(1)如图,∵AD平分∠BAC,PE⊥AB,PF⊥AC
∴PE = PF(角平分线上的点到这个角的
两边距离相等) (对)
(2)如图,∵ PE = PF
∴ AD平分∠BAC (到角两边距离相等的
点在 这个角的平分线上)
(错)
(3)如图,∵ 点P在∠BAC 的平分线上 ∴ PE = PF(角平分线上的点到 这个角的两边距离相等)(错)
第1课时
角平分线
复习旧知
1、什么叫角平分线? 如果一条射线把一个角分成两个相等的角, 那么这条射线叫角的平分线。
2、你还记得角平分线上的点有什么性质吗?你是怎 样得到的?
角平分线上的点到角的两边的距离相等
条件:一个点在一个角的平分线上
结论:它到角的两边的距离相等
你能证明这一结论吗?
已知:如图OC是∠AOB的平分线,点P在
的一半)
随堂练习 1
如图,AD,AE分别是△ABC中∠A的内角平分线 外角平分线,它们有什么关系?
C E
D
B
老师期望:
你能说出结论并能证明它.
A
F
课堂小结
1.角平分线的性质定理: 在角平分线上的点到角的两边的距离相等
2.角平分线的判定定理: 在角的内部,到一个角的两边的距离相等的点,在这个 角平分线上。
3.性质定理和判定定理的关系
点在角平分线上
点到角两边的距离相等
4.角平分线的性质定理是证明角相等、线段相等 的新途径.角平分线的判定定理是证明点在直线 上(或直线经过某一点)的根据之一.
布置作业
6:作业布置 课堂作业:习题1.9第1,2,3,4题.
家庭作课业堂:学作习业之:友习p1题5-116.9第1,2,3,4题 . 家庭作业:学习之友p15-16