高中数学逆变换与逆矩阵逆矩阵的概念课件苏教版
- 格式:ppt
- 大小:977.50 KB
- 文档页数:49
逆变换与逆矩阵教学目标1.逆矩阵的概念;2.逆矩阵的性质。
教学重点及难点逆矩阵的概念与简单性质。
教学过程一、逆变换与逆矩阵1.逆变换:设ρ是一个线性变换,如果存在一个线性变换σ,使得σρ=ρσ=I,(I是恒等变换),则称变换ρ可逆,其中σ是ρ的逆变换。
2.逆矩阵:设A是一个二阶矩阵,如果存在二阶矩阵B,使得BA=AB=E2,则称矩阵A可逆,其中B为A的逆矩阵。
符号、记法:1A-,读作A的逆。
一般地,设A是一个二阶可逆矩阵,对应的线性变换为ρ,由矩阵与线性变换的对应关系可以看出,A的逆矩阵就是ρ的逆变换所对应的矩阵。
【应用】1.试寻找R30o的逆变换。
【应用】1.A =3142⎛⎫⎪⎝⎭,问A 是否可逆?若可逆,求其逆矩阵1A -。
2. A =2142⎛⎫ ⎪⎝⎭,问A 是否可逆?若可逆,求其逆矩阵1A -。
由以上两题,总结一般矩阵A =a b c d ⎛⎫⎪⎝⎭可逆的必要条件。
二、逆矩阵的性质1.二阶矩阵可逆的唯一性。
性质1:设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的。
性质2:.设A 、B 是二阶矩阵,如果A 、B 都可逆,则AB 也可逆,且111()AB B A ---=。
【练习:P 50】补充练习:1.下列变换不存在逆变换的是 ( )A.沿x 轴方向,向y 轴作投影变换。
B.60oR 变换。
C.横坐标不变,纵坐标增加横坐标的两倍的切变变换。
D.以y 轴为反射变换2.下列矩阵不存在逆矩阵的是 ( )A. 0110⎛⎫ ⎪⎝⎭B. 0.5001⎛⎫ ⎪⎝⎭C. 0110-⎛⎫ ⎪⎝⎭D. 1010⎛⎫ ⎪⎝⎭ 3.设A,B 可逆,下列式子不正确的是 ( )A.111()AB A B ---=B. 111()AB B A ---=C.11()A A --=D. 2112()()A A --=4.关于x 轴的反射变换对应矩阵的逆矩阵是5.变换ρ将(3,2)变成(1,0),设ρ的逆变换为ρ-1,则ρ-1将(1,0)变成点6.矩阵0111⎛⎫ ⎪⎝⎭的逆矩阵为 7.设ρ:''x y ⎛⎫ ⎪⎝⎭=1101-⎛⎫ ⎪⎝⎭x y ⎛⎫ ⎪⎝⎭,点(-2,3)在ρ-1的作用下的点的坐标为8.A =1101-⎛⎫ ⎪⎝⎭122122⎛- ⎪ ⎪ ⎪⎝⎭,则1A -= 答案:1.A 2.D 3.A 4. 1001⎛⎫⎪-⎝⎭ 5.(3,2) 6. 1110-⎛⎫ ⎪⎝⎭ 7.(1,3)。