工程流体力学公式
- 格式:doc
- 大小:103.00 KB
- 文档页数:6
工程流体力学公式1.流体静力学公式在静止的流体中,压力与深度成正比,且密度为常数。
流体静压力可以由以下公式计算:P = ρgh其中,P为压力,ρ为流体的密度,g为重力加速度,h为流体的深度。
2.法向应力与切向应力流体内部的法向应力和切向应力分别由以下公式给出:法向应力:τ=-P切向应力:τ = μ(dv/dy + du/dx)其中,τ为应力,P为压力,μ为流体的动力粘度,dv/dy和du/dx 分别为流体速度分量在y和x轴上的偏导数。
3.应力张量应力张量用于描述流体内部的各种应力分量。
在笛卡尔坐标系下,应力张量的一般形式为:σ = [σxx σxy σxz][σyx σyy σyz][σzx σzy σzz]其中,σij表示在i方向上对j方向上的应力。
4.流量公式流量是描述流体通过单位时间内通过其中一区域的总量。
流量公式可以通过以下公式计算:Q=Av其中,Q为流量,A为流体通过区域的横截面积,v为流体的速度。
5.流体连续性方程流体的连续性方程用于描述流体的质量守恒。
在稳态条件下,流体的连续性方程可以表示为:div(ρv) = 0其中,div表示散度运算符,ρ为流体的密度,v为流体的速度。
6.流体动量方程流体的动量方程用于描述流体的运动状况。
在稳态条件下,流体的动量方程可以表示为:ρv·grad(v) = -grad(P) + μΔv + ρg其中,grad表示梯度运算符,P为流体的压力,μ为流体的动力粘度,Δv为流体速度的拉普拉斯算子,g为重力加速度。
以上介绍了几个常用的工程流体力学公式,这些公式在工程实践中起到了重要的作用。
通过应用这些公式,可以更好地理解和解决与流体力学相关的问题。
流体流动流体特性→流体静力学→流体动力学→流体的管内流动gΔZ+Δu2/2+Δp/ρ=W e-∑h f静压能:p/ρ,J/kg静压头:p/(ρg),m流体密度:ρ,kg/m3 ,不可压缩流体与可压缩流体压强差:Δp,Pa, mmHg,表压强,绝对压强,大气压强,真空度流体静力学基本方程:gΔz+Δp/ρ=0或p1/ρ+gZ1=p1/ρ+gZ1或p=p A+hρg应用:U型压差计gΔZ+Δu2/2+Δp/ρ=W e-∑h f位能:gZ,J/kg位头:Z,m截面的选择基准面的选定gΔz+Δu2/2+Δp/ρ=W e-∑h f动能:u2/2,J/kg动压头(速度头):u2/(2g),m流速:u, m/s当两截面积相差很大时,大截面上(贮液槽)u≈0流体在圆管内连续定态流动:u2=u1(d1/d2)2体积流速:q v, m3/s q v=uA质量流速:q m, kg/s q m=q vρ=uAρ流速测定:变压差(定截面)流量计:测速管/孔板/文丘里u=C(2Δp/ρ)1/2=C[2R(ρA-ρ)g/ρ]1/2孔板C=0.6-0.7;测速管/文丘里C=0.98-1.0变截面(定压差)流量计:转子流量计gΔZ+Δu2/2+Δp/ρ=W e-∑h f管路总阻力:∑h f=h f+h f’,J/kg;总压头损失:H f=∑h f/g,m对静止流体或理想流体:∑h f=0直管阻力:h f=λ.L/d.u2/2局部阻力:h f’=ζu2/2 (阻力系数法)或h f’=λ.L e /d.u2/2 (当量长度法)(进口:ζ=0.5;出口:ζ=1)雷诺准数:Re=duρ/μ, 流型判断管内层流:Re≤2000ur=Δp f/(4μL).(R2-r2), u=u max/2;λ=64/Re管内湍流:Re>2000λ=0.3164/Re0.25 (光滑管)λ=f(Re,ε/d)(粗糙管)牛顿黏性定律:τ=μ(du/dy)当量直径:d e=4流通面积/润湿周边长度gΔZ+Δu2/2+Δp/ρ=W e-∑h f有效功(净功):W e,J/kg;有效压头:H e=W e/g,m有效功率:P e=W e q m,W功率:P=P e/η非均相混合物分离及固体流态化非均相混合物(颗粒相+连续相)→相对运动(沉降/过滤)→分离颗粒相+连续相→固体流态化→混合沉降沉降(球形颗粒):连续相:气体/液体颗粒受力:(重力/离心)场力-浮力-阻力=ma沉降速率重力沉降离心沉降ζ=f(Re t,υs),Re t=du tρ/μ<10-4-1(层流区),ζ=24/ Ret离心分离因数沉降设备设计沉降条件:θ≥θt重力沉降:降尘室离心沉降:旋风分离器生产能力qv=blu t q v=hBu i(q v与高度无关)n层沉降室q v=(n+1)blu t过滤(滤饼过滤)恒压滤饼过滤(忽略过滤介质阻力)K过滤常数:K=2k(Δp)1-s, m2/s;*K取决于物料特性与过滤压差;单位过滤面积所得的滤液体积q=V/A,m3/m2;单位过滤面积所得的当量滤液体积q e=V e/A,m3/m2;s-滤饼的压缩性指数每得1m3滤液时的滤饼体积υ(1m3滤饼/1m3滤液)体积为V W的洗水所需时间θW = V W/(dV/dθ)W过滤机的生产能力(单位时间获得的滤液体积)间歇式连续式Q=V/T=V/(θ+θW+θD)若V e可忽略转筒表面浸没度ψ=浸没角度/3600转筒转速为n-- r/min,过滤时间θ=60 ψ/n传热传热方式及定律热传导:傅立叶定律对流:牛顿冷却定律辐射;斯蒂芬-波耳兹曼定律:E b=σ0T4=C0(T/100)4传热基本方程Q=KS△t m换热器的热负荷用热焓用等压比热容用潜热两平行灰体板间的辐射传热速度Q1-2Q1-2=C1-2S[(T1/100)4-(T2/100)4对流和辐射联合传热总散热速率:Q=Q c+Q R=αTS w(t w-t b)αT=αc+αR恒温传热△t m=T-t变温传热:平均温差*逆流和并流错流和折流温差校正系数=f(P,R)传热单元数法计算确定C min→NTU,C R→ε→由冷热流体进口温度和ε→冷热出口温度传热表面积S=Q/(K△t m)热传导和对流联合传热总传热系数R so,R si垢阻;壁阻对流传热系数αi,αo流体有相变时的对流传热系数层流膜状冷凝时:努塞尔特方程湍流液膜冷凝时:水平管外液膜冷凝时:液体沸腾传热系数:罗森奥公式:α=(Q/S)/Δt蒸发蒸发器的热负荷Q,kJ/hQ=D(H-h c)=WH’+(F-W)h1-Fh c+Q L冷凝水在饱和温度下排出Q=Dr=WH’+(F-W)h1-Fh0+Q L溶液稀释热可忽略D=[Wr’ +Fc0(t1–t0)+Q L]/rr’=(H’-c W t1)近似可作为水在沸点t1的汽化热。
工程流体力学公式总结第二章 流体的主要物理性质流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。
1.密度 ρ = m /V2.重度 γ = G /V3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。
1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a离心惯性力ΔFR = Δm·r ω2 .T VV ∆∆=1αpVV ∆∆-=1κV P V K ∆∆-=κ1n A F d d υμ=dnd v μτ±=n v d /d τμ=2.质量力为F 。
:F = m ·am = m (f xi+f yj+f zk)am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为fx = 0 , fy = 0 , fz = -mg /m = -g式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。
即:p = p (x ,y ,z ),由此得静压强的全微分为:4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数z z p y y p x x p p d d d d ∂∂∂∂∂∂++=d d d d d d 0x p f x y z x y z x ∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-积分得:U = -gz + c*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 .fx d x + fy d y + fz d z = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。
工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。
基础工程公式汇总基础工程公式是工程领域中不可或缺的重要工具,它们在设计、分析和解决问题时起着关键作用。
本文将汇总一些常见的基础工程公式,并以人类的视角进行描述。
一、力学公式1. 牛顿第二定律:力等于物体的质量乘以加速度。
它描述了物体在受力作用下的运动状态。
2. 弹性势能公式:弹性势能等于弹性系数乘以形变的平方。
它用于描述弹性体在受力作用下的形变情况。
二、流体力学公式1. 流量公式:流量等于流体的速度乘以截面积。
它描述了流体在管道中的运动情况。
2. 压力公式:压力等于力除以面积。
它描述了流体对物体施加的压力。
三、热力学公式1. 热传导公式:热传导率等于导热系数乘以温度梯度。
它描述了热量在导体中的传导情况。
2. 热容公式:热容等于物体的质量乘以比热容。
它描述了物体在吸热或放热过程中的温度变化情况。
四、电磁学公式1. 电流公式:电流等于电荷通过导体的速度。
它描述了电荷在导体中的运动情况。
2. 电场公式:电场强度等于电荷除以电场力。
它描述了电荷对周围空间施加的力。
五、结构力学公式1. 应力公式:应力等于力除以截面积。
它描述了物体受到的力在截面上的分布情况。
2. 变形公式:变形等于物体的长度变化除以原始长度。
它描述了物体在受力作用下的变形情况。
六、土力学公式1. 孔隙水压力公式:孔隙水压力等于孔隙水的密度乘以重力加速度乘以水的高度。
它描述了土壤中孔隙水的压力情况。
2. 应力路径公式:应力路径等于应力除以孔隙水压力。
它描述了土体中应力变化的路径。
以上是一些常见的基础工程公式,它们在工程领域中起着重要的作用。
通过理解和应用这些公式,工程师能够更好地解决问题、优化设计,并确保工程的安全性和稳定性。
流体力学公式总结工程流体力学公式总结第二章 流体的主要物理性质❖ 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。
1.密度 ρ = m2.重度 γ = G3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ =γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ =5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)TV V ∆∆=1αpV V ∆∆-=1κVPV K ∆∆-=κ1nA F d d υμ=dnd vμτ±=11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学❖ 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。
1.常见的质量力:重力ΔW = Δ、直线运动惯性力Δ = Δm ·a离心惯性力Δ = Δm ·rω2 .2.质量力为F 。
:F = m · = m ()= = 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,为水平面,则单位质量力在x 、y 、 z 轴上的分量为0 , 0 , =式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。
即: p (),由此得静压强的全微分为:nv d /d τμ=z z p y y p x x p p d d d d ∂∂∂∂∂∂++=4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数积分得:U = + cd d d d d d 0x p f x y z x y z x∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dUρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 + + = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。
流体力学计算公式流体力学是研究流体的运动规律和性质的一门学科,广泛应用于工程和科学领域中。
在流体力学的研究过程中,有许多重要的计算公式和方程被提出和应用。
下面是一些重要的流体力学计算公式。
1.压力力学方程:压力力学方程是描述流体力学中流体静压力分布和变化的方程。
对于稳定的欧拉流体,方程为:∇P=-ρ∇φ其中,P是压力,ρ是流体的密度,φ是流体的势函数。
2.欧拉方程:欧拉方程用于描述流体的运动,它是流体运动的基本方程之一:∂v/∂t+v·∇v=-1/ρ∇P+g其中,v是流体的速度,P是压力,ρ是流体的密度,g是重力加速度。
3.奇异体流动方程:奇异体流动是流体与孤立涡流动的一种类型,其方程为:D(D/u)/Dt=0其中,D/Dt是对时间的全导数,u是速度向量。
4.麦克斯韦方程:5.纳维-斯托克斯方程:纳维-斯托克斯方程是描述流体的动力学行为的方程,它是流体力学中最重要的方程之一:∂v/∂t+v·∇v=-1/ρ∇P+μ∇²v其中,v是速度矢量,P是压力,ρ是密度,μ是动力黏度。
6.贝努利方程:贝努利方程描述了在不可压缩流体中流体静力学的变化。
贝努利方程给出了伯努利定律,即沿着一条流线上的速度增加,压力将降低,反之亦然。
贝努利方程的公式为:P + 1/2ρv^2 + ρgh = const.其中,P是压力,ρ是密度,v是流体速度,g是重力加速度,h是流体高度。
7.流量方程:流量方程用于描述流体在管道或通道中的流动。
Q=A·v其中,Q是流量,A是截面积,v是流速。
8.弗朗脱方程:弗朗脱方程是描述管道中流体流动的方程,其中考虑了摩擦阻力的影响:hL=f(L/D)(v^2/2g)其中,hL是管道摩擦阻力头损失,f是阻力系数,L是管道长度,D 是管道直径,v是流速,g是重力加速度。
以上是一些重要的流体力学计算公式。
这些公式和方程在流体力学中具有广泛的应用,是工程和科学领域中进行流体流动分析和计算的基础。
pg2r 22gzC外加边界条件确定 C 如:r 0,z 0, p p 0自由液面上某点的铅直坐标:Zs2r2g第二章 流体的主要物理性质 1.密度 ρ = m /VV V1 V P 7.压缩系数 V V体积模量 Kp T V6.体胀系数V V V VT Pdv x9.牛顿内摩擦定律 F Av/h dy动力黏度: 运动黏度重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学 基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体 静压力的计算(压力体)2. 压强差公式 dp( f x dx f y dy f z dz)等压面: dp=03. 重力场中流体的平衡4. 帕斯卡定理p p 0 g z 0 z p 0 gh5. 真空度 p v p a p6. 等加速直线运动容器内液体的相对平衡7. 等角速度旋转容器中液体的相对平衡8. 静止液体作用在平面上的总压力 9. 静止液体作用在曲面上的总压力第三章流体静力学1.1p xp0水平方向的作用力:dF x dF cos ghdAcos ghdA z垂直方向的作用力dF z dF sin ghdAsin ghdA x总压力F F x2F y2tg F F x Fz第四章流体运动学基础1. .欧拉法加速度场简写为当地加速度:迁移加速度( )2. 拉格朗日法:流体质点的运动速度的拉格朗日描述为3. 流线微分方程:4.流量计算:单位时间内通过dA 的微小流量为d qv=udA 通过整个过流断面流量q v dq v udAA平均流速A5. 水力半径:总流的有效截面积与湿周之比R hN dV6.V连续性方程对于定常流动1A1 1= 2A2 2 对于不可压缩流体,1 = 2 =c A1 1=A2 2= qv 7. 动量方程8. 能量方程:. 不考虑与外界热量交换,质量力只有重力的情况定常流动:v n uCSgz p dA9. 伯努利方程(微流):2v gz p常数10. 皮托管测速:v B 不可压缩理想流体在与外界无热交换的条件下)1/22gh1/211.黏性流体总流的伯努利方程1v12a 2gp1z1 p g12v22a z p22g2ghw(不可压缩黏性流体总流伯努利方程)应用范围:重力作用下,不可压粘性流体定常流动任意缓变流截面11.. 总流的动量方程第六章管内流动和水力计算1.沿程能量损失hfl v2d 2g2.局部能量损失h jv22g3.总能量损失h f h j4.对直径为d 的圆截面管道的雷诺数Revd vd临界雷诺数Re cr =2000,小于2000,流动为层流;大于2000,流动为湍流。
流体力学计算公式1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghAA p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1)10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,v gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:h b bh R 2+=,b 为明渠宽度,h 为明渠水深)15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρ?ρ?ρχ?====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
工程流体力学公式1. 什么是工程流体力学工程流体力学是研究在工程领域中涉及流体行为和流体力学原理的科学和工程学科。
它涵盖了液体和气体在各种工程应用中的流动、传输和相互作用的研究。
工程流体力学的目标是理解流体的行为,以便设计和优化工程系统,如水力发电站、管道网络、风力涡轮机等。
2. 流体静力学公式是什么流体静力学是研究静止液体或气体的力学性质的分支学科。
它主要研究静止流体中的压力分布和压力力学。
在流体静力学中,一些重要的公式包括:- 压力公式:P = ρgh,其中P表示压力,ρ表示流体的密度,g表示重力加速度,h表示液体的高度。
这个公式说明了液体的压力与液体的高度和密度有关系。
- 压力传递公式:P1 + 1/2ρv1²+ ρgh1 = P2 + 1/2ρv2²+ ρgh2,其中P1和P2表示两个点的压力,ρ表示流体的密度,v1和v2表示两个点的流速,g 表示重力加速度,h1和h2表示两个点的高度。
这个公式说明了在一个静止的流体中,压力、速度和高度之间的关系。
3. 流体动力学公式是什么流体动力学是研究流体的运动行为和力学性质的分支学科。
它主要研究流体的速度、压力、流量和能量转换等方面的问题。
在流体动力学中,一些重要的公式包括:- 质量连续性方程:∂ρ/∂t + ∇·(ρv) = 0,其中ρ表示流体的密度,t表示时间,v表示速度矢量。
这个公式是质量守恒的表达式,说明了流体在运动过程中的质量守恒。
- 动量方程:ρ(dv/dt) = -∇P + ρg + μ∇²v,其中ρ表示流体的密度,v表示速度矢量,P表示压力,g表示重力加速度,μ表示动力黏度。
这个公式描述了流体在受力作用下的运动行为,包括压力梯度、重力和黏度力。
- 能量方程:ρ(dE/dt) = -P∇·v + ∇·(k∇T) + ρg·v + Q - W,其中ρ表示流体的密度,E表示单位质量的总能量,t表示时间,P表示压力,v表示速度矢量,k表示热导率,T表示温度,g表示重力加速度,Q表示单位质量的热源,W表示单位质量的功率。
第二章 流体主要物理性质
❖ 流体可压缩性计算、牛顿内摩擦定律计算、粘度三种表示方法。
1.密度 ρ = m /V
2.重度 γ = G /V
3.流体密度和重度有以下关系:γ = ρ g 或 ρ = γ/ g
4.密度倒数称为比体积,以υ表示υ = 1/ ρ = V/m
5.流体相对密度:d = γ流 /γ水 = ρ流 /ρ水
6.热膨胀性
7.压缩性. 体积压缩率κ
8.体积模量
9.流体层接触面上内摩擦力
10.单位面积上内摩擦力(切应力)(牛顿内摩擦定律)
11..动力粘度μ:
12.运动粘度ν :ν = μ/ρ
13.恩氏粘度°E :°E = t 1 / t 2
第三章 流体静力学
❖ 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意
义及其计算、压强关系换算、相对静止状态流体压强计算、流体静压力计算(压力体)。
1.常见质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a
离心惯性力ΔFR = Δm·r ω2 .
2.质量力为F 。
:F = m ·am = m (f xi+f yj+f zk)
am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度
实例:重力场中流体只受到地球引力作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上分量为 fx = 0 , fy = 0 , fz = -mg /m = -g
式中负号表示重力加速度g 及坐标轴z 方向相反
3流体静压强不是矢量,而是标量,仅是坐标连续函数。
即:p = p (x ,y ,z ),由此得静压强全微分为:
z z p y y p x x p p d d d d ∂∂∂∂∂∂++=
4.欧拉平衡微分方程式
单位质量流体力平衡方程为:
5.压强差公式(欧拉平衡微分方程式综合形式)
6.质量力势函数
7.重力场中平衡流体质量力势函数
积分得:U = -gz + c
8.等压 .面微分方程式 .fx d x + fy d y + fz d z = 0 9.流体静力学基本方程
对于不可压缩流体,ρ = 常数。
积分得:
p + ρgz = c 形式一
形式二
形式三
10.压强基本公式p = p 0+ρ g h
11..静压强计量单位
❖ 应力单位:Pa 、N/m2、bar d d d d d d 0x p f x y z x y z x
∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z
∂∂-=ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)
d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-1212p p c +=+=gz gz ρρ
❖ 液柱高单位:mH2O 、mmHg
❖ 标准大气压:1 atm = 760 mmHg =10.33 mH2O = 101325 Pa ≈ 1bar
第四章 流体运动学基础
1拉格朗日法:流体质点运动速度拉格朗日描述为
压强 p 拉格朗日描述是:p =p (a ,b ,c ,t )
2.欧拉法
流速场
压强场:p =p (x,y,z ,t)
加速度场
简写为
时变加速度:
位变加速度
3.流线微分方程:.在流线任意一点处取微小线段d l = d x i + d y j + d z k ,
该点速度为:v = u i + v j + w k ,由于v 及d l 方向一致,所以有: d l × v = 0
4.流量计算:
单位时间内通过d A 微小流量为 d q v=u d A
通过整个过流断面流量 相应质量流量为
5.平均流速 v ui v j wk =++(,,,)x y z a a x y z t a i a j a k ==++d d (,,)d d d d (,,)d d d d (,,)d d x y z u u x y z,t u u u u a u w t t t x y z x y z,t a u w t t t x y z w w x y z,t w w w w a u w t t t x y z ∂∂∂∂∂∂∂∂υυ∂υ∂υ∂υ∂υυ∂∂∂∂∂∂∂∂υ∂∂∂∂⎧===+++⎪⎪⎪===+++⎨⎪⎪===+++⎪⎩υt
∂∂υυυ)(∇⋅⎰⎰==A
A u q q d d v v ⎰
==A m A u q q d v ρρ
6.连续性方程基本形式
对于定常流动 有 即ρ1A 1υ1= ρ2A 2υ2
对于不可压缩流体,ρ1 = ρ2 =c ,有 即A 1υ1=A 2υ2= q v
7.三元流动连续性方程式
定常流动
不可压缩流体定常或非定常流:ρ = c
8.雷诺数
对于圆管内流动:
Re <2000 时,流动总是层流型态,称为层流区;
Re >4000时,一般出现湍流型态,称为湍流区;
2000<Re <4000 时,有时层流,有时湍流,处于不稳定状态,称为过渡区;取决于外界干扰条件。
9.牛顿黏性定律
10.剪切应力,或称内摩擦力, N/m2
11.动力黏性系数
12.运动黏度 m2/s 13..临界雷诺数 212211d d d A A V u A u A V t ∂ρρ∂-=⎰⎰⎰ρA u A u A A d d 212211⎰⎰ρ=ρA u A u A A d d 2121⎰
⎰=()()()0u w t x y z ρρρυρ∂∂∂∂+++=∂∂∂∂()()()0u w x y z
ρρυρ∂∂∂++=∂∂∂
14.进口段长度
4. 理想不可压缩流体重力作用下沿流线伯努利方程式:三个式子
5.理想流体总流伯努利方程式
6.总流伯努利方程
7.实际流体总流伯努利方程式
8.粘性流体伯努利方程
9..总流动量方程
10.总流动量矩方程
11.叶轮机械欧拉方程
12.洒水器 e l d 2211221222p v p v z z c g g g g
ρρ++=++=221112221222p v p v z z g g g g ααρρ++=++g V g p z g V g p z 222222221111αραρ++=++221112221222f p v p v z z h g g g g ααρρ++=+++22112212L 22p v p v z z h g g γγ++=+++∑=-F V Q V Q 111222ρβρβ∑⨯=⨯-⨯F r V r Q V r Q 1
1112222ρβρβ)cos cos (111222ααρr V r V Q M -=0dW d P=dt dt W Md M M M θθθθω====⎰
功 功率
第七章 流体在管路中流动
1.临界雷诺数
临界雷诺数=2000,小于2000,流动为层流 大于2000,流动为湍流
2.沿程水头损失
当流动为层流时沿程水头损失hf 为, V(1.0) ; 当流动为湍流时沿程水头损失hf 为, V(1.75~2.0)
3.水力半径
相当直径
4.圆管断面上流量
5.平均流速
6.局部阻力因数为
7.管道沿程摩阻因数
8.沿程水头损失计算
第九章
1..薄壁孔口特征:L /d ≤2
厚壁孔口特征:2<L /d ≤4
2.流速系数
.3。
流量系数 Cd = CcCv
θωωθρcos 0
)cos (22R V R VR Q =∴=-h h 4d r =2max 2max 21π12π82R v Q G V R v A R μ====22
6422l V l V Vd d g d g
λρμ=⋅⋅=⋅⋅。