解析几何中有关四点共圆问题的证明
- 格式:pdf
- 大小:86.00 KB
- 文档页数:2
证明四点共圆的基本方法证明四点共圆有下述一些基本方法:方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。
)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.上述五种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这五种基本方法中选择一种证法,给予证明.判定与性质:圆内接四边形的对角和为π,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O的切线EF,AC、BD交于P,则A+C=π,B+D=π,角DBC=角DAC(同弧所对的圆周角相等)。
角CBE=角ADE(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP()四点共圆的图片EB*EA=EC*ED()EF*EF= EB*EA=EC*ED()(切割线定理,割线定理,相交弦定理统称)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)证明四点共圆的原理四点共圆证明四点共圆基本方法:方法1把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆.方法2把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.四点共圆的判定是以四点共圆的性质的基础上进行证明的。
四点共圆的6种判定方法证明
证明四点共圆有下述6种方法:
方法1:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。
方法2:把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆。
方法3:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
方法4:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
方法5:把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成
的两线段之积,即可肯定这四点也共圆。
方法6:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆。
四点共圆怎么判定
四点共圆的判定方法:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆等。
扩展资料
判定定理
方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的`同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)
方法2:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)
相关计算
圆的半径:r。
直径:d。
圆周率:π(数值为3.1415926至3.1415927之间……无限不循环小数),通常采用3.14作为π的数值。
圆面积:S=πr2;S=π(d/2)2。
半圆的面积:S半圆=(πr2;)/2。
圆环面积:S大圆-S小圆=π(R2-r2)(R为大圆半径,r为小圆半径)。
圆的周长:C=2πr或c=πd。
半圆的周长:d+(πd)/2或者d+πr。
向你推荐的相关文章
相关文章列表
微信扫码分享。
四点共圆的判定与性质一、四点共圆的判定(一)判定方法1、若四个点到一个定点的距离相等,则这四个点共圆。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
5、同斜边的直角三角形的顶点共圆。
6、若AB、CD两线段相交于P点,且PA×PB=PC×PD,则A、B、C、D四点共圆(相交弦定理的逆定理)。
7、若AB、CD两线段延长后相交于P。
且PA×PB=PC×PD,则A、B、C、D四点共圆(割线定理)。
8、若四边形两组对边乘积的和等于对角线的乘积,则四边形的四个顶点共圆(托勒密定理的逆定理。
(二)证明1、若四个点到一个定点的距离相等,则这四个点共圆。
若可以判断出OA=OB=OC=OD,则A、B、C、D四点在以O为圆心OA为半径的圆上。
2、若一个四边形的一组对角互补(和为180°),则这个四边形的四个点共圆。
若∠A+∠C=180°或∠B+∠D=180°,则点A、B、C、D四点共圆。
3、若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆。
若∠B=∠CDE,则A、B、C、D四点共圆证法同上。
4、若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆。
若∠A=∠D或∠ABD=∠ACD,则A、B、C、D四点共圆。
5、同斜边的直角三角形的顶点共圆。
如图2,若∠A=∠C=90°,则A 、B 、C 、D 四点共圆。
6、若AB 、CD 两线段相交于P 点,且PA ×PB=PC ×PD ,则A 、B 、C 、D 四点共圆(相交弦定理的逆定理)。
7、若AB 、CD 两线段延长后相交于P 。
四点共圆的7种判定方法证明要证明四个点共圆,可以使用以下七种判定方法。
方法1:使用相交弧的性质假设四个点A、B、C、D共圆。
我们可以通过观察四个点连线所形成的相交弧的性质来进行判定。
即如果从A到B的弧和从C到D的弧的起点和终点重合,或者从B到C的弧和从D到A的弧的起点和终点重合,或者从C到D的弧和从A到B的弧的起点和终点重合,则可以证明四个点共圆。
方法2:使用余弦定理假设四个点A、B、C、D共圆,并且以A为圆心,AB为半径做圆,那么可以使用余弦定理证明。
首先,假设O为C到D的中点,我们可以根据余弦定理得出:AC² = AO² + OC² - 2 * AO * OC * cos∠AOC,同样地,我们可以得出:BD² = BO² + OD² - 2 * BO * OD * cos∠BOD。
由于共圆的性质,我们可以得到∠AOC = ∠BOD,因此AC² = BD²,从而可以证明四个点共圆。
方法3:使用向量运算假设四个点A、B、C、D共圆,我们可以使用向量运算进行证明。
首先,我们可以构建向量AB和向量AC,然后计算它们的叉乘,得到一个向量N。
同样地,我们可以构建向量AD和向量AC,并计算它们的叉乘,得到另一个向量M。
如果向量N和向量M垂直(即内积等于0),那么可以证明四个点共圆。
方法4:使用角平分线的性质假设四个点A、B、C、D共圆,并且AC和BD相交于点P。
那么根据角平分线的性质,我们可以得知∠APC=∠BPD。
同样地,由于共圆的性质,我们可以得到∠APC=∠BPC,因此∠BPD=∠BPC。
这意味着点P在角BPD的角平分线上,所以我们可以得出AD与BC也相交于点P,从而可以证明四个点共圆。
方法5:使用Miquel点的性质假设四个点A、B、C、D共圆,并且以AC为直径作圆,那么D一定在这个圆上。
同样地,以BD为直径作圆,C也一定在这个圆上。
解析几何中证明四点共圆的四种方法作者:徐加生来源:《新高考·高三语数外》2010年第04期圆具有丰富的几何性质,它与三种圆锥曲线之间有着千丝万缕的内在联系.圆的性质的应用是近几年高考命题中体现“在知识交汇点设计问题”这一思路的良好素材,应引起我们足够的重视.本文介绍证明四点共圆问题的四种方法,供同学们参考.一、直接求出圆的方程例1设0=1和双曲线x2cosθ-y2sinθ=1有四个不同的交点.(1) 求θ的取值范围;(2) 证明这四个交点共圆,并求该圆半径的取值范围.解析(1) 将方程x2sinθ+y2cosθ=1和x2cosθ-y2sinθ=1联立,解得x2=sinθ+cosθ,y2=cosθ-sinθ.由两曲线有四个交点,知x2>0,y2>0. 又0(2) 由(1)得x2+y2=2cos θ0二、利用圆系方程来判断例2由抛物线y2=2px(p>0)外一点P引抛物线的两条割线PAB,PCD,其倾斜角分别为α,β,且α+β=π,问A,B,C,D四点能否共圆?解析设点P 坐标为(a,b),又直线PAB的斜率为tan α,直线PCD的斜率为tan β(显然α,β均不等于0与),故而直线PAB的方程为y-b-tanα(x-a)=0,直线PCD的方程为y-b-tanβ(x-a)=0.又α+β=π,于是将两方程相乘(合并),可得直线PAB, PCD合并起来的轨迹方程为(y-b)2-tan2α(x-a)2=0.又抛物线的方程为y2-2px=0,故A,B,C,D四点坐标都满足方程(y-b)2-tan2α(x-a)2+λ(y2-2px)=0,即tan2αx2-(λ+1)y2-2(atan2α-pλ)x+2by+a2tan2α-b2=0.令λ+1=-tan2α且4(atan2α-pλ)2+4b2-4(a2tan2α-b2)>0,则上述方程表示圆,故而当点P 坐标适当时,A,B,C,D四点可以共圆.三、证明同弦所对的圆周角相等或互补例3设A,B是双曲线x2-=1上的两点,N(1,2)是线段AB的中点.如果线段AB的垂直平分线与双曲线相交于C,D两点,那么A,B,C,D四点是否共圆?为什么?解析设A(x1,y1),B(x2,y2),则-=1,-=1,x1+x2=2,y1+y2=4.将前两式相减,得(x1-x2)(x1+x2)=(y1-y2)(y1+y2);将后两式代入,得=1,即直线AB的斜率为1,故易得直线AB的方程为x-y+1=0.因为CD是线段AB的垂直平分线,故易得直线CD的方程为x+y-3=0.将直线AB的方程x-y+1=0与双曲线方程x2-=1联立,可解得交点A(-1,0)和B(3,4)(不妨设);将直线CD的方程x+y-3=0与双曲线方程x2-=1联立,可解得交点C(-3-2,6+2)和D(-3+2,6-2)(不妨设).则=(-2-2,6+2),=(-2+2,6-2),=(-6-2,2+2),=(-6+2,2-2).容易计算得cos∠CAD==0,cos∠CBD==0,故∠CAD=∠CBD=90°.于是无论点A,B在直线CD的同侧还是异侧(实际上,这里显然A,B在CD的异侧),都有A,B,C,D四点共圆.例4设A,B是椭圆3x2+y2=λ上的两点,N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C,D两点.(1) 确定λ的取值范围,并求直线AB的方程;(2) 试判断是否存在这样的λ,使得A,B,C,D四点在同一个圆上?并说明理由.解析(1) 设A(x1,y1),B(x2,y2),则3+=λ,3+=λ,x1+x2=2,y1+y2=6.将前两式相减,得3(x1-x2)(x1+x2)+(y1-y2)(y1+y2)=0;将后两式代入,得=-1,即直线AB的斜率为-1,故易得直线AB的方程为x+y-4=0.将直线AB的方程代入椭圆的方程,整理得4x2-8x+16-λ=0 ①,故Δ=64+16(λ-16)>0,得λ>12,即λ的取值范围为[12,+∞).(2) 因为 CD垂直平分线段AB,所以直线CD的方程为y-3=x-1.将其代入椭圆的方程,整理得4x2+4x+4-λ=0 ②.解方程①、②,可得A1+,3-,B1-,3+,C-+,+,D--,-,则AC2 =2+2,AD2 =2+2,所以AC2+AD2=2(λ-3).又CD2=(λ-3)+(λ-3)=2(λ-3),故AC2+AD2=CD2,所以AC⊥AD.同理,BC⊥BD.于是无论A,B在CD的同侧还是异侧(实际上,这里显然A,B在CD的异侧),都有A,B,C,D四点共圆.所以只要λ>12,总有A,B,C,D四点共圆.点评在解例3和例4时,都是先求出A,B,C,D四个点的坐标,然后以CD为弦,求出角CAD和CBD,并发现它们既相等又互补,于是得出A,B,C,D四点共圆.只是在求角时,例3利用向量数量积的定义,例4利用余弦定理(勾股定理是余弦定理的特例). 注意,如果两个角相等而不互补,则两点须在弦的同侧;如果两个角互补而不相等,则两点须在弦的异侧.四、找圆心证半径相等例5设p>0是一常数,若直线x-2y-2p=0与抛物线y2=2px交于A,B两点,又O为抛物线的顶点,C(0,4p)为定点,判断A,B,O,C四点是否可以共圆?解析若A,B,O,C四点共圆,则此圆的圆心应该是弦AB的垂直平分线与弦OC的垂直平分线的交点.设A(x,y),B(x,y),则它们的坐标同时满足方程x-2y-2p=0和y2=2px,将二式联立,消去x,得y2-4py-4p2=0.而弦AB的中点H的坐标为,,即H(6p,2p),则弦AB的垂直平分线方程为2x+y-14p=0.又弦OC的垂直平分线方程是y=2p,故圆心即为点H.又可得AB====4p,而易得OH=2p,CH=2p,即有OH=CH=AH=BH.所以A,B,O,C四点可以共圆.1. 已知椭圆+=1的两个焦点分别为F,F,问椭圆上是否存在点P,使△PFF的面积为1?若存在,这样的点P有几个?这些点P是否可能在同一个圆上?1. 由椭圆+=1,得FF=2c=2 .又由△PFF的面积S=|FF||y|=1,得|y|=1,即△PFF边FF上的高为1.而椭圆短半轴长为,故由椭圆的对称性,知满足条件的点有四个,P,P,P,P .且这四点到原点距离相等,故这四点共圆.。
四点共圆证明四点共圆有下述一些基本方法:方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆.(若能证明其两顶角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。
)(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法3把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角。
那么这四点共圆)方法4把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(根据托勒密定理的逆定理)方法5证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.既连成的四边形三边中垂线有交点,即可肯定这四点共圆.方法6同斜边的两个RT三角形的四个顶点共圆,其斜边为圆的直径判定与性质:圆内接四边形的对角和为180°,并且任何一个外角都等于它的内对角。
如四边形ABCD内接于圆O,延长AB和DC交至E,过点E作圆O 的切线EF,AC、BD交于P,则A+C=π,B+D=π,角DBC=角DAC(同弧所对的圆周角相等)。
角CBE=角ADE(外角等于内对角)△ABP∽△DCP(三个内角对应相等)AP*CP=BP*DP(相交弦定理)四点共圆的图片EB*EA=EC*ED(割线定理)EF*EF= EB*EA=EC*ED(切割线定理)(切割线定理,割线定理,相交弦定理统称圆幂定理)AB*CD+AD*CB=AC*BD(托勒密定理Ptolemy)弦切角定理四点共圆的判定定理:用反证法证明现就“若平面上四点连成四边形的对角互补。
证明四点共圆的方法
四点共圆是几何学中一个经典的问题,它指的是当四个点在同一个平面上时,
它们能否构成一个圆。
在数学中,我们可以通过几何推理和证明来解决这个问题。
下面,我将介绍几种证明四点共圆的方法。
首先,我们可以利用圆的定义来证明四点共圆。
根据圆的定义,一个平面上的
点到另一个点的距离等于圆的半径时,这些点就构成了一个圆。
因此,我们可以通过计算四个点之间的距离,如果它们之间的距离都相等,那么这四个点就共圆。
其次,我们可以利用圆的性质来证明四点共圆。
根据圆的性质,圆上任意两点
与圆心的距离相等。
因此,我们可以选择其中的三个点,计算它们与圆心的距离,如果它们的距离相等,那么第四个点也必定在同一个圆上,从而证明四点共圆。
另外,我们还可以利用向量的方法来证明四点共圆。
通过向量的性质,我们可
以将四个点表示为向量的形式,然后利用向量的线性相关性来判断这四个点是否共圆。
如果这四个点的向量线性相关,那么它们就共圆。
最后,我们还可以利用解析几何的方法来证明四点共圆。
通过建立坐标系,我
们可以将四个点的坐标表示出来,然后利用圆的标准方程来判断这四个点是否共圆。
如果这四个点满足圆的标准方程,那么它们就共圆。
综上所述,证明四点共圆的方法有很多种,可以通过圆的定义、圆的性质、向量、解析几何等多种方法来进行证明。
在实际问题中,我们可以根据具体的情况选择合适的方法来进行证明,从而解决四点共圆的问题。
希望以上方法能够帮助大家更好地理解和应用四点共圆的概念。
四点共圆的判定方法证明嘿,咱今儿个就来好好唠唠这四点共圆的判定方法证明!你说这四点共圆,就像是四个小伙伴,要想知道它们是不是真的能凑成一个圆,那可得有几招厉害的法子呢!先来说说这第一种判定方法。
如果四个点到一个定点的距离相等,那它们不就乖乖地在一个圆上啦!这就好比是一群孩子围着一个糖果罐子,离罐子距离一样的不就在一个圈里嘛!你想想是不是这个理儿?还有一种呢,就是如果一个四边形的一组对角互补,那这四个点也能共圆哟!这就好像是两个人,一个喜欢吃甜,一个喜欢吃辣,互补得很,那他们就能愉快地一起玩耍啦,这四个点也是一样的道理呀!要是这对角不互补,那它们可就凑不到一块儿去咯!再有呢,就是如果两个三角形有一条公共边,且在公共边同侧的两个顶点所对的边相等,那这四个点也能共圆。
这就跟玩拼图似的,这几块正好能拼成一个完整的图案,那它们就是一伙儿的呀!你可别小瞧了这些判定方法,它们就像是一把把钥匙,能帮我们打开四点共圆这个神秘大门呢!在解决很多几何问题的时候,那可真是大显身手呀!比如说,当我们遇到一些图形里有几个点,想要判断它们是不是能共圆,这时候这些方法不就派上用场啦?就好像有一次,我在做一道题的时候,怎么看那几个点都觉得它们应该在一个圆上,但是又不确定。
然后我就试着用这些判定方法一个一个去试,嘿,还真让我给试出来了!那种感觉,就像是找到了宝藏一样兴奋!而且啊,这些判定方法不仅仅是在数学里有用,在生活中有时候也能找到类似的道理呢!比如说,一群人要合作完成一件事情,那是不是也得有一些条件让他们能团结在一起呀?这和四点共圆不是有点像嘛!总之呢,这四点共圆的判定方法证明可真是有趣又实用!我们可得好好掌握它们,让它们为我们解决问题助一臂之力呀!这就是我对四点共圆判定方法证明的理解啦,你觉得怎么样呢?是不是也觉得很有意思呀?。
证明四点共圆常用的策略例析摘要:“四点共圆”是初等几何中一个很重要的内容,在竞赛数学中也经常会涉及到.本文将详谈求证四点共圆的几种解题策略,同时结合实例加以说明. 关键词:四点共圆 解题策略 1 四点共圆的概念如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.这类问题一般有两种形式:(1)证明某四点共圆或以四点共圆为基础证明若干点共圆; (2)通过证明某四点共圆得到一些重要的结果,进而解决问题. 2 证明四点共圆常用的几种解题策略: 2.1 利用圆的定义:即要证明A 、B 、C 、D 四点共圆,只要能找到一点O,使得A 、B 、C 、D 四点距离定点O 等长,即OA=OB=OC=OD ,则A 、B 、C 、D 四点共圆.例如,“证明菱形四边的中点共圆”就可以利用这个方法.事实上,菱形四边的中点与菱形对角线的交点等距离,因而得证.例1.如图1,⊙1o ,⊙2o ,⊙3o … 都经过点A 和B.点P 是线段AB 延长线上任意一点,且PC ,PD ,PE …分别与⊙1o ,⊙2o ,⊙3o …相切于点C,D,E,…。
求证:C,D,E …在同一个圆上。
剖析:此题较简单.只需要证明PC=PD=PE=…, 从而由圆 的定义即可知道C,D,E,…在以P 为圆心, PC 为半径的圆上.而证明PC=PD=PE=…,由于PC 2=PB ·PA,PD 2=PB ·PA, PC 2= PB ·PE 2=PB ·PA …故PC=PD=PE=……成立,从而得证. 2.2 利用角的关系若四点连成的四边形对角互补或有一外角等于它的内对角,则 这四点共圆.如图2:要证明A 、B 、C 、D 四点共圆,只需要找到∠DCE=∠DAB 或者∠BCD+∠DAB=180°即可.特别的,当∠DAB=∠BCD=90°时,A 、B 、C 、D 四点共圆,而且BD 为所共圆的直径.例2.如图3,在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK.C求证:(1)C ,D ,K ,M 四点共圆(2)∠DMA =∠CKB ∠DMA =∠CKB.(第二届袓冲之杯初中竞赛) 剖析:连接KM ,由∠DAM =∠CBK 易知A ,B ,M ,K 四点共圆,于是有∠DAB =∠CMK. ∠AMB =∠BKA∵∠DAB+∠ADC =180°∴∠CMK+∠KDC =180°. 故C ,D ,K ,M 四点共圆⇒∠DKC =∠CMD. 但已证∠AMB =∠BKA ,于是有∠DKB=∠CMA,∴∠DKB-∠DKC=∠CMA-∠CMD ∴∠DMA =∠CKB. 证明略. 例3.如图4,⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC 外接圆和△BKN 外接圆相交于B 和M. 求证:(1)C ,O ,K ,M 四点共圆.(2)∠BMO=90°. (改自第26届IMO 第五题)剖析:要证C ,O ,K ,M 四点共圆,只需证∠COK+∠CMK=180°.连接OC ,OK ,MC ,MK ,延长BM 到G.易得∠GMC=∠BAC=∠BNK=∠BMK.而∠COK=2·∠BAC=∠GMC+∠BMK=180°-∠CMK ,∴∠COK+∠CMK=180°⇒∴C ,O ,K ,M 四点共圆.在C ,O ,K ,M 所共的圆中,由OC=OK 得弧OC=弧OK ,于是有∠OMC=∠OMK.∵∠GMC=∠BMK ,且∠OMC+∠OMK+∠GMC+∠BMK=180° ∴∠BMK+∠OMK=90°,即∠BMO=90°.2.3 利用同底同侧等顶角的三角形:如图5,由∠ADB=∠ACB 可得A 、B 、C 、D 四点共圆. 特别地当∠ADB=∠ACB=90°,可知AB 为A 、B 、C 、D 四点所在圆的的直径.例4.如图6,点F E ,分别在线段BC AC ,上运动(不与端点重合),而且BF CE =,O 是ABC ∆的外心,证明F O E C ,,,四点共圆.(第四届“锐丰杯”初中数学邀请赛试题)剖析:易知BCO ACO ∠=∠,这由AOC ∆≌BOC ∆可得.要证 F O E C ,,,四点共圆,只需要证OCF OEF ∠=∠.由BF CE =和OBF BCO ACO ∠=∠=∠以及OB OC =可以证得ECO ∆≌FBO ∆,于是有FOB EOC ∠=∠,那么COB EOF ∠=∠,又由于OEF ∆和OCB ∆都是等腰三角形,BMK BACD所以OCF OEF ∠=∠,于是结论得证. 2.4 利用线段的等积关系:如果两线段AB ,CD 相交于E 点,且AE ·EB=CE ·ED ,则A ,B ,C ,D 四点共圆(如图7);或者AB ,CD 的延长线相交于E 点,且AE ·EB=CE ·ED ,则A ,B ,C ,D 四点共圆(如图8).例5.设XY 是⊙O 外一直线,OP ⊥XY 于P ,且交⊙O 于A ,过A 引两直线与⊙O 和XY分别相交于K ,M ,L ,N (图9),求证:K ,M ,L ,N 四点共圆. 剖析1:利用同底同侧等顶角的三角形,如图9:要证 K ,M ,L ,N 四点共圆,只要证∠KLX=∠KMN ,由于OP ⊥XY , 若过A 作⊙O 的切线AT ,则AT//XY ,因而∠KLX =∠KAT , 要证∠KLX=∠KMN 即需证∠KMN =∠KAT ,利用弦切角等于 同弧上的圆周角,∠KMN =∠KAT ,于是∠KLX=∠KMN ,即得证. 剖析2:利用线段的等积关系,要证K ,M ,L ,N 四点共圆, 只需证AM ·AN=AK ·AL ,如图10,注意∠APL 是直角三角形, 如果延长AO 交⊙O 于B ,连BK ,易得∠ALX=∠B ,即有 B ,K ,P ,L 四点共圆.因而AK ·AL=AP ·AB ,同理可得 ∠ANL=∠ABM ,于是M ,N ,P ,B 四点共圆,于是有AM ·AN= AP ·AB ,所以AM ·AN=AK ·AL 成立,故K ,M ,L ,N 四点共圆, 剖析至此结束.例6.如图11,⊙1o ,与⊙2o 相交于点C ,D ,过点D 的一条直线分别与⊙1o ,⊙2o 相交于点A ,B ,点P 在⊙1o 的弧AD 上,PD 与线段AC 的延长线交于点M ,点Q 在⊙2o 的弧BD 上,QD 与线段BC 的延长线交于点N .O 是△ABC 的外心,且MN OD ⊥,求证:P ,Q ,M ,N 四点共圆.(改自2007西部数学奥林匹克)剖析: 设三角形ABC 的外接圆O 的半径为R ,从N 到圆O 的切线为NX ,则2222R NB NC R NX NO +⋅=+= ①同理 22R MA MC MO +⋅=. ②EYXT YXT因为A ,C ,D ,P 四点共圆,所以MP MD MA MC ⋅=⋅ ③因为Q ,D ,C ,B 四点共圆,所以NQ ND NB NC ⋅=⋅, ④ 由①,②,③,④得MP MD NQ ND MO NO ⋅-⋅=-22)()(DP MD MD DQ ND ND +-+=)(22DP MD DQ ND MD ND ⋅-⋅+-=,由MN OD ⊥易证2222MD ND MO NO -=-(只须延长OD 交AB 于E, 22MD NO +222222ND MO EM DE NE OE +=+++=)所以DP MD DQ ND ⋅=⋅ 于是有N M Q P ,,,四点共圆.M图11。