时间序列电子科大第二章
- 格式:ppt
- 大小:918.50 KB
- 文档页数:31
第2章时域离散信号和系统的频域分析2.1学习要点与重要公式2.2FT和ZT的逆变换2.3分析信号和系统的频率特性 2.4例题2.5习题与上机题解答2.1学习要点与重要公式数字信号处理中有三个重要的数学变换工具,即傅里叶变换(FT)、Z变换(ZT)和离散傅里叶变换(DFT)。
利用它们可以将信号和系统在时域空间和频域空间相互转换,这方便了对信号和系统的分析和处理。
三种变换互有联系,但又不同。
表征一个信号和系统的频域特性是用傅里叶变换。
Z 变换是傅里叶变换的一种推广,单位圆上的Z变换就是傅里叶变换。
在z域进行分析问题会感到既灵活又方便。
离散傅里叶变换是离散化的傅里叶变换,因此用计算机分析和处理信号时,全用离散傅里叶变换进行。
离散傅里叶变换具有快速算法FFT,使离散傅里叶变换在应用中更加方便与广泛。
但是离散傅里叶变换不同于傅里叶变换和Z变换,它将信号的时域和频域,都进行了离散化,这是它的优点。
但更有它自己的特点,只有掌握了这些特点,才能合理正确地使用DFT。
本章只学习前两种变换,离散傅里叶变换及其FFT将在下一章学习。
2.1.1学习要点(1)傅里叶变换的正变换和逆变换定义,以及存在条件。
(2)傅里叶变换的性质和定理:傅里叶变换的周期性、移位与频移性质、时域卷积定理、巴塞伐尔定理、频域卷积定理、频域微分性质、实序列和一般序列的傅里叶变换的共轭对称性。
(3)周期序列的离散傅里叶级数及周期序列的傅里叶变换表示式。
(4)Z变换的正变换和逆变换定义,以及收敛域与序列特性之间的关系。
(5)Z变换的定理和性质:移位、反转、z域微分、共轭序列的Z变换、时域卷积定理、初值定理、终值定理、巴塞伐尔定理。
(6)系统的传输函数和系统函数的求解。
(7)用极点分布判断系统的因果性和稳定性。
(8)零状态响应、零输入响应和稳态响应的求解。
(9)用零极点分布定性分析并画出系统的幅频特性。
2.1.2重要公式(1)这两式分别是傅里叶变换的正变换和逆变换的公式。
第二章 滞后算子及其性质§2.1 基本概念时间序列是以观测值发生的时期作为标记的数据集合。
一般情况下,我们是从某个特定的时间开始采集数据,直到另一个固定的时间为止,我们可以将获得的数据表示为:如果能够从更早的时间开始观测,或者观测到更晚的时期,那么上面的数据区间可以进一步扩充。
相对而言,上述数据只是一个数据的片段,整个数据序列可以表示为:例2.1 (1) 时间趋势本身也可以构成一个时间序列,此时:t y t =;(2) 另一种特殊的时间序列是常数时间序列,即:c y t =,c 是常数,这种时间的取值不受时间的影响;(3) 在随机分析中常用的一种时间序列是高斯白噪声过程,表示为:t t y ε=,+∞=-∞=t t t }{ε是一个独立随机变量序列,每个随机变量都服从),0(2σN 分布。
时间序列之间也可以进行转换,类似于使用函数关系进行转换。
它是将输入时间序列转换为输出时间序列。
例2.2 (1) 假设t x 是一个时间序列,假设转换关系为:t t x y β=,这种算子是将一个时间序列的每一个时期的值乘以常数转换为一个新的时间序列。
(2) 假设t x 和t w 是两个时间序列,算子转换方式为:t t t w x y +=,此算子是将两个时间序列求和。
定义:如果算子运算是将一个时间序列的前一期值转化为当期值,则称此算子为滞后算子,记做L 。
即对任意时间序列t x ,滞后算子满足:类似地,可以定义高阶滞后算子,例如二阶滞后算子记为2L ,对任意时间序列t x ,二阶滞后算子满足:一般地,对于任意正整数k ,有:命题2.1 滞后算子运算满足线性性质:(1) )()(t t x L x L ββ=(2) )()()(t t t t w L x L w x L +=+证明:(1) 利用滞后算子性质,可以得到:(2) )()()(11t t t t t t w L x L w x w x L +=+=+--由于滞后算子具有上述运算性质和乘法的交换性质,因此可以定义滞后算子多项式,它的作用是通过它对时间序列的作用获得一个新的时间序列,并且揭示这两个时间序列之间的关系。