时间序列分析讲义 第02章 滞后算子
- 格式:doc
- 大小:370.00 KB
- 文档页数:8
滞后算子解卡特兰数1.引言1.1 概述概述:滞后算子和卡特兰数作为数学中的重要概念,在组合学、代数学、计算机科学、物理学等领域都有广泛的应用。
滞后算子是一种基本的线性代数运算符,它将数列中的每一项向后移动一位,并在首位添加一个给定的值。
而卡特兰数则是一系列极其重要且有趣的数列,描述了许多组合问题的解决方案的总数。
本文旨在探讨滞后算子是如何解卡特兰数的,并讨论其在组合问题中的应用。
我们将首先介绍滞后算子的概念和特点,包括其定义、运算规则以及具体的应用案例。
随后,我们将对卡特兰数的定义和性质进行详细阐述,包括其递推公式、递归关系和常见的数学性质。
在正文部分,我们将会详细介绍滞后算子解卡特兰数的方法和应用。
通过引入滞后算子,我们可以将卡特兰数的计算问题转化为代数问题,从而简化计算过程。
我们将会讨论不同的解决方法,并比较它们的优缺点。
此外,我们还将探讨滞后算子解卡特兰数在实际应用中的一些具体案例,例如计算树的种类、括号匹配问题等。
最后,我们将对滞后算子解卡特兰数的方法和结果进行分析和讨论。
通过比较不同的解决方案,我们可以评估其在不同情境下的适用性和效果。
同时,我们也将对滞后算子解卡特兰数的局限性进行探讨,并提出可能的改进方向。
通过本文的研究,我们希望能够深入理解滞后算子解卡特兰数的原理和应用,并且为相关领域的学术研究和实际应用提供一定的参考和借鉴。
1.2 文章结构文章结构部分的内容应包括文章的主要分节和各分节的主题或内容简介,以便读者在阅读前能够大致了解全文的结构和内容安排。
根据给出的文章目录,可以编写如下文章结构部分的内容:2. 正文2.1 滞后算子的概念和特点2.2 卡特兰数的定义和性质在本文的正文部分,我们将首先介绍滞后算子的概念和特点。
通过对滞后算子的详细解释,读者可以全面了解滞后算子的定义及其在问题求解中的作用。
接着,我们将介绍卡特兰数的定义和性质。
卡特兰数作为组合数学中的一个重要概念,具有许多重要的性质和应用,在各种问题中都有广泛的应用。
(3) 最大似然估计法(MLE )首先大家打开教材第43页看,我们纠正教材中的错误。
它说: “对于一组相互独立的随机变量),,2,1(,T t tx =,当得到一个样本),,,(21T x x x 时,似然函数可表示为∏===T t t x f x f x f x f T x x x L 1)()2()2()1(),,2,1(γγγγγ 式中),,,(21k γγγγ =是一组未知参数”。
我们知道时间序列一般不是独立的,而是相依的离散时间随机过程。
因此,得到的样本),,,(21T x x x 不可能是相互独立的,似然函数绝不是以上概率密度乘积的形式。
所以,教材中这一段是错误的。
似然函数在估计理论中有着根本的重要性的一个原因是因为“似然原理”。
这个原理说:已知假定的模型是正确的,数据非得告诉我们的关于参数的全部包含在似然函数中,数据的所有其他方面是不切题的。
实际上,一般的ARMA 过程(含AR 、MA 过程)参数的最大似 然估计计算过程很复杂。
至少有三种方法写出精确的似然函数:向后预报法、递推预报法、状态空间与卡尔曼(Kalman )滤波法。
我们讲只对递推预报法最简要介绍,从而为引出模型选择的AIC 、BIC 信息准则铺平道路。
我们先以最简单的因果的AR(1)过程的MLE 为例,说明MLE 的主要思想。
考虑因果的AR(1)过程,满足模型tu t X t X +-+=110φφ, ),0(~2σN IID t u , 且11<φ。
则均值为 )(110t X E =-=φφμ。
我们以),1,(2σφμ为三个未知参数,而)11(0φμφ-=不作独立的未知参数。
模型中心化为 tu t X t X +--=-)1(1μφμ。
设已得到了样本值),,,(21T x x x 。
则关于参数),1,(2σφμ的似然函数为 )2,1,;1()2,1,;12()2,1,;2,,2,11()2,1,;1,,1(),,2,1;2,1,(σφμσφμσφμσφμσφμx f x x f T x x x T x f T x x T x f Tx x x L ⨯---= 联合概率密度在样本值),,,(21T x x x 处的值写为条件概率密度和最后一个无条件概率密度的乘积。
时序预测中的滞后效应处理方法时序预测是一种通过对历史数据进行分析和建模,然后利用这些模型对未来数据进行预测的方法。
在实际应用中,我们经常会遇到滞后效应的问题,即当前时刻的预测结果受到过去时刻的影响。
如何有效处理这种滞后效应成为了时序预测中的一个重要问题。
本文将从多个角度探讨时序预测中滞后效应的处理方法。
1. 数据平稳性在进行时序预测之前,首先需要确保数据的平稳性。
平稳性是指时间序列数据的均值和方差保持不变。
如果数据不平稳,就可能存在滞后效应,因为过去时刻的数据会对当前时刻的预测结果产生影响。
为了处理滞后效应,我们需要对数据进行差分处理,使其变成平稳序列。
通过一阶差分或季节性差分可以有效地去除数据的非平稳性,减少滞后效应的影响。
2. 自回归模型自回归模型是一种常用的时序预测方法,它通过将当前时刻的值与过去时刻的值进行线性组合来进行预测。
在处理滞后效应时,可以通过调整自回归模型的阶数来减少滞后效应的影响。
如果过去时刻的值对当前时刻的预测结果影响较大,可以增加自回归模型的阶数,使模型能够更好地捕捉滞后效应所带来的影响。
3. 移动平均模型移动平均模型是另一种常用的时序预测方法,它通过对过去时刻的观测值进行加权平均来进行预测。
在处理滞后效应时,可以通过调整移动平均模型的窗口大小来减少滞后效应的影响。
如果过去时刻的观测值对当前时刻的预测结果影响较大,可以增加移动平均模型的窗口大小,使模型能够更好地捕捉滞后效应所带来的影响。
4. 季节性调整在实际应用中,许多时间序列数据都会呈现出一定的季节性变化。
季节性变化会使滞后效应更加显著,因为过去同一时刻的值对当前时刻的预测结果会产生更大的影响。
为了处理滞后效应,我们可以对数据进行季节性调整,使其变成季节性平稳序列。
通过季节性差分或季节性模型,可以减少滞后效应的影响,提高预测的准确性。
5. 异常值处理在时间序列数据中,常常会存在一些异常值,这些异常值会对时序预测的结果产生较大的影响。
第二章 滞后算子及其性质滞后算子是对时间序列进行动态线性运算的主要工具,利用滞后算子可以使得一些非线性运算非常简洁。
§2.1 基本概念时间序列是以观测值发生的时期作为标记的数据集合。
一般情况下,我们是从某个特定的时间开始采集数据,直到另一个固定的时间为止,我们可以将获得的数据表示为:),,,(21T y y y如果能够从更早的时间开始观测,或者观测到更晚的时期,那么上面的数据区间可以进一步扩充。
相对而言,上述数据只是一个数据的片段,整个数据序列可以表示为:+∞=-∞==t t t T y y y y }{),,,,,,(21例2.1 几种代表性的时间序列(1) 时间趋势本身也可以构成一个时间序列,此时:t y t =;(2) 另一种特殊的时间序列是常数时间序列,即:c y t =,c 是常数,这种时间的取值不受时间的影响;(3) 在随机分析中常用的一种时间序列是高斯白噪声过程,表示为:t t y ε=,+∞=-∞=t t t }{ε是一个独立随机变量序列,每个随机变量都服从),0(2σN 分布。
时间序列之间也可以进行转换,类似于使用函数关系进行转换。
它是将输入时间序列转换为输出时间序列。
例2.2 几种代表性的时间序列转换(1) 假设t x 是一个时间序列,假设转换关系为:t t x y β=,这种算子是将一个时间序列的每一个时期的值乘以常数转换为一个新的时间序列。
(2) 假设t x 和t w 是两个时间序列,算子转换方式为:t t t w x y +=,此算子是将两个时间序列求和。
定义2.1 如果算子运算是将一个时间序列的前一期值转化为当期值,则称此算子为滞后算子,记做L 。
即对任意时间序列t x ,滞后算子满足:1)(-≡t t x x L (1)类似地,可以定义高阶滞后算子,例如二阶滞后算子记为2L ,对任意时间序列t x ,二阶滞后算子满足:22)]([)(-=≡t t t x x L L x L (2)一般地,对于任意正整数k ,有:k t t k x x L -=)( (3)命题2.1 滞后算子运算满足线性性质: (1) )()(t t x L x L ββ= (2) )()()(t t t t w L x L w x L +=+证明:(1) 利用滞后算子性质,可以得到:)()(1t t t x L x x L βββ==-(2) )()()(11t t t t t t w L x L w x w x L +=+=+-- End 由于滞后算子具有上述运算性质和乘法的交换性质,因此可以定义滞后算子多项式,它的作用是通过它对时间序列的作用获得一个新的时间序列,并且揭示这两个时间序列之间的关系。
第二章 滞后算子及其性质滞后算子是对时间序列进行动态线性运算的主要工具,利用滞后算子可以使得一些非线性运算非常简洁。
§2.1 基本概念时间序列是以观测值发生的时期作为标记的数据集合。
一般情况下,我们是从某个特定的时间开始采集数据,直到另一个固定的时间为止,我们可以将获得的数据表示为:),,,(21T y y y如果能够从更早的时间开始观测,或者观测到更晚的时期,那么上面的数据区间可以进一步扩充。
相对而言,上述数据只是一个数据的片段,整个数据序列可以表示为:+∞=-∞==t t t T y y y y }{),,,,,,(21例2.1 几种代表性的时间序列(1) 时间趋势本身也可以构成一个时间序列,此时:t y t =;(2) 另一种特殊的时间序列是常数时间序列,即:c y t =,c 是常数,这种时间的取值不受时间的影响;(3) 在随机分析中常用的一种时间序列是高斯白噪声过程,表示为:t t y ε=,+∞=-∞=t t t }{ε是一个独立随机变量序列,每个随机变量都服从),0(2σN 分布。
时间序列之间也可以进行转换,类似于使用函数关系进行转换。
它是将输入时间序列转换为输出时间序列。
例2.2 几种代表性的时间序列转换(1) 假设t x 是一个时间序列,假设转换关系为:t t x y β=,这种算子是将一个时间序列的每一个时期的值乘以常数转换为一个新的时间序列。
(2) 假设t x 和t w 是两个时间序列,算子转换方式为:t t t w x y +=,此算子是将两个时间序列求和。
定义2.1 如果算子运算是将一个时间序列的前一期值转化为当期值,则称此算子为滞后算子,记做L 。
即对任意时间序列t x ,滞后算子满足:1)(-≡t t x x L (1)类似地,可以定义高阶滞后算子,例如二阶滞后算子记为2L ,对任意时间序列t x ,二阶滞后算子满足:22)]([)(-=≡t t t x x L L x L (2)一般地,对于任意正整数k ,有:k t t k x x L -=)( (3)命题2.1 滞后算子运算满足线性性质: (1) )()(t t x L x L ββ= (2) )()()(t t t t w L x L w x L +=+证明:(1) 利用滞后算子性质,可以得到:)()(1t t t x L x x L βββ==-(2) )()()(11t t t t t t w L x L w x w x L +=+=+-- End 由于滞后算子具有上述运算性质和乘法的交换性质,因此可以定义滞后算子多项式,它的作用是通过它对时间序列的作用获得一个新的时间序列,并且揭示这两个时间序列之间的关系。
显然,滞后算子作用到常数时间序列上,时间序列仍然保持常数,即:c c L =)(。
§2.2 一阶差分方程利用滞后算子,可以将前面的一阶差分方程表示成为滞后算子形式:t t t t t w y L w y y +=+=-φφ1 (4)也可以表示为:t t w y L =-)1(φ (5)在上述等式两边同时作用算子:)1(22t t L L L φφφ++++ ,可以得到:t t t t t t w L L y L L L )1()1)(1(φφφφφ+++=-+++计算得到:t t t t t t w L L y L )1()1(11φφφ+++=-++利用滞后算子性质得到:0111w w w y y t t t t t φφφ+++++=--+ (6)上述差分方程的解同利用叠代算法得到的解是一致的。
注意到算子作用后的等式:t t t t t t y y y L L L 1)1)(1(+-=-+++φφφφ如果时间序列t y 是有界的,即存在有限的常数M ,使得任意时间均有:M y t ≤||,并且1||<φ,则上式当中的尾项随着时间增加趋于零。
从而有:t t t t t y y L L L =-+++∞→)1)](1[(lim φφφ (7)如果利用“1”表示恒等算子,则有:1)1)](1[(lim =-+++∞→L L L t t t φφφ (8)记(需要注意的是,这里只是表示一个运算符号):)]1[(lim )1(1t t t L L L φφφ+++=-∞→- (9)因此得到了“逆算子”的表达式,这类似于以滞后算子为变量的函数展开式。
定义2.2 当1||<φ时,定义算子)1(L φ-的逆算子为1)1(--L φ,它满足:(1) I L L L L =--=----)1()1()1)(1(11φφφφ (10) 其中I 表示单位算子,即对任意时间序列t y ,有:t t y y I =)( (2) 在形式上逆算子可以表示为:∑=-∞=-01)1(j j j L L φφ (11)这表示逆算子作为算子运算规则是:对于任意时间序列t y ,有:∑=∑=-∞=-∞=-01)()1(j j t j j t j j t y yL y L φφφ当1||≥φ时,逆算子1)1(--L φ的定义以后讨论。
如果时间序列t y 是有界的,则一阶差分方程的解可以表示为:∑=+++=∞=---0221j j t j t t t t w w w w y φφφ可以验算上述表达式确实满足一阶线性差分方程。
但是解并惟一,例如对于任意实数0a ,下述形式的表达式均是方程的解。
∑+=∞=-00j j t j tt w a y φφ上述差分方程的解中含有待定系数,这为判断解的性质留出一定的余地。
§2.3 二阶差分方程我们考察二阶差分方程的滞后算子表达式:t t t t w y y y ++=--2211φφ将其利用滞后算子表示为:t t w y L L =--)1(221φφ (12)对二阶滞后算子多项式进行因式分解,即寻求1λ和2λ使得:])(1[)1)(1()1(2212121221L L L L L L λλλλλλφφ++-=--=--显然1λ和2λ是差分方程对应的特征方程的根:0212=--φλφλ (13)当特征根1λ和2λ落在单位圆内的时候(这也是差分方程的稳定性条件),滞后算子多项式分解为:++++=--3312211111)1(L L L L λλλλ, ++++=--3322222121)1(L L L L λλλλ这时二阶差分方程解可以表示为:t t w L L y 1211)1()1(----=λλ注意到算子分式也可以进行分项分式分解(如此分解需要证明,参见Sargent ,1987,p. 184):⎪⎪⎭⎫ ⎝⎛----=--)1()1()(1)1)(1(122112121L L L L λλλλλλλλ 将上述表达式带入到二阶差分方程解中:() ++++++=+++++++-=⎪⎪⎭⎫ ⎝⎛----=--222221112211212222221121221121)()()(11)(1)1()1()(1t t t t t t w c c w c c w c c w L L L L w L L y λλλλλλλλλλλλλλλλ 其中:2111λλλ-=c ,1222λλλ-=c利用上述公式,可以得到外生扰动的动态反应乘子为: jj tjt c c w y 2211λλ+=∂∂+, ,1,0=j (14) 上述利用滞后算子运算得到的乘数与以前所得完全一致。
例2.3 对于二阶差分方程而言,其特征方程是:0212=--φλφλ得到特征根为:)4(212111φφφλ++=,)4(212112φφφλ+-=上述方程的稳定性与滞后算子多项式的根落在单位圆内是一致的。
§2.4 p 阶差分方程上述算子多项式的分解方法可以直接推广到p 阶差分方程情形。
将p 阶差分方程表示成为滞后算子形式:t t p p w y L L L =----)1(221φφφ (15)将上式左端的算子多项式分解为:)1()1)(1()1(21221L L L L L L p p p λλλφφφ---=---- (16) 这相当于寻求),,(1p λλ 使得下述代数多项式恒等:)1()1)(1()1(21221z z z z z z p p p λλλφφφ---=---- (17)定义1-=z λ,则可以将上述多项式表示成为:)())(()(212211p p p p p λλλλλλφλφλφλ---=------ (18) 这意味着算子多项式的分解,就相当于求出差分方程特征方程的根。
如果差分方程的根相异,且全部落在单位圆内,则可以进行下述分式分解:)1()1()1()1()1)(1(1121121L c L c L c L L L p p p λλλλλλ-++-+-=--- (19)通过待定系数法,可以得到上述分式中的参数为:112111----+++=p pp p p i i c λλλλ ,p j ,,2,1 = (20)显然有:121=+++p c c c (21) 利用上述算子多项式分解,可以得到差分方程的解为:+++++++++++++=++++++++++++=-++-+-=----=--j p jp p j j p p p p p tp p p t t tp p t t tp p t w c c c w c c c w c c c w L L c w L L c w L L c w L c w L c w L c w L L L y )()()()1()1()1()1()1()1()1(1221112211212222222221112211221λλλλλλλλλλλλλλλφφφ (22) 通过上述方程通解,可以得到动态反应乘子为: jp p j j t jt c c c w y λλλ+++=∂∂+ 2211, ,2,1=j (23) 命题2.2 外生变量t w 对t y 现值的影响和外生变量t w 持续扰动对t y 的动态影响乘子是:p pj j t j t y w βφβφβφβ----=⎪⎭⎫⎝⎛∑∂∂∞=+ 221011 p j t j t t j t t j t j w y w y w y φφφ----=⎥⎥⎦⎤⎢⎢⎣⎡∂∂++∂∂+∂∂+++++∞→ 21111lim 证明:将差分方程的解表示为: +++=--33221t t t t w w w y ϕϕϕ, 其中:][11jp p j j c c λλϕ++= , ,2,1=j设:++++=332210)(L L L L ϕϕϕϕϕ 利用算子多项式表示: t t w L y )(ϕ=t w 对t y 现值的影响可以表示为:∑==∑∂∂=⎪⎭⎫ ⎝⎛∑∂∂∞=∞=+∞=+000)(j j j j t j t jj j t j t w y y w βϕϕβββ 注意到:11332210)]1()1[()(---=++++=L L L L L L p λλϕϕϕϕϕ因此有:122111]1[)]1()1[()(------=--=p p p βφβφβφβλβλβϕ长期乘数相当于1=β的情形,从而得到公式所示的公式。