2020年五一数学建模竞赛煤炭价格预测求解
- 格式:docx
- 大小:55.05 KB
- 文档页数:4
煤炭资源预测储量计算公式煤炭是一种重要的能源资源,广泛应用于工业生产和生活用能。
对于煤炭资源的储量预测,是煤炭资源开发和利用的重要基础工作。
煤炭资源的储量预测是指根据已知的煤炭地质勘探数据,利用数学模型和统计方法,对煤炭矿区的煤炭储量进行估算和预测。
煤炭资源的储量预测计算公式是进行煤炭资源储量预测的基本工具之一,下面将介绍煤炭资源预测储量计算公式的相关内容。
一、煤炭资源储量预测的基本原理。
煤炭资源的储量预测是通过对煤炭矿区的地质勘探数据进行分析和处理,建立数学模型,对煤炭的储量进行估算和预测。
煤炭资源的储量预测主要包括以下几个步骤,首先,对煤炭矿区的地质勘探数据进行整理和分析,包括煤层的厚度、倾角、产状、品位等地质参数;其次,建立煤炭资源储量预测的数学模型,选择合适的统计方法进行计算和分析;最后,对煤炭资源的储量进行预测和估算,得出煤炭资源的储量预测结果。
二、煤炭资源储量预测的计算公式。
煤炭资源的储量预测计算公式是进行煤炭资源储量预测的基本工具之一。
煤炭资源的储量预测计算公式主要包括两种类型,一种是基于地质参数的计算公式,另一种是基于数学模型的计算公式。
1. 基于地质参数的计算公式。
基于地质参数的计算公式是根据煤炭矿区的地质勘探数据,利用地质参数进行煤炭资源储量的估算和预测。
常用的地质参数包括煤层的厚度、倾角、产状、品位等。
基于地质参数的计算公式一般采用简化的数学模型,通过对地质参数的统计分析,得出煤炭资源的储量预测结果。
2. 基于数学模型的计算公式。
基于数学模型的计算公式是通过建立煤炭资源储量预测的数学模型,利用数学方法进行煤炭资源储量的估算和预测。
常用的数学模型包括地质统计模型、地质数学模型、地质统计学模型等。
基于数学模型的计算公式一般采用复杂的数学模型,通过对地质数据进行数学建模和计算,得出煤炭资源的储量预测结果。
三、煤炭资源储量预测的影响因素。
煤炭资源的储量预测受到多种因素的影响,主要包括地质条件、勘探水平、统计方法等。
1985 年美国大学生数学建模竞赛MCM 试题1985年MCM:动物种群选择适宜的鱼类和哺乳动物数据准确模型。
模型动物的自然表达人口水平与环境相互作用的不同群体的环境的重要参数,然后调整账户获取表单模型符合实际的动物提取的方法。
包括任何食物或限制以外的空间限制,得到数据的支持。
考虑所涉及的各种数量的价值,收获数量和人口规模本身,为了设计一个数字量代表的整体价值收获。
找到一个收集政策的人口规模和时间优化的价值收获在很长一段时间。
检查政策优化价值在现实的环境条件。
1985年MCM B:战略储藏管理钴、不产生在美国,许多行业至关重要。
(国防占17%的钴生产。
1979年)钴大局部来自非洲中部,一个政治上不稳定的地区。
1946年的战略和关键材料储藏法案需要钴储藏,将美国政府通过一项为期三年的战争。
建立了库存在1950年代,出售大局部在1970年代初,然后决定在1970年代末建立起来,与8540万磅。
大约一半的库存目标的储藏已经在1982年收购了。
建立一个数学模型来管理储藏的战略金属钴。
你需要考虑这样的问题:库存应该有多大?以什么速度应该被收购?一个合理的代价是什么金属?你也要考虑这样的问题:什么时候库存应该画下来吗?以什么速度应该是画下来吗?在金属价格是合理出售什么?它应该如何分配?有用的信息在钴政府方案在2500万年需要2500万磅的钴。
美国大约有1亿磅的钴矿床。
生产变得经济可行当价格到达22美元/磅(如发生在1981年)。
要花四年滚动操作,和thsn六百万英镑每年可以生产。
1980年,120万磅的钴回收,总消费的7%。
1986 年美国大学生数学建模竞赛MCM 试题1986年MCM A:水文数据下表给出了Z的水深度尺外表点的直角坐标X,Y在码(14数据点表省略)。
深度测量在退潮。
你的船有一个五英尺的草案。
你应该防止什么地区的矩形(75200)X(-50、150)?1986年MCM B:Emergency-Facilities位置迄今为止,力拓的乡牧场没有自己的应急设施。
什么是五一数学建模竞赛五一数学建模竞赛前身是“苏北数学建模联赛”,是由江苏省工业与应用数学学会、徐州市工业与应用数学学会、中国矿业大学主办、由中国矿业大学学生社团——大学生数学建模协会承办的立足江苏,面向全国、辐射国际的省级大学生群众性课外学术科技竞赛活动,至今已经成功举办十三届,中科院院士李大潜为该项竞赛题词、中国教育电视台两次专题报道,目前竞赛已经吸引5个国家,国内31个省市自治区近1.5万名大学生参赛。
五一数学建模联赛和国际数学建模竞赛模式相同,以队为参赛单位,每队3人,竞赛时各队从三个赛题中任选一题,在72小时内,通过查阅图书馆及网上等各类资源文献,对问题进行分析和建模,利用计算机编程,对问题进行优化求解,最终给出结论并提交竞赛论文。
竞赛的题目主要是由工程技术、经济管理、社会生活等领域中的实际问题提炼加工而成,没有固定的标准答案,留有充分余地供参赛者发挥其聪明才智和创造精神。
往届赛题如毕业生就业问题、碳排放约束下的江苏省煤炭消费量预测、寻找黑匣子、延迟退休、生态文明建设评价等都来自企业生产生活中的实际问题。
这些问题的解决都为相应的单位带来了良好的经济和社会效益,并产生了一定的广告宣传效应。
比赛事项参赛者报名参赛,报名截止日期为4月19-4月22日(线上)4月19至20日我们会在南北区摆点宣传报名(线下)校内网上集体报名时间:报名结束后我们会在2018年4月23日(星期一晚上)19:00—20:30统一进行网上报名(每个队伍至少要到一人报名,且需要队员的学号、联系方式、专业年级等基本信息,请提前准备好)。
比赛期间我们会提供机房让大家有一个良好的参赛环境。
报完名后,要在负责人处登记队号并支付宝缴费50元,未缴费者报名试未无效。
奖项设置1)比赛设一等奖、二等奖、三等奖和成功参赛奖。
其中一、二、三等奖分别占报名队数的5%、15%、25%;凡成功上交有效论文的队将获成功参赛奖。
2)比赛将根据所指导队伍的获奖情况评出“优秀指导教师”若干名。
数学建模题目名称:关于全球碳排放的预测模型组别:2014004B姓名:范程学号:4161145130582014年5月目录目录 (2)摘要 (3)1. 前言 (4)1.1全球碳排放现状 (4)1.2 全球变暖 (4)1.3 面临的问题 (5)2.问题重述 (5)3.问题假设 (5)4.符号约定与说明 (6)5.问题澄清 (6)6.模型建立与求解 (7)6.1 问题一至2030、2050年碳排放预测 (7)6.1.1 GM(1,1)模型设定 (7)6.1.2 模型检验方法 (8)6.1.3 GM(1,1)碳排放模型的建立 (9)6.1.4 碳排放预测值分析 (11)6.1.5 对于GM(1,1)模型的评价 (11)6.2 问题二控制全球温度变化的预测 (12)6.2.1相关分析 (12)6.2.2 模型求解 (14)6.2.3 模型评价 (15)6.3 问题三各国排碳权及承担义务 (16)6.3.1 模型的假设 (19)6.3.2 求解 (20)6.3.3影响碳排放分配的因素 (21)6.3.4分配碳排放的原则和措施 (21)7.技术报告 (22)7.1 简介 (22)7.2 全球碳排放 (22)7.2.1全球碳排放形式 (22)7.2.1全球碳排放的预测 (23)7.3 抑制全球温度上升的解决方案 (23)7.4 各国义务 (23)参考文献 (24)关于全球碳排放的预测模型摘要本文建模的方法多元,因为碳排放模型的复杂与不确定性,于是我们应用基于灰色模型的方法对世界的碳排放量做出预测和分析。
依据1981-2010年全球碳排放量数据采用GM(1,1)模型对全球2030年的碳排放量进行了预测,从而进一步预测后20年碳排放量,在数据预测完成之后对数据进行残差计算,验证模型的预测精度。
建立热力学方程,运用回归模型,得到全球二氧化碳浓度和全球平均温度的关系,运用热力学方程设置温度上限,继而得到一个合理的碳浓度上限,通过与碳排放量之间的关系来制定减排的目标,完成联合国气候目标,二氧化碳浓度的变化的极限值。
煤炭价格走势分析摘要本文针对煤炭价格走势分析问题,用了spss软件的拟合与预测分析,多元线性函数拟合求解最优值,替换法求解最优值,综合分析的方法,最终确立了煤炭价格的走势以及煤炭产业的未来发展趋势。
针对问题一,根据所收集到的数据,用spss软件图形中的散点分别绘制出动力煤价格,焦化煤价格,化工煤价格随时间的变化曲线,分别分析过去各类煤炭的价格以及现在各类煤炭价格的变化曲线。
然后,继续用spss软件分析中的预测,创建模型,得到各类煤炭价格随时间的拟合预测曲线,在所得的拟合预测曲线中,我们设置了2008年第二个季度以及2009年第三个季度,两个缺失值,我们根据拟合出的曲线,对比实际值,分析判断拟合预测曲线的准确性,进而判断预测未来价格趋势的准确性。
针对问题二,采用了两个方案,方案一采用多元线性函数拟合求解最优值,分析需求量,产量与价格之间的关系,并根据问题一中的各类煤炭价格,采用加权确定全国煤炭价格,用MATLAB软件绘制出煤炭价格,产量以及需求量之间的三维曲线关系图像,由三维曲线可得,煤炭产量与需求量均对价格有影响,并通过MATLAB编程绘制全国煤炭产量、需求量对价格的线性拟合函数,最后根据全国煤炭价格的拟合值与实际统计值越接近,则所确立的价格越合理来确定目标函数。
方案二采用替代法求解最优值,经济增长决定煤炭需求,而发电量的数据又是与经济增长密切相关的,煤炭供给的增长量主要取决于新增煤炭产能的增加,这一切均可以通过煤炭行业固定资产投资额反应出来,所以,方案二,采用发电量替代煤炭需求量,固定资产替代煤炭产量,分别建立了两者与价格之间的拟合曲线,采用综合分析的方法,确定了煤炭的最优价格以及最优产量。
并对两个方案做了对比分析。
针对问题三,以煤炭消费量与煤炭实际价格的模型为基础,运用Masih法确定煤炭需求量与经济增长的函数关系。
首先根据煤炭消费量与煤炭实际价格的模型确定煤炭需求量的函数关系式,然后通过残差统计量检验,检测各变量时间序列的平稳性,之后运用spss软件对已知数据进行线性回归分析,最后将已知数据进行对数化处理,将处理后的数据重新又spss软件对煤炭需求量进行线性回归运算,得到煤炭需求量与经济增长的函数关系。
煤炭行业的市场定价与价格策略煤炭作为世界上最主要的能源资源之一,在能源市场中扮演着重要角色。
在煤炭行业中,市场定价和价格策略是企业稳定发展、提高竞争力的关键因素之一。
本文将讨论煤炭行业的市场定价与价格策略,并深入探讨其对企业和市场的影响。
一、市场定价方法1. 基于成本的定价煤炭行业中,成本是影响定价的主要因素之一。
企业可以通过计算生产成本,包括采矿、运输、人工和管理等费用,并加上合理的利润,来确定产品的市场价格。
这种定价方法相对简单,但需要准确估计和把握成本,并灵活应对市场变化。
2. 基于需求的定价需求是决定市场价格的另一个重要因素。
企业可以根据市场需求程度,决定产品的供给量和市场价格。
当需求旺盛时,企业可以提高价格以提高利润;而当需求低迷时,则需要降低价格以刺激市场。
3. 基于竞争的定价竞争状况对市场价格有着直接的影响。
在竞争激烈的市场中,企业为了争夺市场份额,可能会选择降低价格。
而在垄断市场中,企业则可以通过提高价格来获得更高的利润。
基于竞争的定价需要企业对市场竞争环境进行准确的分析和判断。
二、价格策略1. 高附加值策略随着社会经济的发展,煤炭市场中对高质量、低污染煤炭的需求逐渐增加。
企业可以通过提供高附加值的煤炭产品,如低硫、低灰分煤炭,来吸引消费者并获取更高的价格。
这种策略需要企业在生产过程中加强质量管理和技术创新。
2. 区域差异化定价策略不同地区对煤炭的需求和供应情况存在差异。
企业可以根据不同地区的市场需求和竞争情况,制定差异化的价格策略。
例如,在煤炭供应充足的地区,企业可以适当降低价格来提高销量;而在供应短缺的地区,企业可以提高价格以获得更高利润。
3. 长期合同策略长期合同是煤炭行业中常见的一种价格策略。
企业可以与客户签订长期供应合同,以稳定市场需求和价格。
长期合同有助于企业建立长期合作关系,并提供更稳定的销售渠道。
4. 价格弹性策略价格弹性是指价格变化对需求变化的敏感程度。
企业可以通过对市场价格弹性的评估,确定产品价格调整的幅度和频率。
论文各部分应该写什么?!二、各部分写法2.1摘要摘要是一篇论文的重中之重,是论文内容的概括和总结。
要求语言简洁精辟,结构清晰有序,能够一目了然。
2.1.1摘要内容摘要第一段为全文的引导、铺垫,主要表达研究该问题的背景、前景和研究该问题的意义,字数占2~3行左右。
摘要的主要内容根据问题数量来进行分段,每一段对都必须按照以下四句话来进行书写:因为什么原因,建立什么模型;通过什么方法,得到什么结果。
“因为什么原因”主要是指问题分析中非常重要的一些核心语句,将问题分析简单的提炼成一句话,体现出本文对该问题的思考过程。
“建立什么模型”主要是表明对于该问题所使用的是什么模型或是算法。
“通过什么方法”主要是对于解题方法的提炼,通过1~2句话来描述解题的核心步骤或使用的解题方法。
第2和第3两部分是对模型的建立与求解的浓缩和精练,务必将解题部分中,最重要的一面展现出来。
“得到什么结果”主要是写出每一个问题的答案,答案要尽量清晰明确有条理,每一个问题的答案都需要写到摘要中。
最后是关键词,关键词主要写结合问题、方法、理论、概念等,数量在3~4个左右,最多不得超过5个,关键词的长度尽可能不超过一行。
2.1.2摘要排版摘要的结构必须要非常清楚明了,能让读者清晰地区分每个部分所叙述的内容,所以摘要的排版结构也同样重要。
摘要的排版提倡使用沙漏式结构,如下所示:实例段落:问题一,不仅要满足客户的要求,同时要求得到的利润要尽量大,就要涉及生产的安排,产品在筒仓中的存储,和产品的卸料和装配。
由于对利润影响最大的因素为产品的生产成本和生产量,所以本文建立了线性规划模型,设计了两个目标函数,即:最大产量f max =0.8x +0.6y +0.7z最小成本f min =(500+10)⨯x +(700+10)⨯y +(300+10)⨯z通过对目标函数的分析找出各种限制条件,进行分布限制,运用Lingo 软件求解。
得到每年能够生产的合格产品最大量为4273817吨。
2020年第十七届五一数学建模竞赛题目
A题煤炭价格预测问题
煤炭属于大宗商品,煤炭价格既受国家相关部门的监管,又受国内煤炭市场的影响。
除此之外,气候变化、出行方式、能源消耗方式、国际煤炭市场等其他因素也会影响煤炭价格。
请完成如下问题。
1.请建立数学模型,通过量化分析的方法,给出影响煤炭价格的主要因素(不超过10种),并且
以秦皇岛港动力煤价格为例,给出从2019年5月1日至2020年4月30日,影响秦皇岛港动力煤价格的主要因素的排序(按影响程度从大到小排序,不超过10种)。
2.请结合秦皇岛港动力煤价格的历史数据(附件1),以及问题1中的影响煤炭价格的主要因素,
建立煤炭价格预测模型,分别以天、周、月为单位,预测未来31天、35周、36个月的煤炭价格,并完成表1。
3.为了更加准确地预测秦皇岛港动力煤价格,请综合考虑未来各种情况(例如突发事件)引起的
煤炭价格影响因素在结构性和重要性方面的变化,建立煤炭价格综合预测模型,并给出模型的预测结果。
4.为保障我国未来煤炭市场的平稳发展,请结合问题3的模型,向政府部门提供相关的政策建议。
注:
(1)附件1-秦皇岛港动力煤价格数据由“中国煤炭市场网”提供(https:///),数据是以“周”为单位的数据,相关的煤炭价格是日期所在周的价格。
(2)本题中相关参数说明如下:
秦皇岛港动力煤:硫份0.8%,发热量5500kacl/kg;
煤炭价格类型:煤炭平仓价(FOB价格,是指煤运到港口并装到船上的价格);
煤炭价格单位:元/吨。
线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。
案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。
全国大学生数学建模竞赛经典试题导语:数模参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网的经典的数学建模问题:运用灰色关联模型为我国产业结构的调整和优化提供建议改革开放以来,中国的产业结构优化都是以经济增长为主要目标,在该目标下所形成的产业结构己经使中国经济保持了近三十年的高速增长。
但是,由于忽视了能源与环境目标,过快的经济增长导致了产业结构失衡、能源消耗过渡、环境污染严重等问题。
因此,产业结构优化作为促进经济发展的重要手段已不是传统意义所指,结构优化的目标更着重于促进产业持续、健康发展以及产业与自然、社会和谐发展,结构状态和变化趋势符合可持续发展要求,结构的优化和变革促进产业可持续发展能力增强,结构优化政策贯彻可持续发展战略思想等。
基于此结合收集的资料,建立数学模型,解决一下问题。
问题一:建立各产业对我国经济增长影响的定量数学模型。
问题二:定量分析能源消费结构对空气质量的的关系。
问题三:建立数学模型分析未来能源消费的大体趋势。
问题四:结合以上问题结论为我国产业结构的调整和优化提供一些建议。
一、问题分析问题一我们发现我国各产业对经济的增长都有一定的作用,通过表分析我们需要定量分析各产业对我国经济增长影响的大小,于是我们通过建立灰色关联的数学模型计算各产业灰色相对关联度p1,p2,p3,比较其大小发现各产业对我国经济增长的定量影响。
问题二我们认为SO2排放放映出我国空气质量的大体状况,而无论是煤炭,石油,天然气,电能等能源的消耗都会排放一定量的的SO2,但我们无法准确确定影响大小,于是我们考虑建立灰色关联的数学模型,计算出各能源对SO2排放的影响程度大小,进而确定能源消费结构对空气质量的关系。
一、问题背景
以秦皇岛为例,对煤炭的影响因素分析,了解煤炭价格的变化,并提出合理的政策建议。
二、问题分析
2.1问题一的分析
问题一要求通过量化分析的方法,给出不超过10种的影响煤炭价格的主要因素,同时以秦皇岛港动力煤价格为例,给出从2019年5月1日至2020年4月30日,影响秦皇岛港动力煤价格的主要因素的排序。
2.2问题二的分析
问题二要求结合秦皇岛港动力煤价格的历史数据和影响煤炭价格的主要因素,预测未来31天、35周、36个月的煤炭价格。
2.3问题三的分析
问题三要求综合考虑未来各种情况引起的煤炭价格影响因素在结构性和重要性方面的变化并给出预测结果。
2.4问题四的分析
问题四要求在保障我国未来煤炭市场的平稳发展的前提下,结合问题三的模型,向政府部门提供相关的政策建议。
三、模型假设
1.假设国家对煤炭价格的干预呈现周期性;
四、模型建立与求解
4.1指标的选取
本文选取供给因素、需求因素、政策因素、综合因素作为影响煤炭价格的一级指标。
如图示二级指标的选取
图1 指标
4.1.1排序
将指标进行从排序结果如下表所示:
表1 指标优化度排序
指标 排名 指标
优化度
煤炭库存量 1 需求量
6 政策 2 气候变化
7 煤炭成本 3 原煤产量
8 国际煤炭价格 4 下游煤炭需求
9 排放约束 5
铁路运力
10
4.2价格预测1
利用灰色预测可以得到响应方程为:
(1)
(0)0.0012(1)[(1)415608.33]e 415608.33k x k x ∧+=+-
得到结果 4.2.1价格预测2
多元方程为:
0181,(,1,1)8,(,1,1)t t t t t t t y a a x a x ∧
∧
∧
∧
-+-+=++
+
表2预测结果 周 预测价格 周 预测价格 周
预测价格 5月6日 659.09 7月29日 663.13 10月21日 667.17 5月13日 659.42 8月5日 663.46 10月28日 667.51 5月20日 659.76
8月12日 663.80
11月4日 667.84
6月3日660.438月26日664.4811月18日668.52
6月10日660.779月2日664.8111月25日668.86
6月17日661.119月9日665.1512月2日669.19
6月24日661.449月16日665.4912月9日669.53
7月1日661.789月23日665.8212月16日669.87
7月8日662.129月30日666.1612月23日670.20
7月15日662.4510月7日666.5012月30日670.54
7月22日662.7910月14日666.83
4.3预测3
36月结果如表所示
表3 未预测结果3
月预测价格月预测价格月预测价格2020年5月640.002021年5月642.642022年5月645.55 2020年6月640.212021年6月642.872022年6月645.80 2020年7月640.422021年7月643.102022年7月646.06 2020年8月640.642021年8月643.342022年8月646.32 2020年9月640.852021年9月643.582022年9月646.58 2020年10月641.072021年10月643.822022年10月646.84 2020年11月641.292021年11月644.062022年11月647.10 2020年12月641.512021年12月644.302022年12月647.37 2021年1月641.732022年1月644.552023年1月647.64 2021年2月641.952022年2月644.792023年2月647.91 2021年3月642.182022年3月645.042023年3月648.18 2021年4月642.412022年4月645.292023年4月648.45
4.4价格预测4
不妨考虑易量化的指标,如:煤炭库存量能源消耗、排放约束因素对其进行分析。
5.9建议
需要对煤炭价格的波动提出相关建议,本文从国家层面、市场层面和企业层面并结合问题三中的概率组合预测模型提出建议。
六、模型检验
考虑到实际应用层面的因素,对模型进行检验其结果均符合实际要求。
七、模型评价
7.1.模型优点
思想新颖,贴近实际较为合适。
7.2模型缺点
主观性太强。
附录
Shujv=MyData(1,1);
for j=1:1:3
n=1;
for i=1:1:size(M,1)
for k=0:1:MyData(i,1)-MyData(i+1,1)
if k~=0
n=n+1;
end
Shujv(n,j+1)=MyData(i,j+1)+M(i,j).*k;
end
end
Shujv(:,1)=linspace(MyData(1,1),MyData(end,1),size(Shujv,1)) c1=Ydata(1:40,3);
x1=linspace(1,length(a1),length(a1));。