超微粉碎新技术在食品加工中的应用
- 格式:docx
- 大小:10.49 KB
- 文档页数:3
肉制品加工中常用的技术及存在问题------食品研发与生产肉是人类动物蛋白质的主要来源,是人们必需的主要副食品之一。
随着科学的进步和生活质量的提高,消费者对肉制品的要求也越来越高,已不满足于吃饱,而要求吃好,迫切需求营养均衡、风味独特的中高档肉制品。
因此,备受国内外研究者普遍关注的风味独特、营养丰富而均衡、易消化、色香味俱佳的中式发酵肉制品、功能性复合肉制品和重组肉制品等新型肉制品的研发迫在眉睫、势在必行。
若这些新型肉制品能够投入工业化生产,必将深受广大消费者的青睐,带来显著的经济效益和社会效益。
随着国内外对肉制品加工技术研究的不断深入。
对肉制品的新工艺、新产品、新设备的研究越来越多,加工程度由初加工向深加工方向发展。
一、几种常见的肉制品分类概述1、发酵肉制品发酵肉制品是指在自然或人工控制条件下,利用微生物的发酵作用,产生具有特殊风味、色泽和质地,且具有较长保存期的肉制品。
其特点是通过优选复合发酵菌种,调控发酵和成熟不同阶段的工艺过程,使产品中的蛋白质分解、变性,赋予产品坚实的质地;同时由于蛋白质降解而形成肽、氨基酸等小分子化合物,提高了生物利用率,使产品有利于人体消化吸收,有益于人体健康。
肉类发酵常用的微生物有乳杆菌属、链球菌属、片球菌属、微球菌属和青霉菌属等。
其具有降低pH值、减少腐败、改善组织与风味、促进发色、防止氧化变色、减少亚硝胺的生成、抑制病原微生物的生长,以及产生毒素等作用。
2、重组肉制品重组肉制品是一种能为企业带来显著经济效益的新型肉制品,指借助于机械和添加辅料(食盐、磷酸盐、大豆蛋白、淀粉、卡拉胶等)以提取肌肉纤维中的基质蛋白,利用添加剂的粘合作用,使肉颗粒或肉块重新组合,经冷冻后直接出售或者经预热处理保留和完善其组织结构的肉制品田。
从加工方法来分,重组肉制品的生产基本上有3种工艺:大肉块的成型、片块状肉的成型、撕块状及碎肉的成型。
1)重组肉制品的加工机理大小不同(从肉块、碎肉到肉粒)的肉片均可结合在一起,以模仿整肉的外观和质构,或形成质构独特的新产品。
超微粉碎及其在食品中的应用-食品高新技术作业本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March超微粉碎及其在食品中的应用前言超微粉碎技术是近年来随着现代化工、电子、生物、材料及矿产开发等高新技术的不断发展而兴起的,是国内外食品加工的高科技尖端技术。
在国外,美国、日本市售的果味凉茶、冻干水果粉、超低温速冻龟鳖粉、海带粉、花粉和胎盘粉等,多是采用超微粉碎技术加工而成;而我国也于20世纪90年代将此技术应用于花粉破壁,随后一些口感好、营养配比合理、易消化吸收的功能性食品(如山楂粉、魔芋粉、香菇粉等)应运而生。
超微粉碎的前景应用广阔,并且对于科学、实际生产都具有指导意义,随着技术越来越成熟,应用的就会越来越广阔。
1 超微粉碎的原理超微粉碎的原理与普通粉碎相同,只是细度要求更高,它利用外加机械力, 使机械力转变成自由能,部分地破坏物质分子间的内聚力,来达到粉碎的目的。
超微粉碎技术是利用特殊的粉碎设备,通过一定的加工工艺流程,对物料进行碾磨、冲击、剪切等,将粒径3mm以上的物料粉碎至粒径10~ 25μm以下的微细颗粒,从而使产品具有界面活性,呈现出特殊的功能。
与传统的粉碎、破碎、碾碎等加工技术相比,超微粉碎产品的粒度更加微小。
超微粉碎技术是基于微米技术原理的.随着物质的超微化,其表面分子排列、电子分布结构及晶体结构均发生变化,产生块(粒)材料所不具备的表面小尺寸效应、量子效应和宏观量子隧道效应,从而使得超微粉碎产品与宏观颗粒相比具有优异的物理、化学及表界面性质。
2 超微粉碎技术的优点2.1 速度快,可低温粉碎超微粉碎技术采用超音速气流粉碎、冷浆粉碎等方法,在粉碎过程不会产生局部过热现象, 甚至可在低温状态下进行,粉碎瞬时即可完成,因而能最大限度地保留粉体的生物活性成分,有利于制成所需的高质量产品。
2.2 粒径细,分布均匀由于采用了气流超音速粉碎,使得原料外力的分布非常均匀。
超微粉碎技术在豆腐加工中的研究进展陈杰;谭琳;张清;张黎骅【摘要】在豆腐的制备过程中,豆浆的制取方式十分重要,直接影响豆腐的凝胶强度、弹性、内聚性和口感.超微粉碎技术作为一种新兴的制浆技术,不仅能减小豆浆的粒径、赋予产品细腻的口感、改善原料的加工性能,还能在一定程度上避免豆渣中所含营养成分的流失,在豆浆及豆腐的制备过程中使用越来约普遍.本文综述了干法超微粉碎制浆技术和超声波、胶体磨、高压均质、超高压均质等湿法超微粉碎制浆技术的研究与应用现状,比较了各种制浆技术的优、缺点,并对今后豆腐制浆技术的研究方向进行了展望,旨在为加快研究“营养、高效”的豆腐制浆技术提供参考.【期刊名称】《食品工业科技》【年(卷),期】2018(039)020【总页数】6页(P324-329)【关键词】豆腐;豆浆;超微粉碎技术【作者】陈杰;谭琳;张清;张黎骅【作者单位】四川农业大学食品学院,四川雅安625014;四川农业大学食品学院,四川雅安625014;四川农业大学食品学院,四川雅安625014;四川农业大学机电学院,四川雅安625014【正文语种】中文【中图分类】TS201.1豆腐是以大豆为主要原料,经漂洗、浸泡、磨浆、煮浆、滤浆、点脑、压制成型、包装等工艺加工制成的非直接入口的豆制品,在中国、日本和韩国等东南亚国家非常受欢迎,已经有2000多年的历史[1]。
豆腐营养丰富,口感柔和,在干基状态下蛋白质含量高达50%,不含胆固醇,饱和脂肪含量低。
常食用豆腐,对人体有很大的健康效益,如减少患动脉粥样硬化的几率、降低人体血液中胆固醇含量等,具有良好的健康效应[2-4]。
传统的豆腐制作主要包括原料清选、浸泡、制浆、煮浆、过滤、点浆、成型等工序,其中制浆是关键环节之一。
近年来,豆腐制浆技术主要包括干法超微粉碎制浆技术和湿法超微粉碎制浆技术,各种制浆技术在生产应用中各有利弊[5-6]。
豆腐制浆工艺对豆浆的粒度、稳定性、大豆蛋白凝胶性,以及后续凝胶成型、豆腐的口感、凝胶强度、硬度等具有显著的影响。
《食品机械与设备》课程阅读资料系列(1)超微粉碎技术在食品加工过程中的应用资料整理:孔令明超微粉碎技术是国际上近几十年发展起来的一门新技术。
目前已成功的应用于化工、医药、机械等许多行业。
特别是采用振动方式生产的超微粉碎产品,具有粉碎粒度细,产品无分级,生产过程全密闭,无污染,营养成分无损失等优点,特别适合于对卫生质量、感官质量要求特别严格的食品行业。
以下就超微粉碎技术在食品行业中的应用做一简要介绍。
1、食物资源的充分利用小麦麸皮、燕麦皮、玉米皮、玉米胚芽渣、豆皮、米糠、甜菜渣和甘蔗渣等,含有丰富的维生素、微量元素等,具有很好的营养价值,但由于常规粉碎的纤维粒径大,影响食用的口感,从而使消费者难以接受。
通过对纤维的微粒化,能明显改善纤维食品的口感和吸收性,从而使食物资源得到了充分的利用,而且丰富了食品的营养。
果皮、果核经超微粉碎可以转变为食品。
蔬菜在低温下磨成微粉膏,既保存了全部的营养成分,纤维质也因微细化而增加了水溶性,口感更佳。
一些动植物体的不可食部分如骨、壳(蛋壳)、甲、虾皮等、也可以通过超微化而成为易被人体吸收利用的钙源和甲壳素。
各种畜、禽鲜骨中含有丰富的蛋白质和脂肪、磷脂质、磷蛋白,能促进儿童大脑神经的发育,有健脑增智之功效。
鲜骨中含有的骨胶原(氨基酸)、软骨素等,有滋润皮肤防衰老的作用。
鲜骨中还含有维生素A、B1、B2、B12等营养成分,钙、铁等在鲜骨中的含量也极高,如鲜猪骨中含有复合磷酸钙盐、脂质和蛋白质等主要成分。
一般是将鲜骨煮、熬之后食用,实际上鲜骨的营养成分绝大部分没有被人体吸收,造成了资源的浪费。
利用超微粉碎技术,将鲜骨多级粉碎加工成超细骨泥或经脱水制成骨粉,既能保持95%以上的营养成分,而且营养成分又易被人体吸收,吸收率可达90%以上。
鲜骨是肉类加工厂的大宗副产品,大多以低价处理出售。
因此,将鲜骨制成富钙产品,既具有营养意义,又具有经济效益。
另外,传统的饮茶方法是用开水冲泡茶叶,但人体并没有完全吸收茶叶的全部营养成分,一些不溶性或难溶的成分,诸如维生素A、K、E、以及绝大部分矿物质等,都大量留存于茶叶的渣中,大大影响了茶叶的营养及保健功能。
工艺 技术食品加工过程中新技术的应用研究 王钰琪 哈尔滨商业大学食品工程学院最近几年,我国食品加工行业得到了很大发展,在食品加工过程中开发应用新型技术逐步成为食品工业发展的重要研究方向。
加强新技术在食品加工行业中的应用,不仅能显著提高食品生产的有效利用率,节约成本,同时可以优化改善食品质量,为绿色食品的发展提供良好条件,真正为人们提供更多健康、安全、可靠的食品。
食品加工过程中新技术的应用分析就目前而言,我国食品加工行业制作过程中普遍应用的新型技术主要包括:食品加工中的新技术。
(1)超临界流体萃取技术。
超临界流体萃取技术的核心功能是对食品进行单元分离,作用原理是利用超临界流体对液态或固态混合物中的特定成分进行萃取分离,常用的萃取剂是二氧化碳。
普遍应用在食品原料加工过程中的香料、色素、油脂等物质的提取分离,也能作为食品中不良物质的去除媒介。
例如,在一定的温度和压力下,可以利用二氧化碳进行大豆油的萃取,最终获取色泽清亮的大豆油,同时还能提取出香辛料等风味物质。
(2)微波技术。
微波技术是指利用微波对物料进行加热处理以满足食品生产要求的一种新型技术,主要应用于对食品的加热杀菌、膨胀抑酶、干燥去湿等。
例如,微波膨化技术主要应用于淀粉类食品的膨化加工, 常见的有瓜果蔬菜的物料膨化加工和蛋白质食物的膨化加工。
微波灭菌技术能对特定蔬果及乳制品进行杀菌处理,例如蛋制品、肉类、瓜果蔬菜、乳制品等;另外,微波技术还能使酵母、霉菌包子等失活,加快食品加工制作效率,从而提高食品加工的有效利用率。
(3)微胶囊技术。
微胶囊技术的核心原理是利用半透性或密闭性的微胶囊将固液气态的微细物质进行包裹,以保持食品的原始的生理活性和色香味,不仅能有效避免食品的营养物质被破坏,还能防止食品中的不稳定成分变质。
微胶囊技术目前普遍用于食品加工中粉末油脂、微胶囊饮料及人造鱼子酱等的生产。
微胶囊技术优势显著,但我国微胶囊技术的发展水平与国外先进国家相比还存在一定差距,我国食品加工生产中也普遍采用国外的进行微胶囊为原料,因此,微胶囊的研发应用必将成为我国食品加工研发工作中的重点内容。
超微粉碎技术及其在食品加工中的应用超微粉碎技术是一种通过高速旋转的锤子、刮板或者磨盘等微观荷载对物料进行多次撞击、剪切和象牙塔等力学作用,使其达到纳米或亚微米级的粉碎效果的一种技术。
该技术具有高效、低能耗、无污染等优点,被广泛应用于化工、能源、环保、材料等领域。
近年来,随着食品工业的不断发展,超微粉碎技术也开始在食品加工行业中得到越来越广泛的应用。
超微粉碎技术在食品加工中的应用主要体现在以下方面:
1.首先,超微粉碎技术可以对食品原料进行细致的分解和粉碎,获得高质量、高效率的原料粉末。
这种粉末具有高度均匀性、高度活性和更好的口感和感官性质,可以用于制作各种食品、保健品和药品等。
2.其次,超微粉碎技术还可以帮助食品加工企业提高生产效率和降低生产成本。
由于使用超微粉碎技术可以快速并有效地处理大量的原料,从而节省了生产时间和成本,提高了生产效率和经济效益。
3.最后,超微粉碎技术还可以为食品加工企业提供更多的创新机会和产品差异化优势。
由于使用该技术可以精确地控制产品的粒度和活性,因此可以生产出更多的高品质、高价值的特殊食品和中间体,以满足不同消费者的需求和市场需求。
总之,超微粉碎技术在食品加工行业中的应用给企业带来了很多机会和创新空间,未来有望成为食品工业中的一项重要技术,相信它将在未来的发展中有着更广泛的应用前景。
超微粉碎新技术在食品加工中的应用
农业是国民经济的基础。
随着我国自然资源的约束力不断增强,以及粮食等主要农产品的需求呈刚性增长率,农业增产、农民增收和农产品竞争力增强的压力将长期存在。
农业产品结构不合理、产业化发展水平及农产品附加值低,生态与环境状况依然严峻,生态安全问题依然突出。
我国的基本国情及面临的严峻挑战,决定了必须把科技进步作为解决“三农”问题的一项根本措施,大力提高农业科技水平,加大先进适用技术推广力度。
从而提高农业综合生产能力,加快建设现代农业的步伐。
食品超微加工的意义
民以食为天,“吃”是关系到国民生计的大事。
随着土地资源的减少,食品将成为本世纪的紧缩物资,开发新的食品资源是人类面临的重大问题。
国际食品业公认,超微粉体加工技术是21世纪十大食品科学技术之一。
食品超微加工新技术是有效提升农产品利用率的技术措施之一,是解决农业增产、农民增收和农副产品深度加工的重要技术保障。
目前世界发达国家食品加工技术发展日新月异,采用高新技术深加工的食品层出不穷。
这为企业带来了丰厚的利润和国际市场的强劲竞争力。
我国食品加工业起步较晚,高新技术在食品工业和农副产品的深加工尚未得到有效的推广和应用。
为提升我国农业深加工技术装备的创新,拓展农民增收空间。
“国家中长期(2006~2020年)科学和技术发展规划纲要”,实施决定中对农业科学技术发展提出:延长农业产业链、带动农业产业化水平和农业综合效益的全面提高。
要重点发展农产品的精深加工,开发农产品加工先进技术装备,发展以健康食品为主导的农产品加工业,拓展农民增收空间。
我国是一个农业大国,可用于食品加工的植物资源非常丰富。
然而不少富含营养的植物茎秆和果实因加工技术手段的限制而难于直接食用并被人体消化,造成可食性低的结果。
提高可食性生物的利用率是开发精深加工技术的目的所在。
超微粉碎是有效解决植物细胞破壁,改善食用口感和增加人体消化吸收的关键技术。
在保健食品方面超微粉碎技术的意义更为突出。
随着人们生活水平的提高,人们寻求新的保健型营养食品是一大趋势。
由于我国缺少先进的超微粉碎加工技术,大量的农副产品不能精深加工利用,造成了可食性资源的浪费。
诸如小麦麸皮、燕麦皮、玉米皮、米糠、豆渣等主要用于饲料,没有很好的开发和利用。
国内外营养学家专家早就一致认为麸皮和米糠是含膳食纤维很高的“保健食品”。
其纤维含量高达%、蛋白质为%、脂肪为%。
食用这些食品将有利于人体新陈代谢,并对防止便秘、降低胆固醇、预防动脉硬化等具有明显效果。
在国外,用麸皮开发的纤维保健食品已成为国际市场的抢手货,颇受消费者欢迎。
联合国粮农组织已颁布了膳食纤维指导大纲,将小麦麸皮列入重点开发的种类,这为加快我国对麸皮的研究开发创造了新商机。
另外,我国麸皮年产量约7000万吨~8000万吨左右,如果采用超微粉碎技术将其开发生产保健食品,将是一笔巨大的经济财富。
这一切都表明,超微粉碎技术在食品加工业中,将有着更为广阔的应用前景。
超微粉碎技术
超微粉碎技术是一项高新技术。
用于可食性植物茎秆果实的超微细粉碎设备,已经成为世界各国所关注的热点。
我国也不例外。
将超微粉碎技术早就列入国家重点开发的计划项目。
目前国外一些公司针对植物食品的超细粉碎设备并以昂贵的价格向我国推销。
而我国用于植物类的超微粉碎设备仍较落后。
多为传统的机械冲击式粉碎机和高能耗、低产量的气流粉碎机为主。
产品细度很难达到超细化要求。
而且存在生产效率低、加工成本高,设备卫生标准很难符合GMP要求。
面对诸多技术问题,所以很难在食品加工业中推广应用。
针对超微粉体在食品加工业中的推广应用,我国自主创新研究开发了世界首创“高度湍流磨”。
由于它在粉碎机理上的重大创新发现,从而解决了至今为止各国粉碎行业专家孜孜以求而未获重大进展的粉碎节能、超微粉碎(亚微米)、以及粉体无筛分离等重大瓶颈技术问题。
这一技术成果用于食品加工业,将对植物纤维、生物制品和功能性食品的加工带来了新商机,其粉碎细度平均可达(1um),能赋予高档保健食品爽滑的口感和独特的口味。
同时,它对农副产品的综合开发利用带来可观的经济效益。
以麸皮、米糠加工为例,每小时产量可达50kg以上,电耗为20千瓦/小时,其粉碎加工成本是气流磨的10%,这是目前所有的超微粉碎设备无可比拟的。
高度湍流磨粉碎原理及科学依据
湍流磨是通过创新设计的“湍流涡轮”,高速运转时所产生的高度湍流运动,将物料迅速粉碎的。
高度湍流必须在雷诺数(Re>×105)下发生,该湍流磨的雷诺数高达(Re=×105),确能产生高度湍流运动。
湍流运动的特性是不规则的,即由大小不等涡体组成无规则的随机运动。
它最本质的特征是“湍动”,即随机的脉动。
它的速度场和压力场都是随机的。
不仅对时间、而且对空间而言。
湍流运动的另一重要特性是扩散性。
湍流中由于涡体相互混杂,引起流体内部动量交换,动量大的质点将动量传给动量小的质点,动量小的质点又影响动量大的质点,结果扩散增加了动量、质量的传递率。
当被粉碎物体处在高度湍流场中时,就构成了气固两相流,从机械装置“(湍流涡轮)”获得的湍动能量,通过惯性力由大旋涡逐级传递给小旋涡。
在这一复杂的湍动过程中产生强烈的撞击、摩擦、剪切作用力,从而使物料有效地被粉碎。
高度湍流磨工艺特点及优越性
超微粉碎技术被国内外科技界称为跨世纪的高新技术。
目前只有少数发达国家具有这种生产技术。
我国自九十年代从国外引进,其研究应用方兴未艾。
现在看来引进的这些设备并非先进。
“高度湍流磨”能将植物纤维一次性干法粉碎到1um以下,而且产量高、能耗低,主要是取决于粉碎机理上的重大创新突破。
其工艺特点及技术优越性简述如下:
1. 粉碎机理:世界首创。
技术水平:国际领先。
具有能耗低,生产效率高和粉体无筛分离的技术优势。
2. 技术工艺先进,粉碎与分级、分散与改性,三项加工工序简化为一机同步作业。
粉碎温度低:磨腔设有冷却闭路循环系统、粉体出料温度不高于50℃。
3. 设备全系统双负压运行,不产生任何粉体泄漏。
工艺简化,全套装置体积小,安装与维修非常简便。
4. 技术标准,按国家颁布的食品与药品技术条件产品检验规则执行,设备质量符合GMP 技术要求。
5. 操作密闭,采用智能化控制:设备采用自动传感温度和自动化进料,以及人机屏幕临视和可编程自动调节控制。
同时设备能实现自动连锁安全保护和报警。
结论
由于我国食品加工业起步较晚,新技术在食品工业和农副产品的深度加工尚未得到有效的推广和应用,因此,食品超微粉碎新技术在我国还刚刚起步。
但是,随着中国食品工业逐渐走向国际化,食品超微粉碎技术将成为今后亟待发展的科学技术之一,它将为我国食品工业的快速发展带来了新的商机。