证明四点共圆的方法
- 格式:pdf
- 大小:104.66 KB
- 文档页数:1
四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.1定理判定定理方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)托勒密定理若ABCD四点共圆(ABCD按顺序都在同一个圆上),那么AB⨯DC+BC⨯AD=AC⨯BD.例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。
解答:归纳法。
我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。
n=1,n=2很轻松。
当n=3时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形.我们发现这样的三个点共圆,边长最长的边是一条直径。
假设对于n大于等于3成立,我们来证明n+1。
假设直径为r(整数).找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC(边长a〈b<c).把原来的圆扩大到原来的c倍,并把一个边长为ra〈rb<rc的三角形放进去,使得rc边和放大后的直径重合。
这个三角形在圆上面对应了第n+1个点,记为P。
于是根据Ptolomy 定理,P和已存在的所有点的距离都是一个有理数。
(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。
四点共圆的6种判定是如下:
1、从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆。
2、把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等(同弧所对的圆周角相等),从而即可肯定这四点共圆。
3、把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
4、把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆。
5、四边形ABCD中,若有AB*CD+AD*BC=AC*BD,即两对边乘积之和等于对角线乘积,则ABCD四点共圆。
6、西姆松定理逆定理,若一点在一三角形三边上的射影共线,则该点在三角形外接圆上。
四点共圆的6种判定方法证明
证明四点共圆有下述6种方法:
方法1:从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆。
方法2:把被证共圆的四点连成共底边的两个三角形,若能证明其两顶角为直角,从而即可肯定这四个点共圆。
方法3:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
方法4:把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
方法5:把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成
的两线段之积,即可肯定这四点也共圆。
方法6:证被证共圆的点到某一定点的距离都相等,从而确定它们共圆。
四点共圆如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。
以上性质可以根据圆周角等于它所对弧的度数的一半进行证明。
1定理判定定理方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,若能证明其顶角相等,从而即可肯定这四点共圆。
(可以说成:若线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆)方法2 :把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
(可以说成:若平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆)托勒密定理若四点共圆(按顺序都在同一个圆上),那么⨯⨯⨯。
例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。
解答:归纳法。
我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。
1,2很轻松。
当3时,一个边长为整数的勾股三角形即可:比如说边长为3,4,5的三角形。
我们发现这样的三个点共圆,边长最长的边是一条直径。
假设对于n大于等于3成立,我们来证明1。
假设直径为r(整数)。
找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形(边长a<b<c)。
把原来的圆扩大到原来的c倍,并把一个边长为<<的三角形放进去,使得边和放大后的直径重合。
这个三角形在圆上面对应了第1个点,记为P。
于是根据定理,P和已存在的所有点的距离都是一个有理数。
(考虑P,这个点Q和直径两端的四个点,这四点共圆,于是是一个有理数因为定理里的其它数都是整数。
)引入一个新的点P增加了n个新的有理数距离,记这n个有理数的最大公分母为M。
四点共圆的7种判定方法证明要证明四个点共圆,可以使用以下七种判定方法。
方法1:使用相交弧的性质假设四个点A、B、C、D共圆。
我们可以通过观察四个点连线所形成的相交弧的性质来进行判定。
即如果从A到B的弧和从C到D的弧的起点和终点重合,或者从B到C的弧和从D到A的弧的起点和终点重合,或者从C到D的弧和从A到B的弧的起点和终点重合,则可以证明四个点共圆。
方法2:使用余弦定理假设四个点A、B、C、D共圆,并且以A为圆心,AB为半径做圆,那么可以使用余弦定理证明。
首先,假设O为C到D的中点,我们可以根据余弦定理得出:AC² = AO² + OC² - 2 * AO * OC * cos∠AOC,同样地,我们可以得出:BD² = BO² + OD² - 2 * BO * OD * cos∠BOD。
由于共圆的性质,我们可以得到∠AOC = ∠BOD,因此AC² = BD²,从而可以证明四个点共圆。
方法3:使用向量运算假设四个点A、B、C、D共圆,我们可以使用向量运算进行证明。
首先,我们可以构建向量AB和向量AC,然后计算它们的叉乘,得到一个向量N。
同样地,我们可以构建向量AD和向量AC,并计算它们的叉乘,得到另一个向量M。
如果向量N和向量M垂直(即内积等于0),那么可以证明四个点共圆。
方法4:使用角平分线的性质假设四个点A、B、C、D共圆,并且AC和BD相交于点P。
那么根据角平分线的性质,我们可以得知∠APC=∠BPD。
同样地,由于共圆的性质,我们可以得到∠APC=∠BPC,因此∠BPD=∠BPC。
这意味着点P在角BPD的角平分线上,所以我们可以得出AD与BC也相交于点P,从而可以证明四个点共圆。
方法5:使用Miquel点的性质假设四个点A、B、C、D共圆,并且以AC为直径作圆,那么D一定在这个圆上。
同样地,以BD为直径作圆,C也一定在这个圆上。
4点共圆的证明方法嘿,咱今儿个就来唠唠这四点共圆的证明方法。
你说这四点共圆,就像是四个小伙伴手牵手围成了一个圈,多有意思呀!咱先来说说第一种方法,对角互补法。
你想想啊,如果四边形的对角加起来正好是 180 度,那不就像两个好朋友,一个爱热闹,一个爱安静,他俩凑一起,刚刚好,这四点不就共圆了嘛!比如说有个四边形,一个角是 60 度,那另一个对角就得是 120 度,这样它们不就互补了嘛,那这四点大概率就是共圆的啦。
还有一种方法呢,叫外角等于内对角法。
这就好比是一个人在外面的表现和他在家里的性格一样,那多特别呀!如果一个四边形的外角等于它不相邻的内对角,那这四点也能共圆哦。
就好像外角是个调皮的孩子,内对角是个稳重的大人,他俩一对应,嘿,四点共圆的关系就出来了。
再来说说同弧所对的圆周角相等法。
这就好像一群人围着一个大蛋糕,同一块蛋糕上的人角度都一样呢!如果在同一个圆里,同一弧所对的圆周角都相等,那这几个点不就共圆了嘛。
最后还有一种方法,叫到定点等距离法。
你可以把这个定点想象成一个温暖的家,这几个点到这个家的距离都一样,那不就像都回到了温暖的怀抱嘛,它们当然就是共圆的啦。
你看,这四点共圆的证明方法是不是很神奇呀!就像是解开一道谜题的钥匙,每一种方法都能打开一扇通往四点共圆世界的大门。
咱学习这些方法,不就像是探险家去探索未知的领域嘛,充满了乐趣和挑战。
咱在做题的时候,遇到那些好像能四点共圆的图形,就可以用这些方法去试试呀,说不定就能找到答案呢!这就像在大海里捞针,你得有耐心,有方法,才能把那根针捞出来呀。
所以呀,大家可别小瞧了这四点共圆的证明方法,它们可是数学世界里的宝贝呢!学会了它们,咱就能在数学的海洋里畅游啦,那感觉,多棒呀!咱可得好好掌握这些方法,让它们成为我们学习数学的得力助手。
怎么样,是不是对四点共圆的证明方法有了更深的了解啦?加油哦,让我们一起在数学的道路上越走越远!。
四点共圆如果同一平面内的四个点在同一个圆上,那么称这四个点共圆,一般简称为“四点共圆〞。
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;〔2〕圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角。
以上性质可以根据圆周角等于它所对弧的度数的一半进展证明。
定理判定定理方法1:把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的同侧,假设能证明其顶角相等,从而即可肯定这四点共圆。
〔可以说成:假设线段同侧二点到线段两端点连线夹角相等,那么这二点和线段二端点四点共圆〕方法2 :把被证共圆的四点连成四边形,假设能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
〔可以说成:假设平面上四点连成四边形的对角互补或一个外角等于其内对角,那么这四点共圆〕托勒密定理假设ABCD四点共圆〔ABCD按顺序都在同一个圆上〕,那么AB⨯DC+BC⨯AD=AC⨯BD。
例题:证明对于任意正整数n都存在n个点使得所有点间两两距离为整数。
解答:归纳法。
我们用归纳法证明一个更强的定理:对于任意n都存在n个点使得所有点间两两距离为整数,且这n个点共圆,并且有两点是一条直径的两端。
n=1,n=2很轻松。
当n=3时,一个边长为整数的勾股三角形即可:比方说边长为3,4,5的三角形。
我们发现这样的三个点共圆,边长最长的边是一条直径。
假设对于n大于等于3成立,我们来证明n+1。
假设直径为r〔整数〕。
找一个不跟已存在的以这个直径为斜边的三角形相似的一个整数勾股三角形ABC 〔边长a<b<c〕。
把原来的圆扩大到原来的c倍,并把一个边长为ra<rb<rc的三角形放进去,使得rc边和放大后的直径重合。
这个三角形在圆上面对应了第n+1个点,记为P。
于是根据Ptolomy定理,P和已存在的所有点的距离都是一个有理数。
〔考虑P,这个点Q和直径两端的四个点,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。
证明四点共圆的基本方法1、利用圆的定义根据圆的定义可以知道,平面上到一个定点等距离的几个点在同一个圆上,这个圆是以定点为圆心,以定点到这几个点中任一点的距离为半径。
2、利用三角形的关系 (1)同斜边的直角三角形的各顶点共圆; (2)同底同侧张等角的三角形的各顶点共圆。
已知C 、D 在线段AB 的同侧,且∠ACB=∠ADB 。
求证:A ,B ,C ,D 四点共圆。
证明:如图7-39,过A ,B ,C 三点作⊙O 。
(1)如果D 点在⊙O 内部,则延长BD 交⊙O 于D ',连A D '。
∵∠D '=∠C ,且∠ADB >∠D '。
∴∠ADB <∠C ,这与∠ADB=∠ACB 矛盾。
因此D 点不可能在⊙O 的内部。
(2)如图7-40,如果D 点在⊙O 的外部,连AD ,BD 。
则必有一条线段与⊙O 相交,设BD 与⊙O 交于D ',连A D '。
∵∠A D 'B=∠ACB ,且∠D <∠A D 'B 。
∴∠D <∠ACB ,这与∠ADB=∠ACB 矛盾。
因此,D 点不可能在⊙O 的外部。
综上所述,D 点必在⊙O 上。
3、利用四边形的关系 (1)如果四边形的一组对角互补,那么它的两个顶点共圆(图7-41);(2)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆(7-42) 4、利用线段的乘积式的关系(1)线段AB ,CD 相交于P ,且PA ·PB=PC ·PD ,则A ,B ,C ,D 四点共圆。
证明:如图7-43,连AD ,BC ,AC 。
在△APD 和△BPC 中,∵PA ·PB=PC ·PD ,∴PBPDPC PA =。
又∠APD=∠BPC ,∴△APD ∽△BPC 。
∴∠B=∠D ,又B ,D 在线段AC 同侧。
因此,A ,C ,B ,D 四点共圆。
(2)两线段AB ,CD 的延长线相交于P ,且PA ·PB=PC ·PD ,则A ,B ,C ,D 四点共圆(图7-44)。
高中数学证明四点共圆的常见方法
思路一:先从四点中任选出三点作一圆,然后证明第四点也在这个圆上; 思路二:直接证明这四点到某一定点的距离都相等,从而确定它们共圆; 思路三:运用有关的定理或结论
(1)共斜边的两个直角三角形,它们的四个顶点共圆,且直角三角形的斜边为圆的直径。
(2)共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆。
注意,以下涉及到平面四边形的都指的是凸四边形,凹四边形结论不成立。
(3)对于凸四边形ABCD ,对角互补则四点共圆。
(如下图1)
(4)凸四边形的一个外角等于其内对角,则四边形的四个顶点共圆。
(5)相交弦定理的逆定理:对于凸四边形ABCD ,其对角线AC 、BD 交于点P ,若PD BP PC AP ⋅=⋅,则A 、B 、C 、D 四点共圆。
(如下图2)
(6)割线定理的逆定理:对于凸四边形ABCD ,其边的延长线AB 、CD 交于点P ,若PD PC PB PA ⋅=⋅,则A 、B 、C 、D 四点共圆。
(如下图3)
(7)托勒密定理的逆定理:对于凸四边形ABCD ,若BD AC BC AD CD AB ⋅=⋅+⋅,则A 、
B 、
C 、
D 四点共圆。
图(1) 图(2) 图(3)
下面用反证法简单证明性质(3),即:对于凸四边形ABCD ,对角互补⇒四点共圆。
要说明的是,反证法本身也是证明四点共圆的一个有效方法。
证明:(反证法)过A ,B ,D 作圆O ,假设C 不在圆O 上,则C 在圆外或圆内, 若C 在圆外,设BC 交圆O 于C ',连结D C ',根据圆内接四边形的性质得∠A +∠D C 'B =180°,∵∠A +∠C =180°,∴∠D C 'B =∠C ,故假设错误,原命题成立。
对于理科学有余力的同学,建议延伸阅读托勒密定理、塞瓦定理、西姆松定理和梅尼劳斯定理及其有关推论。
A B C D
P
A B C
D P
A
B C D。