《流体力学》典型例题20111120解析
- 格式:doc
- 大小:2.35 MB
- 文档页数:17
2.在现实生活中可视为牛顿流体的有水 和空气 等。
3.流体静压力和流体静压强都是压力的一种量度。
它们的区别在于:前者是作用在某一面积上的总压力;而后者是作用在某一面积上的平均压强或某一点的压强。
4.均匀流过流断面上压强分布服从于水静力学规律。
5.和液体相比,固体存在着抗拉、抗压和抗切三方面的能力。
7.流体受压,体积缩小,密度增大 的性质,称为流体的压缩性 ;流体受热,体积膨胀,密度减少 的性质,称为流体的热胀性 。
8.压缩系数β的倒数称为流体的弹性模量 ,以E 来表示12.液体静压强分布规律只适用于静止、同种、连续液体。
13.静止非均质流体的水平面是等压面,等密面和等温面。
14.测压管是一根玻璃直管或U 形管,一端连接在需要测定的容器孔口上,另一端开口,直接和大气相通。
16.作用于曲面上的水静压力P 的铅直分力z P 等于其压力体内的水重。
17.通过描述物理量在空间的分布来研究流体运动的方法称为欧拉法。
18. 流线不能相交(驻点处除外),也不能是折线,因为流场内任一固定点在同一瞬间只能有一个速度向量,流线只能是一条光滑的曲线或直线。
20.液体质点的运动是极不规则的,各部分流体相互剧烈掺混,这种流动状态称为紊流。
21.由紊流转变为层流的临界流速k v 小于 由层流转变为紊流的临界流速kv ',其中kv '称为上临界速度,k v 称为下临界速度。
23.圆管层流的沿程阻力系数仅与雷诺数有关,且成反比,而和管壁粗糙无关。
25.紊流过渡区的阿里特苏里公式为25.0)Re68(11.0+=d k λ。
26.速度的大小、方向或分布发生变化而引起的能量损失,称为局部损失。
29.湿周是指过流断面上流体和固体壁面接触的周界。
31.串联管路总的综合阻力系数S 等于各管段的阻抗叠加。
32.并联管路总的综合阻力系数S 与各分支管综合阻力系数的关系为3211111s s s s ++=。
管嘴与孔口比较,如果水头H 和直径d 相同,其流速比V 孔口/V 管嘴等于82.097.0,流量比Q 孔口/Q 管嘴等于82.060.0。
一、 选择题(略) 二、 判断题(略) 三、 简答题1.等压面是水平面的条件是什么?:①连续介质 ② 同一介质 ③ 单一重力作用下.2. 同一容器中装两种液体,且21ρρ〈,在容器侧壁装了两根测压管。
试问:图中所标明的测压管中液面位置对吗?为什么?C (c) 盛有不同种类溶液的连通器DC D水油BB (b) 连通器被隔断AA(a) 连通容器解:不对,(右测压管液面要低一些,从点压强的大小分析) 3. 图中三种不同情况,试问:A-A 、B-B 、C-C 、D-D 中哪个是等压面?哪个不是等压面?为什么?:( a )A-A 是 (b )B-B 不是 (c )C-C 不是, D-D 是。
四、作图题(略)五、计算题(解题思路与答案)1. 已知某点绝对压强为80kN/m 2,当地大气压强p a =98kN/m 2。
试将该点绝对压强、相对压强和真空压强用水柱及水银柱表示。
解: 用水柱高表示(1)该点绝对压强:8.16mH 2o (2)该点相对压强:-1.84mH 2o(3)该点真空压强:1.84mH 2o用水银柱高表示(1)该点绝对压强:599.1mm H g(2)该点相对压强:-135.4 mm H g (3)该点真空压强:135.4 mm H g2. 一封闭水箱自由表面上气体压强p 0=25kN/m 2,h 1=5m ,h 2=2m 。
求A 、B 两点的静水压强。
解:由压强基本公式ghp p ρ+=0求解A p = 7.551 mH 2o (74 kN/m 2) B p = 4.551 mH 2o (44.6 kN/m 2)3 如图所示为一复式水银测压计,已知m 3.21=∇,m 2.12=∇,m5.23=∇,m 4.14=∇,m5.15=∇(改为3.5m)。
试求水箱液面上的绝对压强0p =?解:①找已知点压强(复式水银测压计管右上端)②找出等压面③计算点压强,逐步推求水箱液面上的压强0p.: 0p=273.04 kN/m24 某压差计如图所示,已知H A=H B=1m,ΔH=0.5m。
《流体力学》习题(二)2-1 质量为1000kg 的油液(S =0.9)在有势质量力k i F 113102598--=(N)的作用下处于平衡状态,试求油液内的压力分布规律。
2-2 容器中空气的绝对压力为p B =93.2kPa ,当地大气压力为p a =98.1kPa 试求玻璃管中水银柱上升高度h v 。
2-3 封闭容器中水面的绝对压力为p 1=105kPa ,当地大气压力为p a =98.1kPa ,A 点在水面下6m ,试求:(1)A 点的相对压力;(2)测压管中水面与容器中水面的高差。
题2-2图 题2-3图 2-4 已知水银压差计中的读数⊿h =20.3cm ,油柱高h =1.22m ,油的重度γ油=9.0kN/m 3,试求:(1)真空计中的读数p v ;(2)管中空气的相对压力p 0。
题2-4图 题2-5图 2-5 设已知测点A 到水银测压计左边水银面的高差为h 1=40cm ,左右水银面高差为h 2=25cm ,试求A 点的相对压力。
2-6 封闭容器的形状如图所示,若测压计中的汞柱读数△h =100mm ,求水面下深度H =2.5m 处的压力表读数。
题2-6图 题2-7图 2-7 封闭水箱的测压管及箱中水面高程分别为▽1=100cm 和▽4=80cm ,水银压差计右端高程为▽2=20cm ,问左端水银面高程▽3为多少?2-8 两高度差z =20cm 的水管,与一倒U 形管压差计相连,压差计内的水面高差h =10cm ,试求下列两种情况A 、B 两点的压力差:(1)γ1为空气;(2)γ1为重度9kN/m 3的油。
题2-8图题2-9图2-9 有一半封闭容器,左边三格为水,右边一格为油(比重为0.9)。
试求A、B、C、D四点的相对压力。
2-10 一小封闭容器放在大封闭容器中,后者充满压缩空气。
测压表A、B的读数分别为8.28kPa和13.80kPa,已知当地大气压为100kPa,试求小容器内的绝对压力。
第二章例1:用复式水银压差计测量密封容器内水面的相对压强,如下列图。
:水面高程z 0=3m,压差计各水银面的高程分别为z 1=, z 2=, z 3=m, z 4=m, 水银密度 3/13600m kg ρ=',水的密度3/1000m kg ρ= 。
试求水面的相对压强p 0。
解:ap z z γz z γz z γp =-----+)(')(')(3412100)()('1034120z z γz z z z γp ---+-=∴例2:用如下列图的倾斜微压计测量两条同高程水管的压差。
该微压计是一个水平倾角为θ的Π形管。
测压计两侧斜液柱读数的差值为L=30mm ,倾角θ=30∘,试求压强差p 1 – p 2 。
解: 224131)()(p z z γz z γp =-+-- θL γz z γp p sin )(4321=-=-∴例3:用复式压差计测量两条气体管道的压差〔如下列图〕。
两个U 形管的工作液体为水银,密度为ρ2 ,其连接收充以酒精,密度为ρ1 。
如果水银面的高度读数为z 1 、 z 2 、 z 3、z 4 ,试求压强差p A – p B 。
解: 点1 的压强 :p A )(21222z z γp p A --=的压强:点)()(33211223z z γz z γp p A -+--=的压强:点 B A p z z γz z γz z γp p =---+--=)()()(3423211224 )()(32134122z z γz z z z γp p B A ---+-=-∴例4:用离心铸造机铸造车轮。
求A-A 面上的液体总压力。
解: C gz r p +⎪⎭⎫ ⎝⎛-=2221ωρ a p gz r p +⎪⎭⎫ ⎝⎛-=∴2221ωρ在界面A-A 上:Z = - ha p gh r p +⎪⎭⎫⎝⎛+=∴2221ωρ⎪⎭⎫⎝⎛+=-=∴⎰2420218122)(ghR R rdr p p F a Rωπρπ例5:在一直径d= 300mm ,而高度H=500mm 的园柱形容器中注水至高度h 1 = 300mm ,使容器绕垂直轴作等角速度旋转。
第11章《流体力学》习题解答11.2.1 若被测容器A 内水的压强比大气压大很多时,可用图中的水银压强计。
⑴此压强计的优点是什么⑵如何读出压强设 h 1=50cm,h 2=45cm,h 3=60cm,h 4=30cm ,求容器内的压强是多少大气压【解】⑴优点:可以测很高的压强,而压强计的高度不用很大⑵设界面处压强由右向左分别为p 0, p 1,p 2,p 3,水和水银的密度分别用ρ,ρ'表示,据压强公式,有:43323221101,',,'gh p p gh p p gh p p gh p p A ρρρρ=-=-=-=- 0312401234123423434)(')(''''p h h g h h g p gh gh gh gh p gh gh gh p gh gh p gh p A +++-=++-+=+-+=++=+=∴ρρρρρρρρρρρρ用大气压表示:atm h h h h p A 43.2766050766.134530176766.1313124≈++⨯-+=++⨯-+=11.2.2 A,B 两容器内的压强都很大,现欲测它们之间的压强差,可用图中装置,Δh=50cm ,求A,B 内的压强差是多少厘米水银柱高这个压强计的优点是什么【解】由压强公式:11gh p p A ρ=-)(,'2221h h g p p h g p p B +∆=-∆=-ρρhg h g h h h g p p h g gh p gh p p p B A ∆-∆=∆--+-∆++-+=-ρρρρρρ')()()()(21212211用厘米水银柱高表示:cmHg h h p p B A 3.466.13/50506.13/=-=∆-∆=-也可以忽略管中水的重量,近似认为压强差为50cmHg优点:车高雅差方便,压强计的高度不需太大。
《例题力学》典型例题例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30的斜面作等速下滑运动。
已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。
求油的动力粘性系数。
解:由牛顿内摩擦定律,平板所受的剪切应力du Udy τμμδ== 又因等速运动,惯性力为零。
根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯ 例题2:如图所示,转轴的直径d =0.36 m 、轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。
求克服油的粘性阻力所消耗的功率。
解:由牛顿内摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ==粘性阻力(摩擦力):F S dl ττπ=⋅= 克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。
解:根据牛顿黏性定律 d d 2d r r F A r r ωωμμπδδ== 2d d 2d r T F r r r ωμπδ=⋅=42420d d 232dd d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。
流体力学答案解析题目:一不可压缩流体在水平管道内作稳定流动,管道截面由圆形逐渐扩大为方形,入口直径为d,出口边长为a。
已知入口流速为v1,入口处的压力为p1,求出口处的流速v2和压力p2。
解析:首先,根据连续性方程,流体在管道内的流速和截面积之间存在以下关系:A1v1 = A2v2其中,A1和A2分别为入口和出口的截面积。
由于管道截面由圆形变为方形,我们可以分别计算两个截面的面积。
入口截面积A1 = π(d/2)^2出口截面积 A2 = a^2将上述面积代入连续性方程,得到:π(d/2)^2 v1 = a^2 v2解得:v2 = (π(d/2)^2 v1) / a^2接下来,我们应用伯努利方程,该方程描述了流体在流动过程中速度、压力和高度之间的关系。
在水平管道中,高度不变,因此伯努利方程简化为:p1/ρ + v1^2/2 = p2/ρ + v2^2/2其中,ρ为流体的密度。
将v2的表达式代入伯努利方程,得到:p1/ρ + v1^2/2 = p2/ρ + (π(d/2)^2 v1)^2 /(2a^2ρ)化简得到:p2 = p1 + ρ(v1^2 - v2^2)/2将v2的表达式代入上式,得到:p2 = p1 + ρ(v1^2 - (π(d/2)^2 v1)^2 /(2a^2ρ))/2化简得到:p2 = p1 + (ρ/2)(v1^2 - (π(d/2)^4 v1^2) / (2a^2))进一步化简得到:p2 = p1 + (ρ/2)(v1^2(1 - (π(d/2)^4) / (2a^2)))至此,我们已经求得了出口处的流速v2和压力p2。
以下是对解题过程的详细解析:1. 连续性方程的应用:连续性方程是流体力学中的一个基本原理,描述了流体在流动过程中质量守恒的关系。
在本题中,由于流体是不可压缩的,因此在流动过程中质量守恒。
根据连续性方程,我们可以求出出口处的流速v2。
2. 伯努利方程的应用:伯努利方程是流体力学中的一个重要方程,描述了流体在流动过程中速度、压力和高度之间的关系。
一、 填空题(每小题3分,共21分)1. 流体力学是研究流体 流体的平衡 和 运动规律 规律及其应用的一门科学。
2. 液体的粘性具有随温度 升高 而降低的特性;气体的粘性具有随温度 升高 而升高的特性。
3. 液体静压力的方向总是 垂直 受压面,而且只能是 拉力 力,不能 是 压力 力。
4. 等压面是水平面的条件 同一流体 、 连续 、 静止 。
5. 在一定的条件下,运动流体的能量可以相互转化,势能可以转化成动 能,动能可以转化成 势 能。
另外,还有一部分能量转化成 热量 而损失。
6. 流体的毛细现象是指当毛细玻璃管插入液体中时,流体在毛细玻璃管中上升或下降的特性 。
水银在细管中呈 下降 (上升、下降)特性,液面 呈 凸面 (凹面、凸面)。
7.如图所示,用水银U 形管测压计测量压力水管中A 点的压强。
若测得h 1=800mm ,h 2=900mm ,并假定大气压强为pa=105N/m 2,求A 点的绝对压强= 212KPa 。
(水银的密度为13555kg/m 3)1、水箱A 中的水受到P 0=19612Pa (计示压强)的压强,从水箱A 中流到敞口水箱B 中,如图所示。
设H 1=10m , H 2=1m ,H 3=2m ,管径d=100mm , D=200mm ,阀门的局部阻力系数ξ=4,三个900的铸钢弯头ξ=0.35,由于输水管较短,所以沿程损失可不计,试求水的流量。
解:解题要点1)求流量,必须求速度。
因为:qv=A ·V2)求速度,必须用伯努利方程,则选有效截面:1-1,2-2-Z 1+gp ρ1+gv 221= Z 2+gpρ2+gv222+h w式中:Z 1- Z 2= H 1- H 2=10-1=9P1=P0+Pa ; V1=0P2=Pa+ρgh (h= H 3- H 2 ) ;V2需求P2-P1=ρgh-P0=1000×9.806×1-19612=-9806gv222+h w = Z 1- Z 2 +gpp ρ21-gv222(1+∑=81j jξ)=9+1=10∑=81j jξ=ζ1+ζ2+ζ3+ζ4+ζ5+ζ6+ζ7+ζ8 [式中ζ3=(1-AA 21)2=0.5625] =0.5+0.35+0.5625+0.325+4+2×0.35+1=7.4375gv222=14375.710+=1.1853)速度为:v 2=185.1806.92⨯⨯=4.8208m/s 4)流量为:qv =A 2×V 2= (3.14×0.12×4.8208)÷4=0.04m 3/s2、 有一并联管道,已知d 1=125mm ,L 1=50m , d 2=200mm ,L 2=45m ,λ1=λ2=0.025,如图所示。
《流体力学》典型例题(9大类)例1~例3——牛顿内摩擦定律(牛顿剪切公式)应用例4~例5——流体静力学基本方程式的应用——用流体静力学基本方程和等压面计算某点的压强或两点之间的压差。
例6~例8——液体的相对平衡——流体平衡微分方程中的质量力同时考虑重力和惯性力(补充内容) (1)等加速直线运动容器中液体的相对平衡(与坐标系选取有关) (2)等角速度旋转容器中液体的平衡(与坐标系选取有关)例9——求流线、迹线方程;速度的随体导数(欧拉法中的加速度);涡量计算及流动有旋、无旋判断 例10~16——速度势函数、流函数、速度场之间的互求 例17——计算流体微团的线变形率、角变形率及旋转角速度 例18~20——动量定理应用(课件中求弯管受力的例子) 例21~22——总流伯努利方程的应用例23——综合:总流伯努利方程、真空度概念、平均流速概念、流态判断、管路系统沿程与局部损失计算例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ=30 的斜面作等速下滑运动。
已知平板与斜面之间的油层厚度δ=1 mm ,假设由平板所带动的油层的运动速度呈线性分布。
求油的动力粘性系数。
UG=mgδθ解:由牛顿内摩擦定律,平板所受的剪切应力du Udy τμμδ==又因等速运动,惯性力为零。
根据牛顿第二定律:0m ==∑F a ,即:gsin 0m S θτ-⋅=()324gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--⋅⨯⨯⨯⨯==≈⋅⋅⨯⨯⨯粘性是流体在运动状态下,具有的抵抗产生剪切变形速率能力的量度;粘性是流体的一种固有物理属性;流体的粘性具有传递运动和阻滞运动的双重性。
例题2:如图所示,转轴的直径d =0.36 m ,轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=⋅的油,若轴的转速200rpm n =。
求克服油的粘性阻力所消耗的功率。
δdln解:由牛顿内摩擦定律,轴与轴承之间的剪切应力()60d d n d uy πτμμδ== 粘性阻力(摩擦力):F S dl ττπ=⋅=克服油的粘性阻力所消耗的功率:()()3223223230230603.140.360.732001600.231050938.83(W)d d n d n n lP M F dl πππμωτπδ-==⋅⋅=⨯⨯=⨯⨯⨯=⨯⨯=例题3:如图所示,直径为d 的两个圆盘相互平行,间隙中的液体动力黏度系数为μ,若下盘固定不动,上盘以恒定角速度ω旋转,此时所需力矩为T ,求间隙厚度δ的表达式。
解:由于圆盘不同半径处的线速度不同,在半径r 处取径向宽度d r 的微元面积环,根据牛顿内摩擦定律,可得该微元面积环上受到的切向力为:d d 2d r r F A r r ωωμμπδδ==2d d 2d r T F r r r ωμπδ=⋅=42420d d 232dd d T T r r πμωπμωδδ===⎰432d Tπμωδ=例题4:如图所示的双U 型管,用来测定比水小的液体的密度,试用液柱高差来确定未知液体的密度ρ(取管中水的密度ρ水=1000 kg/m 3)。
水水解:经分析可知图中1-1和2-2为两组等压面。
根据等压面的性质和流体静力学基本方程0p p gh ρ=+,采用相对压强可得: 左侧:112()p g h h ρ=-水,右侧:243()p g h h ρ=-水中间:1232()p p g h h ρ=+-联立可得:()()()123243g g g h h h h h h ρρρ---=-水水123432h h h h h h ρρ-+-=-水例题5:如图所示,U 型管中水银面的高差h =0.32 m ,其他流体为水。
容器A 和容器B 中心的位置高差z =1 m 。
求A 、B 两容器中心处的压强差(取管中水的重度γ水=9810 N/m 3,水银的重度γ水银=133416 N/m 3)。
解:图中1-1、2-2为2组等压面。
根据等压面的性质和流体静力学基本方程0p p gh ρ=+,可得:A 11p p h γ=+水,12p p h γ=+水银,B 22p p h γ=+水()()()()A B 211334160.3298100.32129743.92Pa p p h h h h h z γγγγ-=--=-+=⨯-⨯+=水银水水银水例题6:如图所示,仅在重力场作用下的无盖水箱高H =1.2m ,长L =3m ,静止时盛水深度h =0.9m 。
现水箱以20.98m s a =的加速度沿水平方向做直线运动。
若取水的密度31000kg m ρ=,水箱中自由水面的压强0p =98000Pa 。
试求:(1)水箱中自由水面的方程和水箱中的压强分布。
(2)水箱中的水不致溢出时的最大加速度max a 。
解:(1)如图所示,将固定在水箱上的运动坐标系的原点置于静止时自由水面的中点,z 轴垂直向上,x 轴与加速度的方向一致。
则水箱运动时单位质量水受到的质量力和水的加速度分量分别为0X a,Y ,Z g =-==-代入非惯性坐标系中的压力全微分公式()d d d d d p X x Y y Z z W ρρ=++=,得()d d d p a x g z ρ=-+ ①积分得 ()1p ax gz c ρ=-++利用边界条件确定积分常数1c :在坐标原点O (0xz ==)处,0p p =,得10c p =由式①可得水箱内的压强分布()()098000100009898980009809800p p ax gz .x .z x z ρ=-+=-+=--对于水箱中的等压面,有d 0p=,所以由式①可得等压面的微分方程d d a x g z =-积分得 2az x c g=-+上式给出了一簇斜率为a g -的倾斜平面,就代表水箱加速运动的一簇等压面,自由水面是等压面中的一个,因自由水面通过坐标原点,可确定积分常数20c =。
因此自由水面方程为0980198a .z x x .x g .=-=-=- (2)假设水箱以加速度max a 运动时,其中的水刚好没有溢出,且此时水箱右侧水的深度为h ',则根据加速前后水的体积不变的性质可得()2h H LL h '+⋅⋅=②又根据水箱作水平等加速直线运动时,自由表面的斜率与几何长度之间的关系max ga H h L'-=③②和③式联立求解,得:()()()2max 22 1.20.9g 9.8 1.96m 3H h a L -⨯-==⨯=例题7:有一盛水的旋转圆筒,直径D =1 m ,高H =2 m ,静止时水深为h =1.5 m 。
求: (1)为使水不从筒边溢出,旋转角速度ω应控制在多大?(2)当ω=6 rad/s 时,筒底G 、C 点处的相对压强(相对于自由水面)分别为多少?C解:(1)若将坐标原点放在筒底的中心位置,并假设自由表面最低点的高度为00,rz H ==,则由:()22,,d d d d X x Y y Z gp X x Y y Z z ωωρ⎧===-⎪⎨=++⎪⎩,可推出自由水面(为一等压面)的方程:2202g r z H ω=+ 根据在水没有溢出的情况下,旋转前后水的体积不变的性质,可得:2222002d 2g 4D r D r H r h ωππ⎛⎫⋅+=⎪⎝⎭⎰由此可求得:2216gD H h ω=-,带入自由表面方程得:2222g 8D z h r ω⎛⎫=+- ⎪⎝⎭若使ω达到某一最大值而水不溢出,则有2r D =时,z H =,带入上式,得()8.854rad s ω===(2)旋转容器中任意一点的相对压强可表达为2222220g g 2g 2g 16g r r D p H z h z ωωωρρ⎛⎫⎛⎫=+-=+-- ⎪ ⎪⎝⎭⎝⎭将G 点条件:0,0r z ==带入得:2222G 61g 10009.8 1.512450Pa 16g 169.8D p h ωρ⎛⎫⎛⎫⨯=-=⨯⨯-= ⎪ ⎪⨯⎝⎭⎝⎭同理,将C 点条件:2,0r D z ==带入得:222222C 61g 10009.8 1.516950Pa 8g 16g 169.8D D p h ωωρ⎛⎫⎛⎫⨯=+-=⨯⨯+= ⎪ ⎪⨯⎝⎭⎝⎭例题8:如图所示为一圆柱形容器,直径为300mm d =,高500mm H=,容器内装水,水深为300mm h =,使容器绕垂直轴做等角速旋转,试确定水正好不溢出来的转速n 。
HhH zr解:如图所示,将坐标原点o 放在筒底的中心位置,并假设自由表面最低点的高度为00,rz H ==,则由:()22,,d d d d X x Y y Z gp X x Y y Z z ωωρ⎧===-⎪⎨=++⎪⎩,可推出自由水面(为一等压面)的方程:2202g r z H ω=+ 根据在水没有溢出的情况下,旋转前后水的体积不变的性质,可得:222002d 2g 4d r d r H r h ωππ⎛⎫⋅+=⎪⎝⎭⎰由此可求得:2216gd H h ω=-,带入自由表面方程得:2222g 8d z h r ω⎛⎫=+- ⎪⎝⎭若使ω达到某一最大值而水不溢出,将2r d =时,z H =,带入上式,得()18.67rad s ω===3030186717825.n .ωππ⨯==≈ ()r min例9 已知平面直角坐标系中的二维速度场()()x t y t =+++u i j 。
试求:(1)迹线方程;d d d d x y zx y zt u u u === (2)流线方程;d d d x y zx y z u u u == (3)0t=时刻,通过(1,1)点的流体微团运动的加速度;(4)涡量(即旋度),并判断流动是否有旋。
解:(1)将,xy u x t u y t =+=+代入迹线方程d d d d x y x y u ,u t t ==得: d d d d x y x t,y t t t=+=+ 采用变量代换法解这个微分方程。
令X x t =+,Y y t =+,则x X t =-,y Y t =-,代入上式,得: 11d d d 1d ln(1)11d d 1t c t t x X X X t X t c x t e ae x ae t t t X +=-=⇒=⇒+=+⇒++==⇒=--+,1c a e = 22d d d 1d ln(1)11d d 1t c t t y Y Y Y t Y t c y t e be y be t t t Y +=-=⇒=⇒+=+⇒++==⇒=--+,2c b e = 于是得迹线的参数方程:1,1t tx ae t y be t =--=--其中,,a b 是积分常数(拉格朗日变数)。