二次函数的应用第2课时第二章 二次函数.pptx
- 格式:pptx
- 大小:247.59 KB
- 文档页数:14
1.4 二次函数的应用第2课时 商品销售利润问题数学(浙教版)九年级 上册第1章二次函数学习目标1.学会根据销售问题中的数量关系列出二次函数关系式;2.利用列出的二次函数关系式,根据其性质解决商品销售过程中的最大利润问题;3、商品销售类二次函数问题,要注意二次函数自变量的取值范围; 导入新课目前,我国存在大量的商场,是人们平时购物、饮食、游玩等重要的场所;在日常生活中存在着许许多多的与数学知识有关的实际问题.商品买卖过程中,作为商家追求利润最大化是永恒的追求.如果你是商场经理,如何定价才能使商场获得最大利润呢?知识点一二次函数的应用——商品销售问题问题1:某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是元,销售利润元.180006000数量关系(1)销售额= 售价×销售量;(2)利润= 销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.例某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?涨价销售①每件涨价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售涨价销售2030020+x300-10x y=(20+x)(300-10x)建立函数关系式:y=(20+x)(300-10x),即:y=-10x2+100x+6000.60001.自变量x的取值范围如何确定?营销规律是价格上涨,销量下降,因此只要考虑销售量就可以,故300-10x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤30.2.涨价多少元时,利润最大,最大利润是多少?y=-10x2+100x+6000,当时,y=-10×52+100×5+6000=6250.即定价65元时,最大利润是6250元.降价销售①每件降价x元,则每星期售出商品的利润y元,填空:单件利润(元)销售量(件)每星期利润(元)正常销售降价销售2030020-x300+18x y=(20-x)(300+18x)建立函数关系式:y=(20-x)(300+18x),即:y=-18x2+60x+6000.60001.自变量x的取值范围如何确定?营销规律是价格下降,销量上升,因此只要考虑单件利润就可以,故20-x ≥0,且x ≥0,因此自变量的取值范围是0 ≤x ≤20.综合可知,应定价65元时,才能使利润最大.2.降价多少元时,利润最大,是多少?当 时,即定价57.5元时,最大利润是6050元.即:y =-18x 2+60x +6000,由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?归纳总结求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.典例精析【例1】某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出30-x件,要使利润最大,每件的售价应为( )A.24元B.25元C.28元D.30元【详解】解:设利润为w,由题意可得,w=(x-20)(30-x)=-x2+50x-600=-(x-25)2+25∵-1<0,20≤x≤30,∴当x=25时w最大,故选B;【例2】已知某商品的进价为每件40元.现在的售价是每件60元,每星期可卖出300件.市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件;定价为元才能使利润最大.【详解】解:设每涨价x元,获得的总利润为y元,根据题意得:y=(6--40+x)(300-10x)=(20+x)(300-10x)==-10x2+100x+6000=-10(x-5)2+6250(0≤x≤30)∴当x=5时,y的值最大,此时定价为:60+5=65(元)故答案为:65.练一练1.“爱成都,创文明,迎大运”,卫生环境先着手,为提高工作效率,某清洁工具生产商投产一种新型垃圾夹,每件制造成本为20元,在试销过程中发现,每月销量y(万件)与销售单价x(元)之间关系可以近似地看作一次函数y=-2x+52.(1)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式;(2)当销售单价为多少元时,生产商每月能够获得最大利润?最大利润是多少?【详解】(1)由题意得:w=y(x-20)=(-2x+52)(x-20)=-2x2+92x-1040;(2)w=-2x2+92x-1040=-2(x-23)2+18,∴当销售单价为23元时,每月能获得最大利润,最大利润是18万元;1.2022年北京冬奥会的冰墩墩受广大群众的喜爱,某超市销售冰墩墩饰品,每件成本为40元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x(元)之间满足函数关系式y=-2x+200,若要求销售单价不得低于成本.为了每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少元?( )A.80元,1800元B.70元,2000元C.70元,1800元D.80元,2000元【详解】设每月所获利润为w,由题意可知:w=(x-40)×y=(x-40)(-2x+200)=-2(x-70)2+1800∵抛物线开口向下,∴当x=70时,函数有最大值为1800.故选:C.2.某书店销售某种中考复习资料,若每本可获利x元,一天可售出(100-5x)本,则该书店出售该种中考复习资料的日利润最大为( )A.250元B.500元C.750元D.1000元【详解】解:每本可获利x元,一天可售出(100-x)本,则一天的利润为(100-5x)x=-5x2+100x,设日利润为y,∴y=-5x2+100x=-5(x-10)2+500,∴最大利润为:500元,故选:B.3.某景区旅店有30张床位,每床每天收费10元时,可全部租出,若每床每天收费提高10元,则有2张床位不能租出;若每床每天收费再提高10元,则再有2张床位不能租出;若每次按提高10元的这种方法变化下去,则该旅店每天营业收入最多为( )A.3125元B.3120元C.2950元D.1280元【详解】解:设每床每晚收费提高x个10元,旅店每天营业收入为y元,根据题意得:y=(10+10x)(30-2x)=-20x2+280x+300=-20(x-7)2+1280,∴当x=7时,y最大,最大值为1280元,∴该旅店每天营业收入最多为1280元,故选:D.4.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为150件:销售单价每上涨1元,每天的销售量就减少10件,设销售单价为x(元),每天的销售量为y(件),每天所得的销售利润为w(元).则当销售单价为元时,每天的销售利润最大,最大利润是_______元.【详解】解:由题意,得:涨了(x-25)元,销售量少10(x-25)件,现在的销售量为y=150-10(x-25)=(400-10x)件,W=(x-20)·y=(x-20)(400-10x)=-10x2+600x-8000当x=−ᵄ2ᵄ=30时,W最大,W=(30-20)×(400-300)=1000元.故当销售单价为30元时,每天的销售利润最大,最大利润是1000元.故答案为:30,1000.5.超市销售的某商品进价是10元/件.在销售过程中发现,该商品每天的销售量y(件)与售价x(元/件)之间满足函数关系式y=-5x+150,则该商品的售价定为元/件时,每天销售该商品的获利最大.【详解】设获利W元,则W=(x-10)·y∴W=(x-10)(-5x+150)=-5x2+200x-1500当x=−ᵄ2ᵄ=20时,W的值最大,∴当x=20时,每天销售该商品的获利最大.故答案为:20.6.2022年,中国航天迈着大步向浩瀚宇宙不断探索.这一年,神舟十四号载人飞船成功发射.某航模专卖店向航天爱好者推出了“神舟十四号”飞船模型.每个模型的进价是80元,原计划按每个120元销售,每月能售出30个,经调查发现,这种模型每个降价1元,则每月销售量将增加2个.(降价为整元)(1)直接写出每月销售量y(个)与每个降价x(元)的函数关系式;(2)设专卖店销售这种模型每月可获利w元,当每个降价多少元时,每月获得的利润最大?最大利润是多少?【详解】(1)根据题意得:y=30+2x;(2)设每个降价x元,根据题意得,w=(120-80-x)(30+2x)=-2x2+50x+1200=-2(x-252)2+30252,当每个降价12或13元时,每月获得的利润最大,最大利润是1512元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系.7.水果店新进一种水果,进价为每千克5元,每天的销售量y(kg)与销售单价x(元)之间满足一次函数关系式,其图像如图所示.(1)求y与x之间的函数关系式;(2)水果的销售单价定为多少元时,水果店卖这种水果每天获得的利润最大?最大利润是多少元?【详解】(1)解:设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图像可知:8ᵅ+ᵄ=606ᵅ+ᵄ=100,解得:ᵅ=−20ᵄ=220,∴y与x的函数关系式为y=-20x+220.(2)解:设每天销售这种水果所获的利润为w元,∵y=-20x+220,∴w=(x-5)y=(x-5)(-20x+220)=-20(x-8)2+180,∴当x=8时,w有最大值,最大值为180,∴售价定为8元/件时,每天最大利润为180元.课堂小结求解最大利润问题的一般步骤1.建立利润与价格之间的函数关系式:运用“总利润=总售价-总成本”或“总利润=单件利润×销售量”2.结合实际意义,确定自变量的取值范围;3.在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.谢谢~。