汽车专业的毕业设计
- 格式:doc
- 大小:108.00 KB
- 文档页数:23
一、前言时光荏苒,转眼间我的大学本科生涯即将结束。
在这段时间里,我完成了汽车专业的毕业设计,现将设计过程及心得总结如下。
二、设计背景与目的随着我国经济的快速发展,汽车产业已经成为国民经济的重要支柱产业。
为了适应市场需求,提高我国汽车行业的技术水平,培养具备创新精神和实践能力的汽车专业人才,我选择了“XX型汽车车身结构优化设计”作为我的毕业设计课题。
设计目的如下:1. 掌握汽车车身结构设计的基本原理和方法。
2. 熟悉汽车车身结构优化设计的相关软件和工具。
3. 培养独立思考、解决问题的能力。
4. 为我国汽车产业发展贡献一份力量。
三、设计过程1. 选题与调研在设计初期,我查阅了大量相关资料,了解了国内外汽车车身结构设计的发展趋势。
经过多次讨论和修改,最终确定了“XX型汽车车身结构优化设计”这一课题。
2. 设计方案根据设计要求,我制定了以下设计方案:(1)采用有限元分析软件对车身结构进行仿真分析,优化车身结构设计。
(2)结合汽车动力学原理,对车身结构进行优化设计,提高车身刚度和强度。
(3)采用CAD软件进行车身结构设计,绘制出详细的结构图纸。
3. 实施与修改在设计过程中,我遇到了许多困难和挑战。
例如,有限元分析软件的操作不熟练、车身结构设计不合理等。
针对这些问题,我请教了导师和同学,不断修改和完善设计方案。
4. 撰写论文在设计完成后,我撰写了毕业论文,详细阐述了设计过程、结果和结论。
在论文中,我重点介绍了以下内容:(1)XX型汽车车身结构优化设计的基本原理和方法。
(2)有限元分析软件在车身结构设计中的应用。
(3)汽车动力学原理在车身结构设计中的应用。
四、心得体会1. 理论与实践相结合在设计过程中,我深刻体会到理论与实践相结合的重要性。
只有将所学知识应用于实际项目,才能不断提高自己的专业技能。
2. 严谨的态度在汽车车身结构设计过程中,我始终保持严谨的态度。
从选题、调研、设计到论文撰写,每一个环节都力求做到最好。
车辆工程毕业设计什么题目比较好写
(一)
引言概述:
车辆工程是一个综合性较强的学科,涉及到车辆的设计、制造、运行和维护等多个方面。
在车辆工程专业的学习过程中,毕业设计是一个重要的环节,对于学生的综合能力和实践能力有着重要的考察作用。
选择一个好的毕业设计题目非常重要,能够让毕业设计更具实际意义和研究价值。
本文将从不同角度探讨车辆工程毕业设计的题目选择。
一、基于前沿技术的车辆设计
1.1 自动驾驶技术在车辆工程中的应用
1.2 新能源技术在车辆设计中的探索
1.3 智能交通系统对车辆设计的影响
二、车辆性能优化与改进
2.1 高速公路行驶稳定性的改进
2.2 车辆空气动力学优化设计
2.3 新型悬挂系统对车辆性能的提升
三、车辆安全性与可靠性研究
3.1 车辆碰撞安全性改进
3.2 制动系统性能测试与改进
3.3 故障诊断系统在车辆工程中的应用
四、车辆噪声与振动控制
4.1 引擎振动与噪声控制方案
4.2 底盘噪音消除技术
4.3 隔音材料在车辆内部噪声控制中的应用
五、汽车电子与智能化技术
5.1 车载电子系统设计与开发
5.2 车辆通信技术研究与应用
5.3 车联网技术对汽车智能化的影响
总结:
选择一个好的车辆工程毕业设计题目能够充分展示学生的专业能力和创新思维,同时对行业的发展也有一定的推动作用。
在题目选择时,可以考虑前沿技术的应用、车辆性能的改进、车辆安全性与可靠性研究、噪声与振动控制以及汽车电子与智能化技术等方面进行深入研究。
通过这些研究,可以为车辆工程的发展做出更有价值的贡献。
车辆工程毕业设计设计方案一、设计背景随着汽车行业的不断发展和社会经济的不断进步,车辆工程专业的毕业设计也变得越来越重要。
毕业设计是车辆工程专业学生在四年的学习中所积累的理论知识和专业技能的结晶,也是对学生综合运用所学知识和技能进行综合实践的机会。
通过毕业设计,学生能够系统地巩固所学的专业知识,提高解决实际问题的能力,在实践中不断完善自己的专业素养和实践能力。
二、设计目标本次毕业设计的目标是设计一款具有创新性和实用性的汽车发动机系统。
要求该发动机系统具有高效性、节能性和环保性,具有良好的动力性能和驾驶体验。
通过对汽车发动机系统的设计和研究,提高汽车的整体性能,为社会节能减排和绿色出行做出贡献。
三、设计内容1. 研究汽车发动机的结构和工作原理,分析现有发动机系统的优缺点,确定设计的技术路线和方向。
2. 设计发动机系统的整体结构和各部件的参数,包括发动机本体、供油系统、冷却系统、排气系统等。
3. 使用CAD软件进行发动机系统的三维设计和模拟,验证设计的合理性和可行性。
4. 编写发动机系统的性能仿真模型,对设计的发动机进行动力学仿真和性能优化。
5. 利用仿真和试验手段,对设计的发动机系统进行性能测试和验证,确保其满足设计要求。
6. 对设计的发动机系统进行节能性、环保性、可靠性和经济性综合评价,提出改进意见和建议。
四、设计步骤1. 调研分析通过查阅大量文献和资料,对汽车发动机的结构、工作原理、性能指标进行深入的研究和分析,了解当前国内外汽车发动机技术的发展动态和最新进展,为设计方案的确定提供参考。
2. 设计方案确定根据调研分析的结果,确定设计方案的技术路线和方向,明确发动机系统的整体结构和各部件的参数设计要求。
考虑到发动机的可行性和实用性,设计方案应具有一定的创新性和先进性,能够满足未来汽车发动机的发展需求。
3. CAD设计和仿真使用CAD软件对发动机系统进行三维设计和模拟,对发动机的结构和各部件的工作状态进行合理的排布和编排。
汽车制造与试验技术毕业设计范文【导语】汽车制造与试验技术是汽车工程领域的核心专业,涉及汽车设计、制造、试验等多个环节。
为了帮助广大毕业生更好地完成毕业设计,本文将提供一份汽车制造与试验技术毕业设计的范文,以供参考。
一、题目:基于某型新能源汽车的制造与试验技术研究二、摘要本文以某型新能源汽车为研究对象,通过对汽车制造与试验技术的研究,分析了新能源汽车在制造与试验过程中的关键技术问题,并提出了相应的解决措施。
通过对制造过程的优化和试验技术的改进,提高了新能源汽车的性能和可靠性。
三、正文1.引言新能源汽车作为我国战略性新兴产业,得到了国家政策的大力支持。
然而,新能源汽车在制造与试验过程中仍存在诸多技术难题。
本文旨在通过对某型新能源汽车的制造与试验技术研究,为新能源汽车产业的发展提供技术支持。
2.新能源汽车制造技术(1)车身制造技术本文针对新能源汽车轻量化需求,研究了车身制造过程中的关键技术。
通过采用高强度钢、铝合金等轻质材料,以及激光焊接、热冲压等先进制造工艺,实现了车身轻量化和高强度。
(2)电池制造技术本文对新能源汽车动力电池的制造技术进行了研究,主要包括电池单体制造、电池模组制造和电池管理系统制造。
通过优化制造工艺,提高了电池的性能和寿命。
(3)电机及控制器制造技术本文对新能源汽车电机及控制器的制造技术进行了研究,重点分析了永磁同步电机和感应电机的制造工艺。
通过对电机及控制器的设计和制造优化,提高了新能源汽车的动力性能和能效。
3.新能源汽车试验技术(1)动力性能试验本文对新能源汽车的动力性能试验进行了研究,主要包括爬坡性能、加速性能和制动性能试验。
通过对试验数据的分析,评估了新能源汽车的动力性能。
(2)经济性能试验本文对新能源汽车的经济性能试验进行了研究,主要包括续航里程、能耗和充电性能试验。
通过对试验数据的分析,评估了新能源汽车的经济性能。
(3)环境适应性试验本文对新能源汽车的环境适应性试验进行了研究,主要包括高低温、湿度、盐雾等环境试验。
引言概述:在车辆工程专业的毕业设计中选择一个合适的课题是非常重要的,因为它直接关系到毕业设计的难易程度以及对专业知识的全面理解和应用。
本文将探讨一些适合车辆工程毕业设计的题目,提供给学生一些建议和参考。
正文内容:一、车辆动力系统设计1. 发动机参数优化:研究不同参数对发动机的性能以及燃油经济性的影响,以达到最佳设计方案。
2. 可持续能源驱动系统:研究电动车辆、氢燃料汽车等可持续能源驱动系统的设计与性能优化。
3. 混合动力系统:研究内燃机与电动机的混合动力系统,以实现更高的燃油经济性和低碳排放。
二、车辆底盘系统设计1. 悬挂系统设计:研究不同悬挂结构对车辆操控性、舒适性以及行驶稳定性的影响,以达到最优化的设计。
2. 制动系统设计:探索不同制动系统的设计原理,研究制动效果的优化与安全性能的提升。
3. 转向系统设计:研究不同转向系统的结构和工作原理,优化转向性能,提高车辆的操控性和安全性。
三、车辆电子系统设计1. 车载通信系统设计:研究车辆与外部环境的通信,设计并优化车载通信系统,提高车辆的安全性和智能化。
2. 汽车电子控制单元(ECU)设计:研究汽车电子控制单元的设计原理和功能,优化控制策略,提高车辆性能。
3. 汽车安全系统设计:研究安全系统的设计与应用,包括车辆碰撞预警系统、主动安全控制系统等,提高车辆的安全性和驾驶舒适性。
四、车辆材料与制造技术1. 车辆材料选择:研究不同材料的物理性能和制造成本,优化车辆材料的选择,提高车辆的安全性和经济性。
2. 车辆制造工艺研究:研究车辆制造过程中的关键工艺和技术,提高生产效率和产品质量。
3. 车辆零部件可靠性设计:研究车辆零部件的可靠性设计原理和方法,提高车辆的可靠性和持久性。
五、车辆性能与仿真分析1. 车辆动力性能仿真:利用仿真软件对不同车辆的动力性能进行模拟和分析,为车辆设计和优化提供理论依据。
2. 车辆操控性能仿真:研究不同车辆操控性能的仿真方法和模型,优化车辆的操控性能和驾驶舒适性。
汽车方面的毕业设计(一)引言概述:汽车方面的毕业设计是一个关于汽车领域的研究项目,该设计旨在探索汽车技术和创新,以及解决现有汽车相关问题。
本文将就汽车方面的毕业设计进行详细阐述,分析其五个关键方面。
正文:1. 汽车性能提升:- 引擎技术的研究和改进- 车辆动力系统设计的优化- 悬挂系统和刹车系统的改良- 车辆空气动力学特性的优化- 利用先进的材料提高汽车轻量化性能2. 汽车安全性研究:- 研发先进的主动安全技术,如自动紧急制动系统(AEB)和车道保持辅助系统(LKAS)- 改进被动安全设计,包括车身结构和气囊系统- 开发智能驾驶辅助系统,如自动泊车和自适应巡航控制3. 新能源汽车技术:- 开发电动汽车的关键组件,如电池、电机和控制系统- 提高充电技术的效率和便捷性- 探索可再生能源的利用,如太阳能和风能- 研究混合动力技术,提高燃油经济性和减少排放4. 智能互联汽车技术:- 开发具有高级智能功能的汽车信息娱乐系统- 研究车辆与车辆、车辆与基础设施的通信技术,如车联网和车辆间通信- 探索人工智能技术在汽车中的应用,如语音识别和自动驾驶系统5. 汽车设计创新:- 提升汽车外观设计和内饰舒适性- 研发可持续发展的汽车设计,考虑环境和社会因素- 利用新材料和生产工艺改善汽车质量和耐久性- 探索未来汽车概念设计,如自动驾驶出租车和共享汽车总结:汽车方面的毕业设计是一个多样化且发展迅速的领域。
本文针对汽车性能提升、汽车安全性研究、新能源汽车技术、智能互联汽车技术和汽车设计创新等五个方面进行了深入阐述。
通过这些研究和创新,将为未来的汽车发展和汽车行业的进步做出重要贡献。
引言概述:在汽车工程领域中,毕业设计是一个重要的环节,它为学生提供了实践应用他们在学校学到的理论知识的机会。
本文将深入探讨汽车系毕业设计的第二部分,旨在详细阐述该毕业设计的内容并提供专业见解。
正文内容:1.设计目标(1) 性能优化: 汽车系毕业设计的主要目标之一是优化汽车的性能。
这包括提高车辆的燃油效率、动力输出、悬挂系统的稳定性等。
学生需要通过综合运用他们在课堂上学到的知识和技能,设计出一台性能卓越的汽车。
(2) 安全性设计: 另一个重要的设计目标是确保汽车的安全性。
学生需要考虑到车身结构、制动系统、防滚系统等方面,以确保汽车在各种环境条件下都能够提供足够的安全性能。
(3) 环保性设计: 近年来,环保意识的提高对汽车设计提出了更高的要求。
学生需要关注汽车的废气排放、材料使用等因素,以确保毕业设计的汽车在环保方面表现出色。
2.设计内容(1) 车身设计:学生需要选择合适的车身结构并考虑车身材料的选用。
他们还需要进行风洞测试,以确保车身外形是否能够减少风阻并提高燃油效率。
(2) 动力系统设计:学生需要选择适合毕业设计项目的动力系统,并考虑到动力输出和燃油效率的平衡。
他们还需要设计并优化传动系统,以确保动力能够高效地传递到车轮。
(3) 悬挂系统设计: 悬挂系统对车辆的稳定性和乘坐舒适性有着重要影响。
学生需要选择适合毕业设计项目的悬挂系统类型,并优化悬挂系统的参数,以确保良好的操控性和行驶舒适性。
(4) 制动系统设计: 制动系统是汽车安全性的关键组成部分。
学生需要选择合适的制动系统类型并设计制动系统,以确保毕业设计的汽车在制动性能方面达到优秀水平。
(5) 内饰设计: 内饰设计是毕业设计中容易被忽视的部分,但它对车辆乘坐舒适性和人机交互体验有着至关重要的影响。
学生需要设计出舒适的座椅、人机界面以及高品质的内饰材料选用等。
3.详细阐述(1) 车身设计- 选择车身结构类型:如轿车、SUV、跑车等,并进行优化设计。
车辆工程毕业设计什么题目比较好写(二)引言概述:车辆工程毕业设计是车辆工程专业学生的重要课程,选择一个合适的毕业设计题目对于学生顺利完成设计任务非常关键。
在上一篇文章中,我们介绍了几个比较好写的车辆工程毕业设计题目,并提供了相关的分析和建议。
本文将继续探讨一些值得考虑的车辆工程毕业设计题目,以帮助学生取得更好的设计成果。
正文:1. 高速公路自动驾驶系统的研发- 车辆自动驾驶是当今车辆工程领域的热门研究方向,设计一个高效且安全的高速公路自动驾驶系统是一个有挑战性的任务。
- 研究自动驾驶系统的各个组成部分,如传感器、决策算法和控制系统等。
- 设计并测试自动驾驶系统在不同情况下的性能,如不同天气条件、道路环境和交通状况。
2. 新能源汽车充电系统的优化设计- 随着新能源汽车的普及,设计一个高效且便捷的充电系统对于推广新能源汽车具有重要意义。
- 研究不同充电设备的充电效率和充电速度,寻找最佳的充电方案。
- 分析新能源汽车的电池管理系统,提出优化方案以延长电池寿命和提高能量利用率。
3. 汽车底盘结构的轻量化设计- 车辆轻量化是提高汽车燃油经济性和环境友好性的重要方面,设计一个轻量化的底盘结构具有实际应用价值。
- 分析不同材料的力学性能和重量特性,选择最适合的材料用于底盘结构。
- 进行有限元分析和结构优化,确保轻量化设计仍能满足安全和耐久性要求。
4. 新型涡轮增压器性能优化研究- 涡轮增压器在提高汽车动力性能和燃油经济性方面起关键作用,优化涡轮增压器的性能可以提升车辆整体性能。
- 研究不同类型和尺寸的涡轮增压器,比较它们的增压效果和效率。
- 通过改变涡轮几何形状、材料和进气流动行为,提高涡轮增压器的性能。
5. 汽车发动机尾气排放控制技术研究- 汽车尾气排放对环境和人体健康造成严重影响,研究和设计高效的排放控制技术对于减少尾气排放具有重要意义。
- 分析不同尾气处理系统的工作原理和效果,选择最适合的方案。
- 进行实验和测试,评估排放控制技术的效果和可行性。
汽车类专业本科毕业设计选题车辆工程本科毕业设计论文选题参考如下大客车车身总布置设计大客车底架系统布置设计大客车车身骨架结构设计大客车乘客门结构设计大客车操纵稳定性能模拟计算系统开发大客车平顺性能模拟计算系统开发大客车燃油经济性模拟计算系统开发大客车动力性及动力匹配模拟计算系统开发汽车车身变形过程3维动画演示系统开发大客车制动性能模拟计算系统开发汽车零部件试验模态分析乘用车路面激励平顺性虚拟仿真分析摩托车发动机结构试验模态分析发动机悬置阻尼特性研究发动机振动与车身结构动力响应的传递特性研究基于GPS技术的路面纵曲线快速检测方法研究车辆运行状态与动态称重系统动态响应的相关影响研究怠速工况下发动机噪声与乘坐室内声场传递路径研究动力激振反力架动态特性研究及优化城市客车总布置设计城市客车底架及地板设计城市客车车身骨架设计城市客车乘客门设计城市客车车身有限元分析长途客车总布置设计长途客车底架及地板设计长途客车车身骨架设计长途客车造型设计旅游客车总布置设计旅游客车底架及地板设计旅游客车车身骨架设计旅游客车车门设计客运客车总布置设计客运客车底架及地板设计增程式光伏电动智能客车总布置设计增程式光伏电动智能客车底盘总设计增程式光伏电动智能客车配电及光伏电池布置设计增程式光伏电动智能客车智能化控制设计增程式光伏电动智能客车造型设计增程式光伏电动智能客车车载网络及电路设计增程式光伏电动智能客车效率计算及动力配置设计增程式光伏电动智能客车建模及有限元分析增程式光伏电动智能客车电控转向及制动设计增程式光伏电动智能客车骨架设计商用车EPS系统PID控制策略仿真研究基于单片机的倒车测距系统设计前方运动车辆图像识别程序设计客车动力性模拟计算程序设计城市客车总布置设计城市客车车身骨架设计城市客车底架及地板设计客车经济性模拟计算程序设计汽车尾气发电装置设计的研究基于CATIA v5的驾驶员座椅设计基于PRO/E挖掘机工作装置的建模与优化某客车动力性和经济性仿真计算分析汽车变速箱加工工艺及夹具设计车身覆盖件成形仿真分析发动机缸体三维实体造型及虚拟装配设计轿车变速器三维建模及仿真长途客车车身总布置设计长途客车车身骨架设计长途客车车架设计长途客车车身造型设计长途客车车门与舱门设计长途客车车身有限元分析汽车动力性程序设计汽车操纵稳定性程序设计长途大客车总布置设计长途大客车底架设计长途大客车车身骨架设计长途大客车离合器的设计长途大客车外摆式乘客门的设计汽车悬架系统动力学仿真汽车ABS试验台设计混合动力车燃油经济性研究旅游大客车总布置设计旅游大客车骨架设计旅游大客车底架设计旅游大客车造型设计基于VC开发汽车平顺性仿真系统基于路面识别和动态滑移率控制的ABS系统仿真大客车空调系统布置及风道设计研究客车总布置设计客车车身骨架设计客车底架设计及振动特性计算基于CFD的轿车外部流场计算车牌识别系统软件设计基于VB的汽车燃油经济性软件设计大型长途客车总布置设计大型长途客车底架及地板设计大型长途客车车身骨架设计大型长途客车车门及仓门设计汽车持续制动模拟计算系统开发中型城市客车总布置设计中型城市客车车身骨架设计中型城市客车车门及仓门设计中型城市客车底架及地板设计汽车主动悬架系统性能研究中型公路客车总布置设计中型公路客车底架及地板设计中型公路客车车身骨架设计中型公路客车车门设计中型城市客车总布置设计中型城市客车底架及地板设计中型城市客车车身骨架设计中型城市客车车门设计大型城市客车总布置设计大型城市客车底架及地板设计大型城市客车车身骨架设计长途客车车身骨架设计城市客车总布置设计城市客车车身骨架设计城市客车底架设计长途客车造型设计长途客车总布置设计长途客车乘客门及舱门设计长途客车底架设计城市客车乘客门及舱门设计城市客车造型设计变速驱动桥设计(CATIA)涡轮蜗杆驱动桥设计(CATIA)方程式赛车总布置设计(CATIA)方程式赛车车身设计(CATIA)变速器设计(CATIA)转向器设计(CATIA)汽车曲面造型设计(CATIA)商用车制动系统及阀类设计(CATIA)厢式货车后栏板举升机构设计(CATIA ADAMS)汽车转向机动性能软件设计开发基于Matlab的混联式混合动力汽车动力系统整车控制策略基于Matlab的混联式混合动力汽车动力系统电机控制策略基于VC的汽车动力性和制动性实验数据分析软件开发基于Matlab/GUI的汽车操稳性实验数据分析软件开发基于Delphi的商用车EPS控制试验台控制系统基于Matlab的电动汽车永磁同步电机直接转矩控制系统基于Matlab的无刷直流电机EPS系统基于Matlab的电动汽车电子差速系统基于Matlab/Stateflow的自动变速器控制系统纯电动商用车动力系统匹配与仿真串联型混合动力商用车动力系统仿真并联型混合动力商用车动力系统仿真纯电动大客车AMT换挡规律模拟大客车侧翻模拟车辆操纵稳定性模拟增程型电动汽车能量管理策略仿真校车车身总布置设计校车车身骨架设计校车车身底架及地板设计校车乘客门设计旅游大客车造型设计旅游大客车总布置设计旅游大客车骨架设计旅游大客车底架及地板设计旅游大客车乘客门设计城市客车总布置设计城市客车造型设计增程/插电式重型商用汽车动力系统参数匹配研究纯电动客车动力系统参数匹配及仿真研究基于Matlab/Simulink的汽车ABS系统性能建模与仿真基于MCGS的电动汽车人机交互智能仪表设计与实现基于MCGS的重型商用汽车安全运行监控系统设计与实现客车技术标准管理及查询系统DH6890型长途客车总布置设计DH6890型客车造型设计DH6890型客车底架及地板支架设计DH6890型客车乘客门设计DH6890型客车骨架设计客车动力性经济性性能模拟设计程序设计矿用井下防跑车总布置设计客车动力性经济性模拟计算程序设计重型汽车后置式行驶状态警示系统设计。
汽车的毕业设计论文(二)引言概述:毕业设计是大学生完成学业的重要环节之一,对于汽车专业的学生来说,毕业设计论文是展示他们所学知识和实践能力的重要机会。
本文旨在探讨汽车的毕业设计论文相关内容,包括市场需求分析、设计理念、结构设计、车辆性能仿真与测试以及可持续发展等五个大点,通过细致的研究和分析,为汽车专业学生的毕业设计论文提供一些建议和指导。
正文内容:1. 市场需求分析- 综述汽车市场的发展趋势- 分析当前市场需求与竞争状况- 研究消费者对汽车的需求和偏好- 调查目标市场的市场规模和前景2. 设计理念- 确定设计目标和理念- 汽车的功能和外观设计考虑因素- 分析其他类似产品的设计案例- 探索创新设计的可能性3. 结构设计- 介绍汽车结构设计的基本原则- 分析汽车结构设计的关键问题和挑战- 详细介绍相关的结构设计方法和工具- 讨论汽车各部分之间的相互关系和协调性4. 车辆性能仿真与测试- 分析车辆性能仿真的重要性和应用场景- 介绍常用的车辆性能仿真软件和工具- 研究车辆性能仿真与测试的关键参数和指标- 探讨车辆性能仿真结果的解读和优化策略5. 可持续发展- 分析汽车行业的可持续发展趋势- 探讨汽车设计中的环保和节能技术应用- 研究汽车制造与循环经济的关系- 分析可持续发展对汽车设计的影响和挑战总结:毕业设计论文是汽车专业学生展示知识和能力的重要机会。
通过市场需求分析,学生可以了解汽车行业的发展趋势和消费者的需求。
设计理念和结构设计是毕业设计的核心部分,需要学生揣摩用户需求,提出创新设计,并且考虑结构的合理性和安全性。
车辆性能仿真与测试是评估汽车设计的重要手段,学生需要掌握仿真工具和方法,优化设计参数。
最后,可持续发展是汽车行业不可忽视的一个方向,学生需要研究环保和节能技术在汽车设计中的应用,并思考可持续发展对汽车设计的影响和挑战。
通过这些大点的探讨和研究,学生能够在汽车专业的毕业设计论文中提供有实际意义的建议和指导。
专业外文翻译材料系别南京机电学院专业汽车检测与维修技术班级汽修1003学生姓名岳祥龙学号1101513240指导教师张锦龙2013年4月目录第一部分专业外文翻译材料原文 (1)第二部分专业外文翻译材料译文 (12)参考文献 (21)专业外文翻译材料原文EnginesCylinder BlockThe cylinder block is the largest past of the engine.Its upper section carries the cylinders and pistons.Normally,the lower section forms the crankcase,and supports the crankshaft.It can be cast in one piece from grey iron.Or it can be alloyed with other metals like nickel or chromium.The iron casting process begins by making up the shapes of what will become water jackets and cylinders as sand cores which are fitted into moulds.The stops there parts becoming solid iron during casting.Molten iron is poured into sand moulds that are formed by patterns in the shape of the block.After casting,core sand is removed through holes in the sides and ends,leaving spaces for the cooling and lubricant passages.There holes are sealed with plugs.The casting is then machined.Cylinders are bored and finished,surfaces smoothed,holes drilled and threads cut.All cylinder blocks are made with ribs,web and fillets to provide rigidity but also keep weight to a minimum.Cylinder Block ConstructionAs more manufacturers try to make vehicles lighter and more fuel efficient,more and more engine blocks are being cast from aluminium.A block made of aluminium alloy is lighter than if it were made of cast iron.So if two engines are generating the same power,the alloy version would have a better weight-to-power ratio than the cast alloy version.Aluminium alloy blocks are made by various casting processes,including pressure casting.Another method is gravity casting,where the molten metal is poured into molds.Cast iron liners are usually used in the cylinders of aluminium blocks,and sometimes in cast-iron blocks.Some sleeves are cast into the block.Grooves on the outside form a key that stops any movement in the cylinder.They also increase surface area to assist heat transfer from the sleeve to the block.Some blocks don't need liners.They can be made of wear resistant material that makes a hard-wearing surface for the pistons and piston rings.Or the cylinder bore may have some sort of surface treatment to make it hard-wearing.When the cylinders,block and crankcase are all cast together,it is called amonoblock construction.A horizontally-opposed block has a split crankcase.The two engine blocks are joined together by the flanges of the crankcase.In air-cooled engines,the cylinders are usually made as separate parts,then bolted to the same crankcase.Each cylinder has cooling fins.They're often machined to give uniform thickness and allow free flow of air.PistonsThe piston,with its connecting rod and bearing,transfers the force of the combustion and expansion of the power stroke to the crankshaft.The piston itself,its rings,and the piston pin,also known as the gudgeon pin,are together called the piston assembly.The cutaway shape on this piston allows it to clear the counterweights on this rotating crankshaft.The connecting rod connects the piston to crankshaft. It is fastened to the piston at its little end,by a piston or gudgeon pin.The big end of the connecting rod has a detachable cap,and carries 2 halves of the big end bearing.The big end is attached to the crankshaft at the crankpin journal.Cylinder SleevesCylinder sleeves are used in engine blocks to provide a hard-wearing material for pistons and piston rings.The block can be made of one kind of iron that's light and easy to cast,while the sleeve uses another kind that is better able to stand up to wear and tear.There are three main types of sleeves-dry,flanged dry,and wet.The dry sleeve can be cast in or pressed into a new block, or used to recondition badly-worn or damaged cylinders that can't easily be re-bored.It's a pressed fit in its bore in the cylinder blocks.Its wall is about 2mm thick.Its outer surface is in contact with the block for its full length.Its top finishes flush with the top of the block and can hardly be seen.Once in place,dry sleeves become a permanent part of the cylinder block.A flanged,dry sleeve is like a normal dry sleeve,but a flange at the top fits into a recess in the surface of the engine block.It's not a tight fit and it can be replaced if it's worn.With a wet sleeve,the outer surface is part of the waterjacket around the cylinder.It's called wet because it has coolant against its outer surface.This helps speed up heat transfer between the sleeve and coolant.The sleeve is sealed at the top to prevent coolant leaks.This stops coolant entering the combustion chamber,and the bottom of thecrankcase.A flange at the top of the sleeve fits into a recess in the block.The lower end has 1 or 2 neoprene sealing rings.With coolant in direct contact with the cylinder sleeve,corrosion can be a problem.It can even insulate the sleeve from the coolant,which reduces the main advantage of having a wet sleeve at all.The walls on wet sleeves are thicker than on dry sleeves.They don't have the same support from the block as dry sleeves so they depend on their wall thickness to stop distortion.In diesel engines,vibration caused by combustion can cause cavitation.This damage appears similar to corrosion and it can eventually destroy the cylinder.Grey IronGrey iron is a form of cast iron.There are many different kinds of cast iron,depending on the particular materials they contain.Grey iron is a cast iron that contains carbon in the form of graphite,plus silicon,manganese and phosphorus.The fractured surface of a cast iron with graphite appears grey,hence the name.It is brittle and cannot absorb shocks.It resists heat and corrosion,and can be cast into many different shapes.It is used for many components.Cylinder HeadThe cylinder head bolts onto the top of the cylinder block where it forms the top of the combustion chamber.In-line engines of light vehicles have just one cylinder head for all the rger in-line engines can have two or more.V-type and horizontally- opposed engines have a separate cylinder head for each bank of cylinders.Just as with engine blocks,cylinders heads can be made of cast of cast iron,or aluminium alloy.A head made of aluminium alloy is lighter than if it were made of cast iron. Aluminium also conducts heat away more quickly than iron.So with an aluminium-alloy head, the heat of combustion can be conducted away into the coolant more quickly .Manufacturing the head is similar to manufacturing the block.A casting mold is made.Sand cores are put in to form any hollow areas. Depending on the engine,these can be for coolant and lubricant passages,and inlet and exhaust ports.Air-cooled engines have cooling fins cast into the cylinder head. The underside of the head is shaped to form the combustion chamber.Molten metal is poured in,and allowed to cool. The cores are broken out andremoved,and the cylinder head cleaned of any sand. After casting comes machining.Surfaces that must seal are machined flat.Holes are drilled and tapped for attaching blots and studs.In sand-cast heads, the large holes that had contained sand are machined,then fitted with soft metal plugs, called core plugs.Cylinder Head DesignCylinder heads are designed to help improve the swirl or turbulence of the air-fuel mixture,and prevent fuel droplets settling on the surfaces of the combustion chamber or cylinder walls.When air-fuel mixture is compressed between the piston and the flat part of the cylinder head,it produces what's called 'squish'.That means squeezing of the gases to increase their velocity and turbulence.In gasoline engines,the three most popular combustion chamber designs are called hemispherical pent roof,bath-tub and wedge.A hemispherical combustion chamber has the intake valve on one side of the chamber and the exhaust valve on the other.This provides crossflow.Air-fuel mixture enters on one side,and exhaust gases exit on the other.Positioning the valves in this way leaves room for relatively large valves and ports,and that helps the engine breather. Breathing refers to the engine's taking in the air or air-fuel mixture. Fuel starts to burn at the plug,then burning travels outward in all directions.This is called flame propagation.With the plug in the middle of the hemisphere,the flame front has less distance to travel than in some other designs,which gives rapid and effective combustion.This design is common in a lot of passenger vehicles.The bath-tub combustion chamber is oval-shaped,like an inverted bathtub.Valves are mounted vertically and side by side,making them simple to operate.The plug is to one side,and that creates a short flame path.It all helps increase turbulence.The wedge-shaped combustion chamber tapers away from the plug which is at the thick end of the wedge.The valves are in line and inclined from the vertical.This design usually has a smaller surface area than the others,with less area where fuel droplets can condense.Less fuel is left unburned after combustion ,which reduces hydrocarbon exhaust emissions.And since the flame is directed toward the small end of the wedge,damage caused by detonation is reduced.Diesel Combustion ChambersDiesel combustion chambers come in 2 main types.Direct and indirect injection.Both are designed to promote turbulence,to help the compressed air and injected fuel mix well.Engines using direct injection have cylinder heads with a flat face.The combustion chamber is formed in the top of the piston.Sometimes, the rim of the piston provides 'squish',forcing the air to the center of the combustion chamber.This causes turbulence as fuel is injected into the cylinder.In indirect injection,the piston is fairly flat,or has a shallow cavity.The main combustion chamber is between the cylinder head and the top of the piston,but a smaller,separate chamber is in the head.Fuel is injected into this smaller chamber.It can have various designs.A swirl chamber is spherical,and connected to the main chamber by an angled passage .Both the injector and glow plug are screwed into the head.The glow plug preheats the air inside to help start the engine.During compression ,the spherical shape makes the air swirl in the chamber.This helps make a better mixture of the air and fuel,which improves combustion .This combustion chamber is divided into a main combustion chamber and an air cell, joined by a throat. The injector is in the throat.When injection commences,combustion pressure forces the air to flow from the air cell where it mixes with fuel from the injector.The rush of air from the air cell produces a rotary motion of gas in the main chamber which helps make combustion more efficient.This pre-combustion chamber is screwed into the cylinder head.The injector is mounted in the upper end.Injection occurs near the top of into the compression stroke .Only part of the fuel is burned in the pre-combustion because of the limited amount of air there.The high rise in pressure forces burning fuel into the main chamber.This happens very rapidly,which helps make more efficient combustion.Intake and Exhaust PassagesThe size of passages in the head can affect engine output.Smaller intake and exhaust passages allow more torque at low engine speeds.This is because smaller passages improve mixing of air and fuel fat low speeds ,which causes more efficient combustion .At high speeds however,these smaller passages restrict airflow .To reduce the effect of this ,this engine has two inlet valves.One opens at low speed and other operates at higher engine speeds .Larger passages produce greater power at high enginespeeds.Each intake and exhaust passage can be formed separately in the head.Intake passages for adjacent passages may have a common,thin wall between them .This is called siamesed.Exhaust ports in the same head can also be siamesed.When all intake and exhaust ports are on one side,it is called a counter flow head.They can be cast separately or siamesed.When all of the intake ports are on one side and exhaust ports are on the other ,it is called a cross-flow head.This allows for straighter passageways and higher efficiency.GasketsGaskets form a seal by being compressed between stationary parts where liquid or gas could pass.Most gaskets are made to be used only once.They can be made of soft materials such as cork,rubber,paper,asbestos.They can also be made of soft alloys and metals such as brass,copper, aluminium or soft steel sheet metal.Choosing which material and design to use depends on the substance to be sealed,the pressures and temperature involved.The materials and mating surfaces to be sealed.Head gaskets seal and contain the pressures of combustion within the engine,between the cylinder head and block.They also seal oil passages between block and head.And control the flow of coolant between the block and the head.Some gaskets provide or adjust clearances. Some joints between surfaces on modern engines are being sealed with special sealants which eliminate the use of gaskets in some applications.Gaskets around a rotating part would quickly wear out and leak. To seal these parts,oil seals are needed .Many different kinds have been developed,including oil slinger rings. The most widely used is the lip type dynamic oil seal. It has a shaped dynamic rubber lip that’s he ld in contact with the shaft to be sealed by a circular coil spring called a garter spring.A similar sealing principle is used to seal the valve stem to prevent oil entering the engine combustion chamber.Rotating or sliding shafts can also be sealed by using 'O' rings, but generally they are not as durable in most applications as the lip-type seal.As a general rule ,oil seals must be replaced when a component is overhauled.Gaskets And Oil SealsModern head gaskets have to be constructed to resist high temperatures and engine detonation. Some modern high temperature head gaskets are called 'anisotropic'in nature.This means that the gasket is designed to conduct heat laterally to transfer heat from the engine to the coolant faster.They are normally constructed with a steel core.Special facing materials are added to both sides of the gasket core to provide a comprehensive seal under varying torque conditions.With the advent of environmental factors and a reduction in the use of asbestos,replacement materials have been developed.Some of these modern special materials that are now used for the side layers of head gaskets are designed to withstand temperatures up to 2100°F or 1150℃ .Such materials are also designed to allow the cylinder head and block,some of which have considerable distortion rates,to move slightly on the head gasket as they expand during engine warm-up.This feature is vital for preventing head gasket failure.Some head gaskets also incorporate stainless steel fire rings to help to contain heat and pressure within the cylinder.In addition,many head gaskets also have an added silicone based outer coating on both sides of the side material layers to provide additional cold sealing ability during start-up and warm-up.Head gaskets also seal oil passages,and control the flow of coolant between the cylinder block and head and are fitted with beads or rings to prevent leakage and corrosion.Some joints between surfaces on modern engines are being sealed with special sealants which eliminate the use of gaskets in some applications.Pure rubber,or conventional cork rubber is unable to deal with the stresses and pressures in modern engines.Modern gasket manufacturers are producing improved material combinations such as nitrile and cork blends to deal with"high tech' engine demands.Some materials are designed to' swell' in application and increase sealing ability.For instance when oil inside a valve cover penetrates the edge of the gasket material,it is designed to swell by approximately30%.This swelling effect increases the stealing pressure between the head and valve cover sealing surfaces and helps to seal potential leaks.Some gasket materials are designed to have high tensile strength.They are designed to resist breakage during dismantling or installation processes.Various materials are used in modern oil seals,some being impregnated withspecial coating materials that are designed to increase their sealing ability on worn shafts.TurbulenceTurbulence refers to the swirling motion of a liquid or a gas .It helps to maximize the mixing of air and fuel,which helps make sure the combustion process occurs efficiently.Without turbulence ,the air-fuel mixture can form local areas of high pressure and temperature that can cause detonation during combustion .A high level of turbulence can prevent this.Camshafts and DrivesThe position of the camshaft depends on the design of the engine.It can be in the engine block close to the crankshaft,this is a called a pushrod or overhead valve system.Or there can be one or two camshafts mounted in the cylinder head.But in both designs it dose much the same job,driving the valves and the distributor,and sometimes the fuel pump,and the oil pump.The camshaft is made of hardenable iron alloy or steel,and it can be cast or machined.The cam lobes are ground to the proper shape and position in relation to one another.Accuracy is crucial.If the cam is not exactly the required shape,or if it becomes worn,there can be impacts,fast valve wear,or noisy operation.The bearing surfaces on the camshaft are ground smooth,and the distributor drive gear is machined into the shaft.The cam lobes are then flame or induction hardened.The camshaft has a cam for each valve.In some case,there is an additional cam known as an eccentric,to operate the fuel pump.A gear on the camshaft drives the ignition distributor,and,often,an oil pump.Overhead CamshaftIn modern engines,the pushrod system is being replaced by the simpler overhead camshaft arrangement.The overhead camshaft is located in the cylinder head.there can be 1 or 2 camshafts.Let's look at a single overhead camshaft arrangement.Single overhead camshafts can use rocker arms.The cam can lift one end of the rocker arm,or it can press down on the rocker arm.On double overhead camshaft systems,the most common arrangement is to use a bucket tappet or lifter.It operates in a guide that protects the valve against side thrusts which it would receive if the cam operated directly against the valve.The adjustment of valve clearance is usually done by changing accurately machined spacers.Spacers are available in a range of thicknesses,and they're exchanged to obtain the correct clearance.Some overhead cam engines use a hydraulic lash adjuster to reduce lash in the valve train.They have zero clearance at the valve stem so there's no need for tappet adjustment.It can be put in the valve end of the rocker arm.Like the hydraulic valve lifter,it has a body with plunger hold against the valve stem by a spring.Oil supplied to the adjuster keeps the plunger in contact with the valve and eliminates lash.Lash adjusters can be put in the cylinder head at the end of the rocker arm.The lash adjusters are stationary and have a pivot for the end of the rocker arm.The plunger in the adjuster holds the rocker up against the cam.In the lash adjuster inside the bucket tappet,the plunger's hydraulic action holds the bucket body against the cam on the camshaft and also against the tip of the valve stem so that there is zero clearance.Cam LobesThe cam lobe performs 3 jobs.It opens a valve at the proper time and gives it proper lift.It lets it stay open for a sufficient time.Then it lets it close at the proper time.Accurate valve timing is crucial.Valve timing can vary from engine to engine, as set out in manufacturers' specifications,in the valve timing diagram.The shape of the cam is called the cam profile or contour.With the valve lifter resting on the base circle,the valve is fully closed and there is clearance between the rocker arm and the valve stem.The cam rotates.The nose of the cam reaches the valve lifter,and the valve is fully open.The closing flank closes the valve gradually so that it doesn't pound against its seat.On engines without valve lash adjusters, a quietening ramp is built into the shape of the cam.This makes for quieter operation during the opening of the valve.The shape of the nose determines how long it stays open.The camshaft must always be synchronised to run in time with the crankshaft.This can be done by gears,chains,or toothed,timing belts.Gear drives are most common in engines with the camshaft in the cylinder block,and in heavy-duty diesels.Timing Belts and ChainsTiming belts and chains are used on overhead camshaft engines, because the camshaft is further from the crankshaft.A typical chain drive system uses a hydraulic tensioner which is fed by oil under pressure from the lubrication system.The chain also uses guides to reduce noise and vibration.The toothed timing belt is made of fibreglass or wire-reinforced synthetic rubber. Its teeth match those on the crankshaft and camshaft pulleys.Timing belts are quieter than chains but usually require regular manual tensioning.They also have a shorter life than chains.They need regular replacing around 50000 to 60000 miles or 80000 to 100000 kilometers.If a belt breaks,it is not only inconvenient but on some engines it can cause a lot of damage.Timing Belts and TensionersThe toothed, or synchronous timing belt is used for driving camshafts,water pumps and diesel injection pumps.It has an inner woven core made from fiberglass,or steel braid,coated with synthetic rubber or neoprene.The teeth,which may be square or curved,are molded to close tolerances to match the drive teeth on the crankshaft and timing gears.A molded plastic cover protects the belt from oil or water contamination.Timing belts have a high working efficiency due to the low friction properties of their construction.This means they require no lubrication and are silent in operation. Timing belts are inexpensive to manufacture, they're heat and wear resistant and have a service life of 50000 to 100000 kilometers or 30000 to60000 miles.Although it stretches little in use,the tension of the timing belt is important.This is normally set with an adjustable idler pulley that applies tension via a spring.This pulley is fixed to the engine by a fastener.Adjustment is performed manually after the timing belt is installed.Some manufacturers use a spring and oil damper as an automatic belt tensioner.This type of tensioner is effective at reducing timing belt chatter noise as the belt is always under pressure,even as it stretches.A heavy spring acts against a pistonattached to a tensioner pushrod.This is mounted so that the tension pulley can apply pressure perpendicular to the back face of the belt.The cylinder is filled with silicone oil,and ball valves allow the piston to be forced out by the spring but prevent the piston from moving rapidly inwards. In operation the spring provides the force that keeps the timing belt tensioned,and the piston valves prevent loss of tension.专业外文翻译材料译文发动机汽缸体汽缸体是发动机上最大的部分。