⎪7 -98 4=28-(-72)=28+72=100.2.已知矩阵⎣⎢⎢⎡⎦⎥⎥⎤ax 13 1x 不可逆,求函数f (x )=ax 2-7x +4的最小值.解:∵矩阵⎣⎢⎢⎡⎦⎥⎥⎤ax 13 1x 不可逆, ∴⎪⎪⎪⎪⎪⎪⎪⎪ax 13 1x =ax ·1x -3×1=a -3=0, 即a =3,∴f (x )=3x 2-7x +4 =3(x 2-73x +4936)+4-4936×3=3(x -76)2-112.∴当x =76时,函数f (x )有最小值-112.3.已知矩阵A =⎣⎢⎡⎦⎥⎤1021,X =⎣⎢⎡⎦⎥⎤x y ,B =⎣⎢⎡⎦⎥⎤21,解方程AX =B . 解:因为|A |=⎪⎪⎪⎪⎪⎪1 021=1≠0,所以A 的逆矩阵存在,且A -1=⎣⎢⎡⎦⎥⎤ 1 0-21,所以X =A -1B =⎣⎢⎡⎦⎥⎤ 10-2 1⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤ 2-3. 4.已知二元一次方程组AZ =B ,其中A 是可逆矩阵,B =⎣⎢⎡⎦⎥⎤00,试证明该方程组的解只能是⎣⎢⎡⎦⎥⎤00.证明:因为A 是可逆矩阵,则原方程组的解为Z =A -1B =A -1⎣⎢⎡⎦⎥⎤00,因为A -1是唯一存在的,所以Z =⎣⎢⎡⎦⎥⎤00是原方程组唯一的解.5.分别利用行列式法及逆矩阵法解方程组⎩⎪⎨⎪⎧x +2y -5=03x +4y -6=0.解:法一:方程组可化为⎩⎪⎨⎪⎧x +2y =53x +4y =6,D =⎪⎪⎪⎪⎪⎪123 4=4-6=-2, D x =⎪⎪⎪⎪⎪⎪5 264=20-12=8, D y =⎪⎪⎪⎪⎪⎪1 536=6-15=-9,故方程组的解为⎩⎪⎨⎪⎧x =D xD=-4,y =D yD =92.法二:方程组用矩阵表示为⎣⎢⎡⎦⎥⎤123 4 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤56.故⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡1 234⎦⎥⎤56 =-12⎣⎢⎡⎦⎥⎤ 4 -2-3 1 ⎣⎢⎡⎦⎥⎤56=⎣⎢⎢⎡⎦⎥⎥⎤-4 926.试写出齐次线性方程组⎩⎪⎨⎪⎧2x +3y =0,4x +6y =0,的矩阵形式及该方程组的一组非零解. 解:齐次线性方程组改写成矩阵形式为⎣⎢⎡⎦⎥⎤2 346 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00, ∵⎪⎪⎪⎪⎪⎪2 346=2×6-3×4=0,∴此齐次线性方程组有非零解如⎩⎪⎨⎪⎧x =1y =-23就是它的一组非零解.7.当λ为何值时,二元一次方程组⎣⎢⎡⎦⎥⎤2 213 ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y 有非零解? 解:由题意知二元一次方程组为⎩⎪⎨⎪⎧2x +2y =λx ,x +3y =λy ,即⎩⎪⎨⎪⎧-λx +2y =0,x +-λy =0.D =⎪⎪⎪⎪⎪⎪2-λ 21 3-λ=(2-λ)(3-λ)-2=λ2-5λ+4, 当D =0即λ=1或4时,二元一次方程组⎣⎢⎡⎦⎥⎤221 3 ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y 有非零解. 8.如果建立如下字母与数字的对应关系 a b c … y z ↔ ↔ ↔ … ↔ ↔ 1 2 3 … 25 26 并且发送方按可逆矩阵A =⎣⎢⎡⎦⎥⎤5321进行加密. (1)若要发出信息work hard ,试写出所要发送的密码; (2)将密码93,36,60,21,159,60,110,43恢复成原来的信息.解:(1)若要发出信息work hard ,则其编码为23,15,18,11,8,1,18,4.把上述编码按顺序分成四组并写成列向量⎣⎢⎡⎦⎥⎤2315,⎣⎢⎡⎦⎥⎤1811,⎣⎢⎡⎦⎥⎤81,⎣⎢⎡⎦⎥⎤184,计算它们在矩阵A对应的变换下的象,可得A ⎣⎢⎡⎦⎥⎤2315=⎣⎢⎡⎦⎥⎤5 32 1 ⎣⎢⎡⎦⎥⎤2315=⎣⎢⎡⎦⎥⎤160 61, A ⎣⎢⎡⎦⎥⎤1811=⎣⎢⎡⎦⎥⎤5 321 ⎣⎢⎡⎦⎥⎤1811=⎣⎢⎡⎦⎥⎤123 47, A ⎣⎢⎡⎦⎥⎤81=⎣⎢⎡⎦⎥⎤5 32 1 ⎣⎢⎡⎦⎥⎤81=⎣⎢⎡⎦⎥⎤4317, A ⎣⎢⎡⎦⎥⎤184=⎣⎢⎡⎦⎥⎤5 321 ⎣⎢⎡⎦⎥⎤18 4=⎣⎢⎡⎦⎥⎤102 40, 于是,得到所要发送的密码为160,61,123,47,43,17,102,40. (2)因为det(A )=⎪⎪⎪⎪⎪⎪5 321=5×1-2×3=-1,所以A 的逆矩阵A -1=⎣⎢⎡⎦⎥⎤-1 3 2 -5.把接受到的密码按顺序分成四组并写成列向量,计算它们在矩阵A -1对应的变换作用下的象, 可得。
逆变换与逆矩阵教学目标1.逆矩阵的概念;2.逆矩阵的性质。
教学重点及难点逆矩阵的概念与简单性质。
教学过程一、逆变换与逆矩阵1.逆变换:设ρ是一个线性变换,如果存在一个线性变换σ,使得σρ=ρσ=I,(I是恒等变换),则称变换ρ可逆,其中σ是ρ的逆变换。
2.逆矩阵:设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA=AB=E2,则称矩阵A可逆,其中B为A的逆矩阵。
符号、记法:1A-,读作A的逆。
一般地,设A是一个二阶可逆矩阵,对应的线性变换为ρ,由矩阵与线性变换的对应关系可以看出,A的逆矩阵就是ρ的逆变换所对应的矩阵。
【应用】1.试寻找R30o的逆变换。
【应用】1.A=3142⎛⎫⎪⎝⎭,问A是否可逆?若可逆,求其逆矩阵1A-。
2. A=2142⎛⎫⎪⎝⎭,问A是否可逆?若可逆,求其逆矩阵1A-。
由以上两题,总结一般矩阵A=a bc d⎛⎫⎪⎝⎭可逆的必要条件。
二、逆矩阵的性质1.二阶矩阵可逆的唯一性。
性质1:设A是一个二阶矩阵,如果A是可逆的,则A的逆矩阵是唯一的。
性质2:.设A 、B 是二阶矩阵,如果A 、B 都可逆,则AB 也可逆,且111()AB B A ---=。
【练习:P 50】补充练习:1.下列变换不存在逆变换的是 ( ) A.沿x 轴方向,向y 轴作投影变换。
B.60o R 变换。
C.横坐标不变,纵坐标增加横坐标的两倍的切变变换。
D.以y 轴为反射变换2.下列矩阵不存在逆矩阵的是 ( )A. 0110⎛⎫ ⎪⎝⎭B. 0.5001⎛⎫ ⎪⎝⎭C. 0110-⎛⎫ ⎪⎝⎭D. 1010⎛⎫ ⎪⎝⎭ 3.设A,B 可逆,下列式子不正确的是 ( )A.111()AB A B ---=B. 111()AB B A ---=C.11()A A --= D. 2112()()A A --= 4.关于x 轴的反射变换对应矩阵的逆矩阵是5.变换ρ将(3,2)变成(1,0),设ρ的逆变换为ρ-1,则ρ-1将(1,0)变成点6.矩阵0111⎛⎫ ⎪⎝⎭的逆矩阵为7.设ρ:''x y ⎛⎫ ⎪⎝⎭=1101-⎛⎫ ⎪⎝⎭x y ⎛⎫ ⎪⎝⎭,点(-2,3)在ρ-1的作用下的点的坐标为8.A =1101-⎛⎫ ⎪⎝⎭12122⎛⎪ ⎪ ⎪⎝⎭,则1A -= 答案:1.A 2.D 3.A 4. 1001⎛⎫ ⎪-⎝⎭ 5.(3,2) 6. 1110-⎛⎫ ⎪⎝⎭7.(1,3)8. 1122122⎛+ -- ⎝⎭。
逆矩阵的求法及逆矩阵的应用1. 前言在矩阵运算中,逆矩阵是一个重要的概念。
一个矩阵的逆矩阵是指,如果一个矩阵A乘上它的逆矩阵A^-1等于单位矩阵I,那么A就有逆矩阵。
逆矩阵经常用于解线性方程组、计算行列式和计算矩阵的特征值等方面。
本文将介绍逆矩阵的求法和逆矩阵的应用。
2. 求逆矩阵的方法要求一个矩阵的逆矩阵,需要满足两个条件:该矩阵是方阵且它的行列式不等于零。
下面介绍两种求逆矩阵的方法。
2.1. 初等变换法采用初等变换法求逆矩阵,需要构造一个n阶矩阵[AB],其中A 为待求矩阵,B为单位矩阵,即:[AB]=[A I_n]然后,对矩阵[AB]进行初等行变换,一直到[AB]变为[IBA']的形式,其中A'为A的逆矩阵。
由于[AB]=[A I_n],所以[IBA']=[I_n A^-1],即A的逆矩阵就构造出来了。
2.2. 公式法另一种求逆矩阵的方法是采用公式法。
设A为一个n阶矩阵,若它的行列式为D,那么它的伴随矩阵记为adj(A),则逆矩阵为A^-1=(1/D)adj(A)。
其中,adj(A)表示矩阵A的伴随矩阵,它的第i行第j列元素A_ij的代数余子式与(-1)^(i+j)的乘积。
3. 逆矩阵的应用逆矩阵在数学中有多种应用,这里只介绍几个典型的应用。
3.1. 解线性方程组逆矩阵可以用于求解线性方程组,解法如下:假设有n个未知数,n个方程,可将方程组表示为AX=B的形式,其中X为未知数向量,B为常数向量,A为系数矩阵。
如果系数矩阵A有逆矩阵,那么可以将方程组A^-1AX=A^-1B简化为X=A^-1B,即可求得未知数向量X。
3.2. 计算行列式和矩阵的特征值逆矩阵还可以用于计算行列式和矩阵的特征值。
设A为n阶方阵,它的逆矩阵为A^-1,则有:det(A)=det(A^-1)^-1λ是A的特征值,那么A的逆矩阵的特征值就是λ^-1。
3.3. 计算数据的逆矩阵逆矩阵也可以用于计算数据的逆矩阵。
逆 矩 阵 与 逆 变 换
教学目标
1.逆矩阵的概念;
2.逆矩阵的性质。
教学过程
探究:对于一个线性变换ρ,是否存在一个线性变换σ,使得σρ=ρσ=I ?对于一个二阶矩阵A ,是否存在一个二阶矩阵B,使得BA=AB=E 2?
变换ρ:将向量α沿逆时针方向绕原点旋转30°;变换σ:将向量α沿顺时针方向绕原点旋转30°,则任意向量经上述两种变换后,仍得其本身。
1.逆变换:设ρ是一个线性变换,如果存在一个线性变换σ,使得
σρ=ρσ=I ,(I 是恒等变换),则称变换ρ可逆,其中σ是ρ的逆变换。
若变换变换ρ和变换σ对应的矩阵分别为A 、B ,则有BA=AB=E 2
2.逆矩阵:设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA=AB=E 2,则称矩阵A可逆,其中B为A的逆矩阵。
符号、记法:1A -,读作A的逆。
一般地,设A 是一个二阶可逆矩阵,对应的线性变换为ρ,由矩阵与线性变换的对应关系可以看出,A 的逆矩阵就是ρ的逆变换所对应的矩阵。
3.逆矩阵的性质:
性质1:若逆矩阵存在,则可以证明其具有唯一性。
性质2:设A 、B 是二阶矩阵,如果A 、B 都可逆,则AB 也可逆,且111()AB B A ---=。
课堂练习:
1.下列变换不存在逆变换的是 ( )
A.沿x 轴方向,向y 轴作投影变换。
B.60o R 变换。
C.横坐标不变,纵坐标增加横坐标的
两倍的切变变换。
D.以y 轴为反射变换
2.设A,B 可逆,下列式子不正确的是 ( )
A.111()AB A B ---=
B. 111()AB B A ---=
C.11
()A A --= D. 2112()()A A --= 3.关于x 轴的反射变换对应矩阵的逆矩阵是
4.矩阵0111⎛⎫ ⎪⎝⎭
的逆矩阵为
5.A =1101-⎛⎫ ⎪⎝⎭13223122⎛⎫- ⎪ ⎪ ⎪ ⎪⎝
⎭,则1A -=
答案:1.A 2. A 3.
10
01
⎛⎫
⎪
-
⎝⎭
4.
11
10
-⎛⎫
⎪
⎝⎭
5.
113
22
313
22
⎛⎫
+
⎪
⎪
⎪
-
- ⎪
⎝⎭。